
Multi-Objective Optimization

How to optimize 
multiple 

objectives?

Build Pareto-Front
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• We often have more than one objective

• When a change in design variable can affect opposite way 
of different objectives

INTRODUCTION
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Which one is optimum?

What’s the definition of optimum?

Pareto-frontier
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• This means that design points are no longer arranged in 
strict hierarchy

• There are points that are clearly poorer than others 
because all objectives are worse

• In optimization jargon we call these points dominated

• Points that are not dominated are called non-dominated or 
Pareto optimal

INTRODUCTION cont.
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• Vector of objective functions

• In multi-objective optimization, objective functions are 
competing each other

– We cannot improve one objective without deteriorating others

• We can combine them using weights, but often don’t know 
them

• Need to explore all possible combinations of competing 
objectives

MULTI-OBJECTIVE DESIGN STRATEGY

 1 2( ) ( ) ( )mf f fF b b b

1 1 2 2( ) ( ) ( ) ( )m mf w f w f w f   b b b b
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• Problem formulation

• If any objectives are competing, there is no unique solution

• Non-inferior solution: an improvement in one objective 
requires a degradation of another

• The set of non-inferior solutions is called Pareto front

MULTI-OBJECTIVE OPTIMIZATION
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• We have two objectives that are to be minimized. The 
following are the pairs of objectives at 10 design points. 
Identify the dominated ones.

EXAMPLE: DOMINATION

(67,71),   (48,72),   (29,88),  (-106, 294),   (32,13)
(-120,163), (103,-30),  (-78,114),   (-80,143),  (75,-171)
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• Work choice: Minimize time and maximize fun so that you 
make $100. Will need between 33.3 to 100 items. Time can 
vary from 66.7 minutes to 300. Fun can vary between 33.3 
and 300. 

EXAMPLE: DOMINATION

Fun indexTime (min)Pay ($)Item (task)
3311
1522
2213
1234

Task 2 is dominated by Task 4!
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• Problem formulation

• Pay constraint in standard normalized form

• Common sense constraints

MULTI-OBJECTIVE FORMULATION

1 3 4

1 3 4

1 3 4

Minimize 3 2 2
Maximize 3 2
subject to 3 100

0i

time b b b
fun b b b
pay b b b
b

  

  

   



Fun Time Pay Item
3311
1522
2213
1234

1 3 4100, 100, 33.3b b b  

1 3 41 ( 3 ) / 100 0b b b   
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• In the range of three variables calculate time and fun for all 
combinations that produce exactly $100.

• Pareto front is upper boundary and it is almost a straight 
line.

• Matlab results

SOLUTION BY ENUMERATION
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• Formulate the problem of maximizing fun and pay for five 
hours (300 minutes) including only non-dominated 
variables. 

• Obtain the Pareto front analytically or by enumeration and 
writes its equation (fun as a function of pay).

EXERCISE: PAY-FUN PROBLEM
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• Methods that try to avoid generating the Pareto front

– Generate “utopia point”

– Define optimum based on some measure of distance from utopia 
point

• Generating entire Pareto front

– Weighted sum of objectives with variable coefficients

– Optimize one objective for a range of constraints on the others

– Niching methods with population based algorithms

MORE EFFICIENT SOLUTION METHODS
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• The utopia point is (66.7,300).

• One approach is to use it to form a compromise objective

• It gives 
time=168 minutes, 
fun=160 
(b1=0, b3=76,b4=8)

EXAMPLE: UTOPIA POINT
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SERIES OF CONSTRAINTS

1 3 4

1 3 4

1 3 4

Minimize 3 2 2
subject to 3 100

3 2 1,2,
0
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time b b b
pay b b b
fun b b b fun k
b
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



The next slides provides a Matlab segment for solving 
this optimization problem using the function fmincon, but 
without the requirement of integer variables.

