
Constrained Optimization 5

Most problems in structural optimization must be formulated as constrained min-
imization problems. In a typical structural design problem the objective function
is a fairly simple function of the design variables (e.g., weight), but the design has
to satisfy a host of stress, displacement, buckling, and frequency constraints. These
constraints are usually complex functions of the design variables available only from
an analysis of a finite element model of the structure. This chapter offers a review of
methods that are commonly used to solve such constrained problems.

The methods described in this chapter are for use when the computational cost of
evaluating the objective function and constraints is small or moderate. In these meth-
ods the objective function or constraints these are calculated exactly (e.g., by a finite
element program) whenever they are required by the optimization algorithm. This
approach can require hundreds of evaluations of objective function and constraints,
and is not practical for problems where a single evaluation is computationally ex-
pensive. For these more expensive problems we go through an intermediate stage of
constructing approximations for the objective function and constraints, or at least
for the more expensive functions. The optimization is then performed on the approx-
imate problem. This approximation process is described in the next chapter.

The basic problem that we consider in this chapter is the minimization of a
function subject to equality and inequality constraints

minimize f(x)

such that hi(x) = 0, i = 1, . . . , ne ,

gj(x) ≥ 0, j = 1, . . . , ng .

(5.1)

The constraints divide the design space into two domains, the feasible domain
where the constraints are satisfied, and the infeasible domain where at least one of
the constraints is violated. In most practical problems the minimum is found on
the boundary between the feasible and infeasible domains, that is at a point where
gj(x) = 0 for at least one j. Otherwise, the inequality constraints may be removed
without altering the solution. In most structural optimization problems the inequality
constraints prescribe limits on sizes, stresses, displacements, etc. These limits have

159

Chapter 5: Constrained Optimization

great impact on the design, so that typically several of the inequality constraints are
active at the minimum.

While the methods described in this section are powerful, they can often per-
form poorly when design variables and constraints are scaled improperly. To prevent
ill-conditioning, all the design variables should have similar magnitudes, and all con-
straints should have similar values when they are at similar levels of criticality. A
common practice is to normalize constraints such that g(x) = 0.1 correspond to a
ten percent margin in a response quantity. For example, if the constraint is an upper
limit σa on a stress measure σ, then the constraint may be written as

g = 1− σ

σa

≥ 0 . (5.2)

Some of the numerical techniques offered in this chapter for the solution of con-
strained nonlinear optimization problems are not able to handle equality constraints,
but are limited to inequality constraints. In such instances it is possible to re-
place the equality constraint of the form hi(x) = 0 with two inequality constraints
hi(x) ≤ 0 and hi(x) ≥ 0. However, it is usually undesirable to increase the number of
constraints. For problems with large numbers of inequality constraints, it is possible
to construct an equivalent constraint to replace them. One of the ways to replace a
family of inequality constraints (gi(x) ≥ 0, i = 1 . . .m) by an equivalent constraint is
to use the Kreisselmeier-Steinhauser function [1] (KS-function) defined as

KS[gi(x)] = −1

ρ
ln[
∑

i

e−ρgi(x)] , (5.3)

where ρ is a parameter which determines the closeness of the KS-function to the
smallest inequality min[gi(x)]. For any positive value of the ρ, the KS-function
is always more negative than the most negative constraint, forming a lower bound
envelope to the inequalities. As the value of ρ is increased the KS-functions conforms
with the minimum value of the functions more closely. The value of the KS-function
is always bounded by

gmin ≤ KS[gi(x)] ≤ gmin −
ln(m)

ρ
. (5.4)

For an equality constraint represented by a pair of inequalities, hi(x) ≤ 0 and −
hi(x) ≤ 0, the solution is at a point where both inequalities are active, hi(x) =
−hi(x) = 0, Figure 5.1 . Sobieski [2] shows that for a KS-function defined by such
a positive and negative pair of hi, the gradient of the KS-function at the solution
point hi(x) = 0 vanishes regardless of the ρ value, and its value approaches to zero
as the value of ρ tends to infinity, Figure 5.1 . Indeed, from Eq. (5.4) at x where
hi = 0, the KS-function has the property

0 ≥ KS(h,−h) ≥ − ln(2)

ρ
. (5.5)

160

Section 5.1: The Kuhn-Tucker conditions

Figure 5.1 Kreisselmeier-Steinhauser function for replacing h(x) = 0.

Consequently, an optimization problem

minimize f(x)

such that hk(x) = 0, k = 1, . . . , ne ,
(5.6)

may be reformulated as

minimize f(x)

such that KS(h1,−h1, h2,−h2, . . . , hne ,−hne) ≥ −ε . (5.7)

where ε is a small tolerance.

5.1 The Kuhn-Tucker conditions

5.1.1 General Case

In general, problem (5.1) may have several local minima. Only under special circum-
stances are sure of the existence of single global minimum. The necessary conditions
for a minimum of the constrained problem are obtained by using the Lagrange mul-
tiplier method. We start by considering the special case of equality constraints only.
Using the Lagrange multiplier technique, we define the Lagrangian function

L(x,λ) = f(x)−
ne∑

j=1

λjhj(x) , (5.1.1)

161

Chapter 5: Constrained Optimization

where λj are unknown Lagrange multipliers. The necessary conditions for a stationary
point are

∂L
∂xi

=
∂f

∂xi

−
ne∑

j=1

λj
∂hj

∂xi

= 0, i = 1, . . . , n , (5.1.2)

∂L
∂λj

= hj(x) = 0, j = 1, . . . , ne . (5.1.3)

These conditions, however, apply only at a regular point, that is at a point where the
gradients of the constraints are linearly independent. If we have constraint gradients
that are linearly dependent, it means that we can remove some constraints without
affecting the solution. At a regular point, Eqs. (5.1.2) and (5.1.3) represent n + ne

equations for the ne Lagrange multipliers and the n coordinates of the stationary
point.