How will you change the formulation so that a single 
Matlab run will give us results for any required earning 
level R? 
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b0 = [10  10 10];
for fun_idx = 30:5:300

A = [-1 -1 -3; -3 -2 -1]; c = [-100;-fun_idx];
lb = zeros(3,1);
options = optimset('Display','off');
[b,fval,exitflag,output,lambda] = 

fmincon('myfun’,b0,A,c,[],[],lb,[],[],options);
pareto_sol(fun_idx,:) = b;
pareto_fun(fun_idx,1) = fval;
pareto_fun(fun_idx,2) = 3*b(1)  + 2*b(2) + b(3);

end

function f = myfun(b)
f = 3*b(1) + 2*b(2) + 2*b(3);

MATLAB SEGMENT
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• Generate the Pareto front for the pay and fun maximization 
using a series of constraints, and also find a compromise 
point on it using the utopia point.

• What is responsible for the slope discontinuity in the Pareto 
front on Slide 10? 

EXERCISE: PARETO-FRONT
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• Minimize time & maximize fun while you make at least $100

• Will need between 33.3 to 100 items

• Fun can vary between 33.3. Try first for 150

• Multi-objective optimization formulation

EXAMPLE

Fun indexTime (min)Pay ($)Item

3311

2422

2213

1234

1 2 3 4

1 2 3 4

1 2 3 4

Minimize 3 4 2 2
Maximize 3 2 2
subject to 2 3 100

time b b b b
fun b b b b
pay b b b b

   

   

    
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f1=zeros(1,100000);
f2=zeros(1,100000);
k=1;
for i1=0:5:50
for i2=0:5:50
for i3=0:5:50
for i4=0:5:50
pay=i1+2*i2+i3+3*i4;
if pay >= 100
f1(k)=3*i1+4*i2+2*i3+2*i4;
f2(k)=3*i1+2*i2+2*i3+i4;
k=k+1;
end

end
end

end
end
k=k-1
plot(f1(1:k),f2(1:k),'b.');

EXAMPLE
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• Point            is a non-inferior solution if for some 
neighborhood of b* there does not exist a Db such that

• Multi-objective optimization: generation and selection of 
non-inferior solution points

PARETO OPTIMALITY
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• Methods that try to avoid generating the Pareto front

– Generate “utopia point”

– Define optimum based on some measure of distance from utopia 
point

• Generating entire Pareto front

– Weighted sum of objectives with variable coefficients

– Optimize on objective for a range of constraints on the others

– Niching methods with population based algorithms

SOLUTION METHODS
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• Convert F(b) to a scalar objective function using weights

• By changing wi, different Pareto optimum points can be 
found

WEIGHTED SUM METHOD

1
Minimize ( ) ( )

m

i i
i

f w f


 b b

f2

f1

w1f1 + w2f2 = constant

A Pareto front

Problem with non-convex front
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• Optimize a primary objective fp(b), while other objectives 
are considered as constraints

• Can find non-convex front

• If e2 is too small, there is no feasible point

EPSILON-CONSTRAINT METHOD

Minimize ( )
subject to ( ) ,
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• Try to achieve the design goal f* using weighted relaxation

• Geometrically, starting from P = f*, find a feasible point in 
the direction of w

GOAL ATTAINMENT METHOD

*
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subject to ( )i i if w f
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w = [w1, w2, …, wm] : weight

wig : slackness
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• Multiobjective optimization using the genetic algorithm

MATLAB EXAMPLE
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function y = simple_multiobjective(b)
y(1) = (b+2)^2 - 10;
y(2) = (b-2)^2 + 20;

Fitness = @simple_multiobjective;
NV = 1; lb = -1.5; ub = 0; 
options = gaoptimset('PlotFcns',{@gaplotpareto,@gaplotscorediversity}); 
gamultiobj(Fitness, NV,[],[],[],[],lb, ub, options);

MATLAB EXAMPLE



Elitist Non-dominated Sorting 
Genetic Algorithm: NSGA-II
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• Problems with more than one objective – typically 
conflicting objectives

– Cars: Luxury vs. price

• Mathematical formulation

•

– where 𝐅 𝐛 ൌ 𝑓௜, 𝑖 ൌ 1, ⋯ , 𝑀
𝐛 ൌ ሼ𝑏௜, 𝑗 ൌ 1, ⋯ , 𝑁ሽ 

• Subject to 

– 𝐠 𝐛 ൑ 0, 𝐠 ൌ 𝑔௞, 𝑘 ൌ 1, ⋯ 𝑃

– 𝐡 𝐛 ൌ 0, 𝐡 ൌ ℎ௟, 𝑙 ൌ 1, ⋯ 𝑄

Multi-objective optimization problem
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• Many optimal solution

• Usual approaches: weighted sum strategy, multiple-
constraints modeling

• Alternative: Multi-objective GA

• Algorithm requirements: 

– Convergence

– Spread

PARETO OPTIMAL FRONT

M
in

 f
2

Min f1
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• Children and parents are combined.