The situation is somewhat more complicated when inequality constraints are
present. To be able to apply the Lagrange multiplier method we first transform the
inequality constraints to equality constraints by adding slack variables. That is, the
inequality constraints are written as

gj(x)− t2j = 0, j = 1, . . . , ng , (5.1.4)

where tj is a slack variable which measures how far the jth constraint is from being
critical. We can now form a Lagrangian function

L(x, t,λ) = f −
ng∑
j=1

λj(gj − t2j) . (5.1.5)

Differentiating the Lagrangian function with respect to x, λ and t we obtain

∂L
∂xi

=
∂f

∂xi

−
ng∑
j=1

λj
∂gj

∂xi

= 0, i = 1, . . . , n , (5.1.6)

∂L
∂λj

= −gj + t2j = 0, j = 1, . . . , ng , (5.1.7)

∂L
∂tj

= 2λjtj = 0, j = 1, . . . , ng . (5.1.8)

Equations (5.1.7) and (5.1.8) imply that when an inequality constraint is not critical
(so that the corresponding slack variable is non-zero) then the Lagrange multiplier
associated with the constraint is zero. Equations (5.1.6) to (5.1.8) are the necessary
conditions for a stationary regular point. Note that for inequality constraints a regular
point is one where the gradients of the active constraints are linearly independent.
These conditions are modified slightly to yield the necessary conditions for a minimum
and are known as the Kuhn-Tucker conditions. The Kuhn-Tucker conditions may be
summarized as follows:

162

Section 5.1: The Kuhn-Tucker conditions

A point x is a local minimum of an inequality constrained problem only if a set
of nonnegative λj’s may be found such that:

1. Equation (5.1.6) is satisfied

2. The corresponding λj is zero if a constraint is not active.

Figure 5.1.1 A geometrical interpretation of Kuhn-Tucker condition for the case of
two constraints.

A geometrical interpretation of the Kuhn-Tucker conditions is illustrated in Fig.
(5.1.1) for the case of two constraints. ∇g1 and ∇g2 denote the gradients of the two
constraints which are orthogonal to the respective constraint surfaces. The vector s
shows a typical feasible direction which does not lead immediately to any constraint
violation. For the two-constraint case Eq. (5.1.6) may be written as

−∇f = −(λ1∇g1 + λ2∇g2) . (5.1.9)

Assume that we want to determine whether point A is a minimum or not. To improve
the design we need to proceed from point A in a direction s that is usable and feasible.
For the direction to be usable, a small move along this direction should decrease the
objective function. To be feasible, s should form an obtuse angle with −∇g1 and
−∇g2. To be a direction of decreasing f it must form an acute angle with −∇f .
Clearly from Figure (5.1.1), any vector which forms an acute angle with −∇f will also
form and acute angle with either −∇g1 or −∇g2. Thus the Kuhn-Tucker conditions
mean that no feasible design with reduced objective function is to be found in the
neighborhood of A. Mathematically, the condition that a direction s be feasible is
written as

sT∇gj ≥ 0, j ∈ IA , (5.1.10)

163

Chapter 5: Constrained Optimization

where IA is the set of active constraints Equality in Eq. (5.1.10) is permitted only
for linear or concave constraints (see Section 5.1.2 for definition of concavity). The
condition for a usable direction (one that decreases the objective function) is

sT∇f < 0 . (5.1.11)

Multiplying Eq. (5.1.6) by si and summing over i we obtain

sT∇f =

ng∑
j=1

λjs
T∇gj . (5.1.12)

In view of Eqs. (5.1.10) and (5.1.11), Eq. (5.1.12) is impossible if the λj’s are positive.

If the Kuhn-Tucker conditions are satisfied at a point it is impossible to find a
direction with a negative slope for the objective function that does not violate the
constraints. In some cases, though, it is possible to move in a direction which is
tangent to the active constraints and perpendicular to the gradient (that is, has zero
slope), that is

sT∇f = sT∇gj = 0, j ∈ IA . (5.1.13)

The effect of such a move on the objective function and constraints can be determined
only from higher derivatives. In some cases a move in this direction could reduce the
objective function without violating the constraints even though the Kuhn-Tucker
conditions are met. Therefore, the Kuhn-Tucker conditions are necessary but not
sufficient for optimality.

The Kuhn-Tucker conditions are sufficient when the number of active constraints
is equal to the number of design variables. In this case Eq. (5.1.13) cannot be satisfied
with s 6= 0 because ∇gj includes n linearly independent directions (in n dimensional
space a vector cannot be orthogonal to n linearly independent vectors).

When the number of active constraints is not equal to the number of design
variables sufficient conditions for optimality require the second derivatives of the
objective function and constraints. A sufficient condition for optimality is that the
Hessian matrix of the Lagrangian function is positive definite in the subspace tangent
to the active constraints. If we take, for example, the case of equality constraints,
the Hessian matrix of the Lagrangian is

∇2L = ∇2f −
ne∑

j=1

λj∇2hj . (5.1.14)

The sufficient condition for optimality is that

sT (∇2L)s > 0, for all s for which sT∇hj = 0, j = 1 . . . , ne . (5.1.15)

When inequality constraints are present, the vector s also needs to be orthogonal to
the gradients of the active constraints with positive Lagrange multipliers. For active
constraints with zero Lagrange multipliers, s must satisfy

sT∇gj ≥ 0, when gj = 0 and λj = 0 . (5.1.16)

164

Section 5.1: The Kuhn-Tucker conditions

Example 5.1.1

Find the minimum of

f = −x3
1 − 2x2

2 + 10x1 − 6− 2x3
2 ,

subject to
g1 = 10− x1x2 ≥ 0,

g2 = x1 ≥ 0,

g3 = 10− x2 ≥ 0 .

The Kuhn-Tucker conditions are

− 3x2
1 + 10 + λ1x2 − λ2 = 0,

− 4x2 − 6x2
2 + λ1x1 + λ3 = 0 .

We have to check for all possibilities of active constraints.

The simplest case is when no constraints are active, λ1 = λ2 = λ3 = 0. We get
x1 = 1.826, x2 = 0, f = 6.17. The Hessian matrix of the Lagrangian,

∇2L =

[
−6x1 λ1

λ1 −4− 12x2

]
,

is clearly negative definite, so that this point is a maximum. We next assume that the
first constraint is active, x1x2 = 10, so that x1 6= 0 and g2 is inactive and therefore
λ2 = 0. We have two possibilities for the third constraint. If it is active we get x1 = 1,
x2 = 10, λ1 = −0.7, and λ3 = 639.3, so that this point is neither a minimum nor a
maximum. If the third constraint is not active λ3 = 0 and we obtain the following
three equations

−3x2
1 + 10 + λ1x2 = 0,

−4x2 − 6x2
2 + λ1x1 = 0,

x1x2 = 10 .

The only solution for these equations that satisfies the constraints on x1 and x2 is

x1 = 3.847, x2 = 2.599, λ1 = 13.24, f = −73.08 .

This point satisfies the Kuhn-Tucker conditions for a minimum. However, the Hessian
of the Lagrangian at that point

∇2L =

[
−23.08 13.24
13.24 −35.19

]
,

is negative definite, so that it cannot satisfy the sufficiency condition. In fact, an
examination of the function f at neighboring points along x1x2 = 10 reveals that the
point is not a minimum.