• Non-dominated points belong to first rank.

• The non-dominated solutions from the remainder are in 
second rank, and so on.

RANKING

f2

f1



Structural & Multidisciplinary Optimization Group
245

• Elitism: Keep the best individuals from the parent and child 
population

ELITISM

f2

f1

Parent 

Child
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• Niching is an operator that gives preference to solutions 
that are not crowded

• Crowding distance 

c = a + b

• End points have infinite
crowding distance

• Solutions from last rank are 
selected based on niching

NICHING FOR LAST RANK

f2

f1

a

b
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Flowchart of NSGA-II

Begin: initialize 
population (size N)

Evaluate objective 
functions

Selection

Crossover

Mutation

Evaluate objective 
function

Stopping 
criteria 
met?Yes

No

C
hild population created

Rank 
population

Combine parent and 
child populations, 
rank population

Select N 
individuals

Elitism

Report final 
population and 

Stop
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Elitism process
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• Sort all the individuals in slide 263 into ranks, and denote 
the rank on the figure in the slide next to the individual.

• Describe how the 10 individuals were selected, and check if 
any individuals were selected based on crowding distance.

Problems NSGA-II
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• Objectives

– Minimize area

– Minimize max. deflection

• Constraints

– Components should be a
valid geometry

– Max. stress ൑ Allowable stress
𝜎௠௔௫ ൑ 𝜎௔௟௟௢௪௔௕௟௘

– Max. deflection ൑ Allowable deflection
𝛿௠௔௫ ൑ 𝛿௔௟௟௢௪௔௕௟௘

Example: Bicycle frame design
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• Shapes are represented by binary strings, where ‘0’ 
represents void region and ‘1’ represents material region

• Example : A typical binary string is

Problem modeling

01110 11111 10001 11111

Left to right representation Shape corresponding to binary string
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• Material Properties

– Yield Stress ሺ𝜎௔௟௟௢௪௔௕௟௘ሻ 140 MPa

– Max Deflection ሺ𝛿௔௟௟௢௪௔௕௟௘ሻ 5 mm

– Young’s Modulus ሺ𝐸ሻ 80GPa

– Poisson’s Ratio ሺ𝜈ሻ 0.25

• GA Parameters

– Binary String Size ሺ𝐿ሻ 14x9

– Population Size 30

– Crossover Probability 0.95

– Mutation Probability 1/L

– # of Generations 150

Material properties and GA parameters
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• Small increase in 
weight leads to a large
drop in deflection

• Similarly small change 
in deflection allows 
significant reduction 
of the weight

Pareto optimal front



Structural & Multidisciplinary Optimization Group
254

Optimal shapes

Different conceptual designs can be found!
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• Structural designs of mechanical components

• Design of turbo-machinery components

• Bioinformatics – protein unfolding

• VLSI circuit designs

• Packaging

• …

Some more engineering applications
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• Real-coded genetic algorithms

• Other multi-objective evolutionary algorithms

– Pareto archived evolutionary strategies (PAES)

– Strength Pareto evolutionary algorithm (SPEA)

– 𝜖–multi-objective evolutionary algorithm (𝜖-MOEA)

• Hybrid GAs

• Particle swarm algorithms

• Ant colony optimization

Other related topic of interest



Constrained Particle Swarm 
Optimization

Is animal 
behavior 

optimized?

Learn from the 
social behavior of 
a bird flock or fish
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• Mimicking social behavior of insects or birds

PARTICLE SWARM OPTIMIZATION
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• Based on Venter, G. and Haftka, R.T., (2010), Structural 
and Multidisciplinary Optimization, Vol. 40(1-6), 65-76.

• Lecture will cover particle swarm optimization, a good 
global search algorithm for continuous problems.

• Constraints are treated using a bi-objective approach that 
minimizes both the objective function and a measure of the 
violation of the constraints.