165

Chapter 5: Constrained Optimization

Next we consider the possibility that g1 is not active, so that λ1 = 0, and

−3x2
1 + 10− λ2 = 0,

−4x2 − 6x2
2 + λ3 = 0 .

We have already considered the possibility of both λ’s being zero, so we need to
consider only three possibilities of one of these Lagrange multipliers being nonzero,
or both being nonzero. The first case is λ2 6= 0, λ3 = 0, then g2 = 0 and we get x1 = 0,
x2 = 0, λ2 = 10, and f = −6, or x1 = 0, x2 = −2/3, λ2 = 10, and f = −6.99. Both
points satisfy the Kuhn-Tucker conditions for a minimum, but not the sufficiency
condition. In fact, the vectors tangent to the active constraints (x1 = 0 is the only
one) have the form sT = (0, a), and it is easy to check that sT∇2Ls < 0. It is also
easy to check that these points are indeed no minima by reducing x2 slightly.

The next case is λ2 = 0, λ3 6= 0, so that g3 = 0. We get x1 = 1.826, x2 = 10,
λ3 = 640 and f = −2194. this point satisfies the Kuhn-Tucker conditions, but it is
not a minimum either. It is easy to check that ∇2L is negative definite in this case
so that the sufficiency condition could not be satisfied. Finally, we consider the case
x1 = 0, x2 = 10, λ2 = 10, λ3 = 640, f = −2206. Now the Kuhn-Tucker conditions
are satisfied, and the number of active constraints is equal to the number of design
variables, so that this point is a minimum.• • •

5.1.2 Convex Problems

There is a class of problems, namely convex problems, for which the Kuhn-Tucker
conditions are not only necessary but also sufficient for a global minimum. To define
convex problems we need the notions of convexity for a set of points and for a function.
A set of points S is convex whenever the entire line segment connecting two points
that are in S is also in S. That is

if x1,x2 ∈ S, then αx1 + (1− α)x2 ∈ S, 0 < α < 1 . (5.1.17)

A function is convex if

f [αx2 + (1− α)x1] ≤ αf(x2) + (1− α)f(x1), 0 < α < 1 . (5.1.18)

This is shown pictorially for a function of a single variable in Figure (5.1.2). The
straight segment connecting any two points on the curve must lie above the curve.
Alternatively we note that the second derivative of f is non-negative f ′′(x) ≥ 0. It
can be shown that a function of n variables is convex if its matrix of second derivatives
is positive semi-definite.

A convex optimization problem has a convex objective function and a convex
feasible domain. It can be shown that the feasible domain is convex if all the inequality
constraints gj are concave (that is, −gj are convex) and the equality constraints are
linear. A convex optimization problem has only one minimum, and the Kuhn-Tucker
conditions are sufficient to establish it. Most optimization problems encountered in
practice cannot be shown to be convex. However, the theory of convex programming is
still very important in structural optimization, as we often approximate optimization
problems by a series of convex approximations (see Chapter 9). The simplest such
approximation is a linear approximation for the objective function and constraints–
this produces a linear programming problem.

166

Section 5.1: The Kuhn-Tucker conditions

Figure 5.1.2 Convex function.

Example 5.1.2

Figure 5.1.3 Four bar statically determinate truss.

Consider the minimum weight design of the four bar truss shown in Figure (5.1.3).
For the sake of simplicity we assume that members 1 through 3 have the same area
A1 and member 4 has an area A2. The constraints are limits on the stresses in the
members and on the vertical displacement at the right end of the truss. Under the
specified loading the member forces and the vertical displacement δ at the end are
found to be

f1 = 5p, f2 = −p, f3 = 4p, f4 = −2
√

3p ,

δ =
6pl

E

(
3

A1

+

√
3

A2

)
.

We assume the allowable stresses in tension and compression to be 8.74× 10−4E and
4.83× 10−4E, respectively, and limit the vertical displacement to be no greater than
3×10−3l. The minimum weight design subject to stress and displacement constraints

167

Chapter 5: Constrained Optimization

can be formulated in terms of nondimensional design variables

x1 = 10−3A1E

p
, x2 = 10−3A2E

p
,

as

minimize f = 3x1 +
√

3x2

subject to g1 = 3− 18

x1

− 6
√

3

x2

≥ 0,

g2 = x1 − 5.73 ≥ 0,

g3 = x2 − 7.17 ≥ 0 .

The Kuhn-Tucker conditions are

∂f

∂xi

−
3∑

j=1

λj
∂gj

∂xi

= 0, i = 1, 2 ,

or

3− 18

x2
1

λ1 − λ2 = 0 ,

√
3− 6

√
3

x2
2

λ1 − λ3 = 0 .

Consider first the possibility that λ1 = 0. Then clearly λ2 = 3, λ3 =
√

3 so that
g2 = 0 and g3 = 0, and then x1 = 5.73, x2 = 7.17, g1 = −1.59, so that this solution
is not feasible. We conclude that λ1 6= 0, and the first constraint must be active
at the minimum. Consider now the possibility that λ2 = λ3 = 0. We have the two
Kuhn-Tucker equations and the equation g1 = 0 for the unknowns λ1, x1, x2. The
solution is

x1 = x2 = 9.464, λ1 = 14.93, f = 44.78 .

The Kuhn-Tucker conditions for a minimum are satisfied. If the problem is convex
the Kuhn-Tucker conditions are sufficient to guarantee that this point is the global
minimum. The objective function and the constraint functions g2 and g3 are linear,
so that we need to check only g1. For convexity g1 has to be concave or −g1 convex;
this holds if the second derivative matrix −A1 of −g1 is positive semi-definite

−A1 =

[
36/x3

1 0
0 12

√
3/x3

2

]
.

Clearly, for x1 > 0 and x2 > 0, −A1 is positive definite so that the minimum that we
found is a global minimum.• • •

168

Section 5.2: Quadratic Programming Problems

5.2 Quadratic Programming Problems

One of the simplest form of nonlinear constrained optimization problems is in
the form of Quadratic Programming (QP) problem. A general QP problem has a
quadratic objective function with linear equality and inequality constraints. For the
sake of simplicity we consider only an inequality problem with ng constraints stated
as

minimize f(x) = cTx +
1

2
xTQx

such that Ax ≥ b ,

xi ≥ 0, i = 1, . . . , n .

(5.2.1)

The linear constraints form a convex feasible domain. If the objective function is
also convex, then we have a convex optimization problem in which, as discussed in
the previous section, the Kuhn-Tucker conditions become sufficient for the optimality
of the problem. Hence, having a positive semi-definite or positive definite Q matrix
assures a global minimum for the solution of the problem, if one exists. For many
optimization problems the quadratic form xTQx is either positive definite or positive
semi-definite. Therefore, one of the methods for solving QP problems relies on solving
the Kuhn-Tucker conditions.

We start by writing the Lagrange function for the Problem (5.2.1)

L(x,λ,µ, t, s) = cTx +
1

2
xTQx− λT (Ax− {t2j} − b)− µT (x− {s2

i }) , (5.2.2)

where λ and µ are the vectors of Lagrange multipliers for the inequality constraints
and the nonnegativity constraints, respectively, and {t2j} and {s2

i } are the vectors of
positive slack variables for the same. The necessary conditions for a stationary point
are obtained by differentiating the Lagrangian with respect to the x,λ,µ, t, and s,

∂L
∂x

= c−Qx−AT λ− µ = 0 , (5.2.3)

∂L
∂λ

= Ax− {t2j} − b = 0 , (5.2.4)

∂L
∂µ

= x− {s2
i } = 0 , (5.2.5)

∂L
∂tj

= 2λjtj = 0, j = 1, . . . , ng , (5.2.6)

∂L
∂si

= 2µisi = 0, i = 1, . . . , n . (5.2.7)

where ng is the number of inequality constraints, and n is the number of design
variables. We define a new vector {qj} = {t2j}, j = 1, . . . , ng (q ≥ 0). After
multiplying Eqs. (5.2.6) and (5.2.7) by {tj} and {si}, respectively, and eliminating

169

Chapter 5: Constrained Optimization

{si} from the last equation by using Eq. (5.2.5), we can rewrite the Kuhn-Tucker
conditions

Qx + AT λ + µ = c , (5.2.8)

Ax− q = b , (5.2.9)

λjqj = 0, j = 1, . . . , ng , (5.2.10)

µixi = 0, i = 1, . . . , n , (5.2.11)

x ≥ 0, λ ≥ 0, and µ ≥ 0 . (5.2.12)

Equations (5.2.8) and (5.2.9) form a set of n+ng linear equations for the solution
of unknowns xi, λj, µi, and qj which also need to satisfy Eqs. (5.2.10) and (5.2.11).
Despite the nonlinearity of the Eqs. (5.2.10) and (5.2.11), this problem can be solved
as proposed by Wolfe [3] by using the procedure described in 3.6.3 for generating
a basic feasible solution through the use of artificial variables. Introducing a set
of artificial variables, yi, i = 1, . . . , n , we define an artificial cost function to be
minimized,

minimize
n∑

i=1

yi (5.2.13)

subject to Qx + AT λ + µ + y = c , (5.2.14)

Ax− q = b , (5.2.15)

x ≥ 0, λ ≥ 0, µ ≥ 0, and y ≥ 0 . (5.2.16)

Equations (5.2.13) through (5.2.16) can be solved by using the standard simplex
method with the additional requirement that (5.2.10) and (5.2.11) be satisfied. These
requirements can be implemented during the simplex algorithm by simply enforcing
that the variables λj and qj (and µi and xi) not be included in the basic solution
simultaneously. That is, we restrict a non-basic variable µi from entering the basis if
the corresponding xi is already among the basic variables.

Other methods for solving the quadratic programming problem are also available,
and the reader is referred to Gill et al. ([4], pp. 177–180) for additional details.

5.3 Computing the Lagrange Multipliers

As may be seen from example 5.1.1, trying to find the minimum directly from
the Kuhn-Tucker conditions may be difficult because we need to consider many com-
binations of active and inactive constraints, and this would in general involve the
solution of highly nonlinear equations. The Kuhn-Tucker conditions are, however,
often used to check whether a candidate minimum point satisfies the necessary con-
ditions. In such a case we need to calculate the Lagrange multipliers (also called the
Kuhn-Tucker multipliers) at a given point x. As we will see in the next section, we

170

Section 5.3: Computing the Lagrange Multipliers

may also want to calculate the Lagrange multipliers for the purpose of estimating the
sensitivity of the optimum solution to small changes in the problem definition. To
calculate the Lagrange multipliers we start by writing Eq. (5.1.6) in matrix notation
as

∇f −Nλ = 0 , (5.3.1)

where the matrix N is defined by

nij =
∂gj

∂xi

, j = 1, . . . , r , and i = 1, . . . , n . (5.3.2)

We consider only the active constraints and associated lagrange multipliers, and as-
sume that there are r of them.

Typically, the number, r, of active constraints is less than n, so that with n
equations in terms of r unknowns, Eq. (5.3.1) is an overdetermined system. We
assume that the gradients of the constraints are linearly independent so that N has
rank r. If the Kuhn-Tucker conditions are satisfied the equations are consistent and
we have an exact solution. We could therefore use a subset of r equations to solve for
the Lagrange multipliers. However, this approach may be susceptible to amplification
of errors. Instead we can use a least-squares approach to solve the equations. We
define a residual vector u

u = Nλ−∇f , (5.3.3)

A least squares solution of Eq. (5.3.1) will minimize the square of the Euclidean norm
of the residual with respect to λ

‖u‖2 = (Nλ−∇f)T (Nλ−∇f) = λTNTNλ− 2λTNT∇f +∇fT∇f . (5.3.4)

To minimize ‖u‖2 we differentiate it with respect to each one of the Lagrange multi-
pliers and get

2NTNλ− 2NT∇f = 0 , (5.3.5)

or
λ = (NTN)−1NT∇f . (5.3.6)

This is the best solution in the least square sense. However, if the Kuhn-Tucker
conditions are satisfied it should be the exact solution of Eq. (5.3.1). Substituting
from Eq. (5.3.6) into Eq. (5.3.1) we obtain

P∇f = 0 , (5.3.7)

where
P = I−N(NTN)−1NT . (5.3.8)

P is called the projection matrix. It will be shown in Section 5.5 that it projects a
vector into the subspace tangent to the active constraints. Equation (5.3.7) implies
that for the Kuhn-Tucker conditions to be satisfied the gradient of the objective
function has to be orthogonal to that subspace.