CONSTRAINED PARTICLE SWARM OPTIMIZATION
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• Based on a simplified social model: swarm adapts to 
underlying environment by returning to promising regions 
previously found

• Robust algorithm

• Global optimizer

• Easy to implement

• Parameter tuning 

• High computational cost

• Unconstrained algorithm

PARTICLE SWARM OPTIMIZATION
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ALGORITHM OVERVIEW
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MOVING TOWARDS PERSONAL BEST AND GROUP BEST

position of  particle in  step

best past position of  particle
 best current position of swarm

i
k
i

g
k

ith kth

ith


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

x

p
p

YouTube visualization www.youtube.com/watch?v=_Y4A8Q2j0wA
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• Minimize the Rosenbrock Banana function using PSO 
starting with 30 particles distributed randomly in the region -

ଵ ଶ . Use ଵ ଶ
.

EXERCISE: PARTICLE SWAM OPTIMIZATION
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• Constrained optimization problem

• Penalty function approach

• Not easy to pick good w

• Creates canyons in design space that can trap swarm

WHAT IS BEST WHEN CONSTRAINTS ARE PRESENT?

Minimize ( )
subject to ( ) 0 1, ,j

f
g j K 

b
x 

1
( ) ( ) max(0, ( ))

K

j
j

f f g


  b b b
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• Replace

• By 

• Fletcher R., Leyffer, S. (2002) Nonlinear programming 
without a penalty function, Math Program 91(2);239-269 

• Advantage is in allowing less constrained search in design 
space.

BI-OBJECTIVE OR FILTER APPROACH

1

Minimize ( )

Minimize ( ) max(0, ( ))
K

j
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h g


 
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  b b b
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• The bi-objective formulation requires a multi-objective PSO 
(MOPSO)

• Each iteration has multiple equally good “leaders”, non-
dominated solutions

• Based on general algorithm by Reyes-Sierra and Coello
Coello (2005)

• Create archive of non-dominated solutions

• Select leader for each particle based on a binary 
tournament

• Makes use of the crowding distance to maintain and select 
leaders

MULTI-OBJECTIVE PSO
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• First sort non-dominated points by objective function 
values.

• Crowding distance of point i is the distance between two 
nearest neighbors (i-1, to i+1)

CROWDING DISTANCE
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• MOPSO with two objective functions

EXAMPLE: MOPSO

 2 2
1 2( ) ( ) ( 2) 100,100f b b f b b b    

With this large range 
of b, how come the 
two objectives have 
such small values?
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• Generate 100 random b values in [0,2] and the 
corresponding values of f1(b) and f2(b) of the functions on 
the previous slide. Choose a point with the maximum 
crowding distance, then the next point with the maximum 
crowding distance, and so on until you reach 20 points. Plot 
the resulting Pareto front. Why is it the Pareto front?

EXERCISE: CROWDING DISTANCE
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• We are not interested in complete Pareto front, but mostly 
in part that has low constraint violations.

• Bias algorithm to such points

– Select leaders based on both constraint violation and crowding 
distance

– Binary tournament based on 
constraint violation 

• Goal is to place more particles 
near feasible domain

CONSTRAINT SPECIALIZED BI-OBJECTIVE PSO
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• Composite laminate design (q1/q2/q3)s, with three angles 
and three thicknesses as design variables.

– Maximize the transverse in-plane stiffness A22

– Constraints on ply angles and effective Poisson’s ratio

• Methods compared

– Standard PSO with penalty function

– MOPSO algorithm of Reyes-Sierra and Coello-Coello

– Modified MOPSO algorithm

• 100 runs, each with 30 particles and 100 generations.

• 10% probability of mutation, w = 0.5, c1 = 1.75, c2 = 2.25

EXAMPLE
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• See relation between stiffness and Poisson’s ratio and 
design variables in the paper.

OPTIMIZATION FORMULATION

22Maximize
subject to 0.48 0.52
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• 108 is the best penalty multiplier

RESULTS: PENALTY FUNCTION
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• Without focus of the Pareto front on the near feasible 
designs, there are many wasted evaluations on deeply 
infeasible designs.

RESULTS: BI-OBJECTIVE FORMULATION