In practice Eq. (5.3.6) is no longer popular for the calculation of the Lagrange
multipliers. One reason is that the method is ill-conditioned and another is that it is

171

Chapter 5: Constrained Optimization

not efficient. An efficient and better conditioned method for least squares calculations
is based on the QR factorization of the matrix N. The QR factorization of the matrix
N consists of an r× r upper triangular matrix R and an n× n orthogonal matrix Q
such that

QN =

(
Q1N
Q2N

)
=

(
R
0

)
. (5.3.9)

Here Q1 is a matrix consisting of the first r rows of Q, Q2 includes the last n − r
rows of Q, and the zero represents an (n− r)× r zero matrix (for details of the QR
factorization see most texts on numerical analysis, e.g., Dahlquist and Bjorck [5]).
Because Q is an orthogonal matrix, the Euclidean norm of Qu is the same as that of
u, or

‖u‖2 = ‖Qu‖2 = ‖QNλ−Q∇f‖2 =

∥∥∥∥(R
0

)
λ−Q∇f

∥∥∥∥2

=

∥∥∥∥(Rλ−Q1∇f
−Q2∇f

)∥∥∥∥2

.

(5.3.10)
From this form it can be seen that ‖u‖2 is minimized by choosing λ so that

Rλ = Q1∇f . (5.3.11)

The last n− r rows of the matrix Q denoted Q2 are also important in the following.
They are orthogonal vectors which span the null space of NT . That is NT times each
one of these vectors is zero.

Example 5.3.1

Check whether the point (−2,−2, 4) is a local minimum of the problem

f = x1 + x2 + x3,

g1 = 8− x2
1 − x2

2 ≥ 0,

g2 = x3 − 4 ≥ 0,

g3 = x2 + 8 ≥ 0 .

Only the first two constraints are critical at (−2,−2, 4)

∂g1

∂x1

= −2x1 = 4,
∂g1

∂x2

= −2x2 = 4,
∂g1

∂x3

= 0 ,

∂g2

∂x1

= 0,
∂g2

∂x2

= 0,
∂g2

∂x3

= 1 ,

∂f

∂x1

=
∂f

∂x2

=
∂f

∂x3

= 1 .

So

N =

[
4 0
4 0
0 1

]
, ∇f =

{
1
1
1

}
,

172

Section 5.4: Sensitivity of Optimum Solution to Problem Parameters

NTN =

[
32 0
0 1

]
, NT∇f =

{
8
1

}
,

λ = (NTN)−1NT∇f =

{
1/4
1

}
,

also [
I−N(NTN)−1NT

]
∇f = 0 .

Equation (5.3.7) is satisfied, and all the Lagrange multipliers are positive, so the
Kuhn-Tucker conditions for a minimum are satisfied. • • •

5.4 Sensitivity of Optimum Solution to Problem Parameters

The Lagrange multipliers are not only useful for checking optimality, but they
also provide information about the sensitivity of the optimal solution to problem
parameters. In this role they are extremely valuable in practical applications. In
most engineering design optimization problems we have a host of parameters such as
material properties, dimensions and load levels that are fixed during the optimization.
We often need the sensitivity of the optimum solution to these problem parameters,
either because we do not know them accurately, or because we have some freedom to
change them if we find that they have a large effect on the optimum design.

We assume now that the objective function and constraints depend on a param-
eter p so that the optimization problem is defined as

minimize f(x, p)

such that gj(x, p) ≥ 0, j = 1, . . . , ng .
(5.4.1)

The solution of the problem is denoted x∗(p) and the corresponding objective function
f ∗(p) = f(x∗(p), p). We want to find the derivatives of x∗ and f ∗ with respect to
p. The equations that govern the optimum solution are the Kuhn-Tucker conditions,
Eq. (5.3.1), and the set of active constraints

ga = 0. (5.4.2)

where ga denotes the vector of r active constraint functions. Equations (5.3.1) and
(5.4.2) are satisfied by x∗(p) for all values of p that do not change the set of active
constraints. Therefore, the derivatives of these equations with respect to p are zero,
provided we consider the implicit dependence of x and λ on p. Differentiating Eq.
(5.3.1) and (5.4.2) with respect to p we obtain

(A− Z)
dx∗

dp
−N

dλ

dp
+

∂

∂p
(∇f)−

(
∂N

∂p

)
λ = 0 , (5.4.3)

NT dx
∗

dp
+
∂ga

∂p
= 0 , (5.4.4)

173

Chapter 5: Constrained Optimization

where A is the Hessian matrix of the objective function f , aij = ∂2f/∂xi∂xj, and Z
is a matrix whose elements are

zkl =
∑

j

∂2gj

∂xk∂xl

λj . (5.4.5)

Equations (5.4.3) and (5.4.4) are a system of simultaneous equations for the deriva-
tives of the design variables and of the Lagrange multipliers. Different special cases
of this system are discussed by Sobieski et al. [6].

Often we do not need the derivatives of the design variables or of the Lagrange
multipliers, but only the derivatives of the objective function. In this case the sensi-
tivity analysis can be greatly simplified. We can write

df

dp
=
∂f

∂p
+

n∑
l=1

∂f

∂xl

dx∗l
dp

=
∂f

∂p
+ (∇f)T dx

∗

dp
. (5.4.6)

Using Eq. (5.3.1) and (5.4.4) we get

df

dp
=
∂f

∂p
− λT ∂ga

∂p
. (5.4.7)

Equation (5.4.7) shows that the Lagrange multipliers are a measure of the effect
of a change in the constraints on the objective function. Consider, for example,
a constraint of the form gj(x) = Gj(x) − p ≥ 0. By increasing p we make the
constraint more difficult to satisfy. Assume that many constraints are critical, but
that p affects only this single constraint. We see that ∂gj/∂p = −1, and from Eq.
(5.4.7) df/dp = λj, that is λj is the ‘marginal price’ that we pay in terms of an
increase in the objective function for making gj more difficult to satisfy.

The interpretation of Lagrange multipliers as the marginal prices of the con-
straints also explains why at the optimum all the Lagrange multipliers have to be
non-negative. A negative Lagrange multiplier would indicate that we can reduce the
objective function by making a constraint more difficult to satisfy— an absurdity.

Example 5.4.1

Consider the optimization problem

f = x1 + x2 + x3,

g1 = p− x2
1 − x2

2 ≥ 0,

g2 = x3 − 4 ≥ 0,

g3 = x2 + p ≥ 0 .

This problem was analyzed for p = 8 in Example 5.3.1, and the optimal solution was
found to be (−2,−2, 4). We want to find the derivative of this optimal solution with
respect to p. At the optimal point we have f = 0 and λT = (0.25, 1.0), with the

174

Section 5.5: Gradient Projection and Reduced Gradient Methods

first two constraints being critical. We can calculate the derivative of the objective
function from Eq. (5.4.7)

∂f

∂p
= 0,

∂ga

∂p
=

{
1
0

}
,

so
df

dp
= −0.25 .

To calculate the derivatives of the design variables and constraints we need to set up
Eqs. (5.4.3) and (5.4.4). We get

A = 0,
∂∇f
∂p

= 0,
∂N

∂p
= 0 .

Only g1 has nonzero second derivatives ∂2g1/∂x
2
1 = ∂2g1/∂x

2
2 = −2 so from Eq.

(5.4.5)

z11 = −2λ1 = −0.5, z22 = −2λ1 = −0.5, Z =

[−.5 0 0
0 −.5 0
0 0 0

]
.

With N from Example 5.3.1, Eq. (5.4.3) gives us

.5ẋ1 − 4λ̇1 = 0 ,

.5ẋ2 − 4λ̇1 = 0 ,

λ̇2 = 0 ,

where a dot denotes derivative with respect to p. From Eq. (5.4.4) we get

4ẋ1 + 4ẋ2 + 1 = 0 ,

ẋ3 = 0 .

The solution of these five coupled equations is

ẋ1 = ẋ2 = −0.125, ẋ3 = 0, λ̇1 = −0.0156, λ̇2 = 0 .

We can check the derivatives of the objective function and design variables by chang-
ing p from 8 to 9 and re-optimizing. It is easy to check that we get x1 = x2 = −2.121,
x3 = 4, f = −0.242. These values compare well with linear extrapolation based on
the derivatives which gives x1 = x2 = −2.125, x3 = 4, f = −0.25.• • •

175

Chapter 5: Constrained Optimization

5.5 Gradient Projection and Reduced Gradient Methods

Rosen’s gradient projection method is based on projecting the search direction into
the subspace tangent to the active constraints. Let us first examine the method for
the case of linear constraints [7]. We define the constrained problem as

minimize f(x)

such that gj(x) =
n∑

i=1

ajixi − bj ≥ 0, j = 1, . . . , ng .
(5.5.1)

In vector form
gj = aT

j x− bj ≥ 0 . (5.5.2)

If we select only the r active constraints (j ∈ IA), we may write the constraint
equations as

ga = NTx− b = 0 , (5.5.3)

where ga is the vector of active constraints and the columns of the matrix N are
the gradients of these constraints. The basic assumption of the gradient projection
method is that x lies in the subspace tangent to the active constraints. If

xi+1 = xi + αs , (5.5.4)

and both xi and xi+1 satisfy Eq. (5.5.3), then

NT s = 0 . (5.5.5)

If we want the steepest descent direction satisfying Eq. (5.5.5), we can pose the
problem as

minimize sT∇f
such that NT s = 0 ,

and sT s = 1 .

(5.5.6)

That is, we want to find the direction with the most negative directional deriva-
tive which satisfies Eq. (5.5.5). We use Lagrange multipliers λ and µ to form the
Lagrangian

L(s,λ, µ) = sT∇f − sTNλ− µ(sT s− 1) . (5.5.7)

The condition for L to be stationary is

∂L
∂s

= ∇f −Nλ− 2µs = 0 . (5.5.8)

Premultiplying Eq. (5.5.8) by NT and using Eq. (5.5.5) we obtain

NT∇f −NTNλ = 0 , (5.5.9)

or
λ = (NTN)−1NT∇f . (5.5.10)

176

Section 5.5: Gradient Projection and Reduced Gradient Methods

So that from Eq. (5.5.8)

s =
1

2µ
[I −N(NTN)−1NT]∇f =

1

2µ
P∇f . (5.5.11)

P is the projection matrix defined in Eq. (5.3.8). The factor of 1/2µ is not significant
because s defines only the direction of search, so in general we use s = −P∇f . To
show that P indeed has the projection property, we need to prove that if w is an
arbitrary vector, then Pw is in the subspace tangent to the active constraints, that
is Pw satisfies

NTPw = 0 . (5.5.12)

We can easily verify this by using the definition of P.

Equation (5.3.8) which defines the projection matrix P does not provide the most
efficient way for calculating it. Instead it can be shown that

P = QT
2 Q2 , (5.5.13)

where the matrix Q2 consists of the last n − r rows of the Q factor in the QR
factorization of N (see Eq. (5.3.9)).

A version of the gradient projection method known as the generalized reduced
gradient method was developed by Abadie and Carpentier [8]. As a first step we
select r linearly independent rows of N, denote their transpose as N1 and partition
NT as

NT = [N1 N2] . (5.5.14)

Next we consider Eq. (5.5.5) for the components si of the direction vector. The r
equations corresponding to N1 are then used to eliminate r components of s and
obtain a reduced order problem for the direction vector.

Once we have identified N1 we can easily obtain Q2 which is given as

QT
2 =

[
−N−1

1 N2

I

]
. (5.5.15)

Equation (5.5.15) can be verified by checking that NTQT
2 = 0, so that Q2N = 0,

which is the requirement that Q2 has to satisfy (see discussion following Eq. (5.3.11)).

After obtaining s from Eq. (5.5.11) we can continue the search with a one di-
mensional minimization, Eq. (5.5.4), unless s = 0. When s = 0 Eq. (5.3.7) indicates
that the Kuhn-Tucker conditions may be satisfied. We then calculate the Lagrange
multipliers from Eq. (5.3.6) or Eq. (5.3.11). If all the components of λ are non-
negative, the Kuhn-Tucker conditions are indeed satisfied and the optimization can
be terminated. If some of the Lagrange multipliers are negative, it is an indication
that while no progress is possible with the current set of active constraints, it may
be possible to proceed by removing some of the constraints associated with negative
Lagrange multipliers. A common strategy is to remove the constraint associated with
the most negative Lagrange multiplier and repeat the calculation of P and s. If s

177

Chapter 5: Constrained Optimization

is now non-zero, a one-dimensional search may be started. If s remains zero and
there are still negative Lagrange multipliers, we remove another constraint until all
Lagrange multipliers become positive and we satisfy the Kuhn-Tucker conditions.

After a search direction has been determined, a one dimensional search must be
carried out to determine the value of α in Eq. (5.5.4). Unlike the unconstrained case,
there is an upper limit on α set by the inactive constraints. As α increases, some
of them may become active and then violated. Substituting x = xi + αs into Eq.
(5.5.2) we obtain

gj = aT
j (xi + αs)− bj ≥ 0 , (5.5.16)

or

α ≤ −(aT
j xi − bj)/a

T
j s = −gj(xi)/a

T
j s . (5.5.17)

Equation (5.5.17) is valid if aT
j s < 0. Otherwise, there is no upper limit on α due to

the jth constraint. From Eq. (5.5.17) we get a different α, say αj for each constraint.
The upper limit on α is the minimum

ᾱ = min
αj>0, j3IA

αj . (5.5.18)

At the end of the move, new constraints may become active, so that the set of active
constraints may need to be updated before the next move is undertaken.

The version of the gradient projection method presented so far is an extension
of the steepest descent method. Like the steepest descent method, it may have slow
convergence. The method may be extended to correspond to Newton or quasi-Newton
methods. In the unconstrained case, these methods use a search direction defined as

s = −B∇f , (5.5.19)

where B is the inverse of the Hessian matrix of f or an approximation thereof. The
direction that corresponds to such a method in the subspace tangent to the active
constraints can be shown [4] to be

s = −QT
2 (QT

2 ALQ2)
−1Q2∇f , (5.5.20)

where AL is the Hessian of the Lagrangian function or an approximation thereof.

The gradient projection method has been generalized by Rosen to nonlinear con-
straints [9]. The method is based on linearizing the constraints about xi so that

N = [∇g1(xi), ∇g2(xi), . . . ,∇gr(xi)] . (5.5.21)

178

Section 5.5: Gradient Projection and Reduced Gradient Methods

Figure 5.5.1 Projection and restoration moves.

The main difficulty caused by the nonlinearity of the constraints is that the
one-dimensional search typically moves away from the constraint boundary. This
is because we move in the tangent subspace which no longer follows exactly the
constraint boundaries. After the one-dimensional search is over, Rosen prescribes a
restoration move to bring x back to the constraint boundaries, see Figure 5.5.1.

To obtain the equation for the restoration move, we note that instead of Eq.
(5.5.2) we now use the linear approximation

gj ≈ gj(xi) +∇gT
j (x̄i − xi) . (5.5.22)

We want to find a correction x̄i − xi in the tangent subspace (i.e. P(x̄i − xi) = 0)
that would reduce gj to zero. It is easy to check that

x̄i − xi = −N(NTN)−1ga(xi) , (5.5.23)

is the desired correction, where ga is the vector of active constraints. Equation
(5.5.23) is based on a linear approximation, and may therefore have to be applied
repeatedly until ga is small enough.

In addition to the need for a restoration move, the nonlinearity of the constraints
requires the re-evaluation of N at each point. It also complicates the choice of an
upper limit for α which guarantees that we will not violate the presently inactive
constraints. Haug and Arora [10] suggest a procedure which is better suited for the
nonlinear case. The first advantage of their procedure is that it does not require
a one-dimensional search. Instead, α in Eq. (5.5.4) is determined by specifying a
desired specified reduction γ in the objective function. That is, we specify

f(xi)− f(xi+1) ≈ γf(xi) . (5.5.24)

Using a linear approximation with Eq. (5.5.4) we get

α∗ = −γf(xi)

sT∇f
. (5.5.25)

The second feature of Haug and Arora’s procedure is the combination of the projection
and the restoration moves as

xi+1 = xi + α∗s−N(NTN)−1ga , (5.5.26)

where Eqs. (5.5.4), (5.5.23) and (5.5.25) are used.

179

Chapter 5: Constrained Optimization

Example 5.5.1

Use the gradient projection method to solve the following problem

minimize f = x2
1 + x2

2 + x2
3 + x2

4 − 2x1 − 3x4

subject to g1 = 2x1 + x2 + x3 + 4x4 − 7 ≥ 0 ,

g2 = x1 + x2 + x2
3 + x4 − 5.1 ≥ 0 ,

xi ≥ 0, i = 1, . . . , 4 .

Assume that as a result of previous moves we start at the point xT
0 = (2, 2, 1, 0),

f(x0) = 5.0, where the nonlinear constraint g2 is slightly violated. The first constraint
is active as well as the constraint on x4. We start with a combined projection and
restoration move, with a target improvement of 10% in the objective function. At x0

N =

 2 1 0
1 1 0
1 2 0
4 1 1

 , NTN =

[
22 9 4
9 7 1
4 1 1

]
,

(NTN)−1 =
1

11

[
6 −5 −19
−5 6 14
−19 14 73

]
,

P = I−N(NTN)−1NT =
1

11

 1 −3 1 0
−3 9 −3 0
1 −3 1 0
0 0 0 0

 , ∇f =

2
4
2
−3

 .

The projection move direction is s = −P∇f = [8/11,−24/11, 8/11, 0]T . Since the
magnitude of a direction vector is unimportant we scale s to sT = [1,−3, 1, 0]. For a
10% improvement in the objective function γ = 0.1 and from Eq. (5.5.25)

α∗ = − 0.1f

sT∇f
= −0.1× 5

−8
= 0.0625 .

For the correction move we need the vector ga of constraint values , gT
a = (0,−0.1, 0),

so the correction is

−N(NTN)−1ga =
−1

110

4
−1
−7
0

 .

Combining the projection and restoration moves, Eq. (5.5.26)

x1 =

2
2
1
0

+ 0.0625

1
−3
1
0

− 1

110

4
−1
−7
0

 =

2.026
1.822
1.126

0

 ,

we get f(x1) = 4.64, g1(x1) = 0, g2(x1) = 0.016. Note that instead of 10% reduction
we got only 7% due to the nonlinearity of the objective function. However, we did
satisfy the nonlinear constraint.• • •

180

Section 5.5: Gradient Projection and Reduced Gradient Methods

Example 5.5.2

Consider the four bar truss of Example 5.1.2. The problem of finding the minimum
weight design subject to stress and displacement constraints was formulated as

minimize f = 3x1 +
√

3x2

subject to g1 = 3− 18

x1

− 6
√

3

x2

≥ 0 ,

g2 = x1 − 5.73 ≥ 0 ,

g3 = x2 − 7.17 ≥ 0 ,

where the xi are non-dimensional areas

xi =
AiE

1000P
, i = 1, 2 .

The first constraint represents a limit on the vertical displacement, and the other two
represent stress constraints.

Assume that we start the search at the intersection of g1 = 0 and g3 = 0, where
x1 = 11.61, x2 = 7.17, and f = 47.25. The gradients of the objective function and
two active constraints are

∇f =

{
3√
3

}
, ∇g1 =

{
0.1335
0.2021

}
, ∇g3 =

{
0
1

}
, N =

[
0.1335 0
0.2021 1

]
.

Because N is nonsingular, Eq. (5.3.8) shows that P = 0. Also since the number of
linearly independent active constraints is equal to the number of design variables the
tangent subspace is a single point, so that there is no more room for progress. Using
Eqs. (5.3.6) or (5.3.11) we obtain

λ =

{
22.47
−2.798

}
.

The negative multiplier associated with g3 indicates that this constraint can be
dropped from the active set. Now

N =

[
0.1335
0.2021

]
.

The projection matrix is calculated from Eq. (5.3.8)

P =

[
0.6962 −0.4600
−0.4600 0.3036

]
, s = −P∇f =

{
−1.29
0.854

}
.

We attempt a 5% reduction in the objective function, and from Eq. (5.5.25)

α∗ =
0.05× 47.25

[−1.29 0.854]

{
3√
3

} = 0.988 .

181

Chapter 5: Constrained Optimization

Since there was no constraint violation at x0 we do not need a combined projection
and correction step, and

x1 = x0 + α∗s =

{
11.61
7.17

}
+ 0.988

{
−1.29
0.854

}
=

{
10.34
8.01

}
.

At x1 we have f(x1) = 44.89, g1(x1) = −0.0382. Obviously g2 is not violated. If there
were a danger of that we would have to limit α∗ using Eq. (5.5.17). The violation of
the nonlinear constraint is not surprising, and its size indicates that we should reduce
the attempted reduction in f in the next move. At x1, only g1 is active so

N = ∇g1 =

{
0.1684
0.1620

}
.

The projection matrix is calculated to be

P =

[
0.4806 −0.4996
−0.4996 0.5194

]
, s = −P∇f =

{
−0.5764
0.5991

}
.

Because of the violation we reduce the attempted reduction in f to 2.5%, so

α∗ = − 0.025× 44.89

[−0.567 0.599]

{
3√
3

} = 1.62 .

We need also a correction due to the constraint violation (ga = −0.0382)

−N(NTN)−1ga =

{
0.118
0.113

}
.

Altogether

x2 = x1+α
∗s−N(NTN)−1ga =

{
10.34
8.01

}
−1.62

{
0.576
−0.599

}
+

{
0.118
0.113

}
=

{
9.52
9.10

}
.

We obtain f(x2) = 44.32, g1(x2) = −0.0328.

The optimum design is actually xT = (9.464, 9.464), f(x) = 44.78, so after two
iterations we are quite close to the optimum design.• • •

5.6 The Feasible Directions Method

The feasible directions method [11] has the opposite philosophy to that of the
gradient projection method. Instead of following the constraint boundaries, we try to
stay as far away as possible from them. The typical iteration of the feasible direction
method starts at the boundary of the feasible domain (unconstrained minimization
techniques are used to generate a direction if no constraint is active).

182

Section 5.6: The Feasible Directions Method

Figure 5.6.1 Selection of search direction using the feasible directions method.

Consider Figure 5.6.1. As a result of a previous move the design is at point x
and we look for a direction s which keeps x in the feasible domain and improves the
objective function. A vector s is defined as a feasible direction if at least a small step
can be taken along it that does not immediately leave the feasible domain. If the
constraints are smooth, this is satisfied if

sT∇gj > 0, j ∈ IA , (5.6.1)

where IA is the set of critical constraints at x. The direction s is called a usable
direction at the point x if in addition

sT∇f = sTg < 0 . (5.6.2)

That is, s is a direction which reduces the objective function.

Among all possible choices of usable feasible directions we seek the direction
which is best in some sense. We have two criteria for selecting a direction. On the
one hand we want to reduce the objective function as much as possible. On the other
hand we want to keep away from the constraint boundary as much as possible. A
compromise is defined by the following maximization problem

maximize β

such that − sT∇gj + θjβ ≤ 0, j ∈ IA ,
sT∇f + β ≤ 0, θj ≥ 0 ,

|si| ≤ 1 .

(5.6.3)

The θj are positive numbers called “push-off” factors because their magnitude deter-
mines how far x will move from the constraint boundaries. A value of θj = 0 will
result in a move tangent to the boundary of the the jth constraint, and so may be
appropriate for a linear constraint. A large value of θj will result in a large angle
between the constraint boundary and the move direction, and so is appropriate for a
highly nonlinear constraint.

183

Chapter 5: Constrained Optimization

The optimization problem defined by Eq. (5.6.3) is linear and can be solved using
the simplex algorithm. If βmax > 0, we have found a usable feasible direction. If we
get βmax = 0 it can be shown that the Kuhn-Tucker conditions are satisfied.

Once a direction of search has been found, the choice of step length is typically
based on a prescribed reduction in the objective function (using Eq. (5.5.25)). If
at the end of the step no constraints are active, we continue in the same direction
as long as sT∇f is negative. We start the next iteration when x hits the constraint
boundaries, or use a direction based on unconstrained technique if x is inside the
feasible domain. Finally, if some constraints are violated after the initial step we
make x retreat based on the value of the violated constraints. The method of feasible
directions is implemented in the popular CONMIN program [12].

Example 5.6.1

Consider the four bar truss of Example 5.1.2. The problem of finding the minimum
weight design subject to stress and displacement constraints was formulated as

minimize f = 3x1 +
√

3x2

subject to g1 = 3− 18

x1

− 6
√

3

x2

≥ 0 ,

g2 = x1 − 5.73 ≥ 0 ,

g3 = x2 − 7.17 ≥ 0 ,

where the xi are non-dimensional areas

xi =
AiE

1000P
, i = 1, 2 .

The first constraint represents a limit on the vertical displacement, and the other two
constraints represent stress constraints.

Assume that we start the search at the intersection of g1 = 0 and g3 = 0 where
xT

0 = (11.61, 7.17) and f = 47.25. The gradient of the objective function and two
active constraints are

∇f =

{
3√
3

}
, ∇g1 =

{
0.1335
0.2021

}
, ∇g3 =

{
0
1

}
.

Selecting θ1 = θ2 = 1, we find that Eq. (5.6.3) becomes

maximize β

subject to − 0.1335s1 − 0.2021s2 + β ≤ 0 ,

− s2 + β ≤ 0 ,

3s1 +
√

3s2 + β ≤ 0 ,

− 1 ≤ s1 ≤ 1 ,

− 1 ≤ s2 ≤ 1 .

184

Section 5.7: The Feasible Directions Method

The solution of this linear program is s1 = −0.6172, s2 = 1, and we now need to
execute the one dimensional search

x1 =

{
11.61
7.17

}
+ α

{
−0.6172

1

}
.

Because the objective function is linear, this direction will remain a descent direction
indefinitely, and α will be limited only by the constraints. The requirement that g2

is not violated will lead to α = 9.527, x1 = 5.73, x2 = 16.7 which violates g1. We
see that because g1 is nonlinear, even though we start the search by moving away
from it we still bump into it again (see Figure 5.6.2). It can be easily checked that
for α > 5.385 we violate g1. So we take α = 5.385 and obtain x1 = 8.29, x2 = 12.56,
f = 46.62.

Figure 5.6.2 Feasible direction solution of 4 bar truss example.

For the next iteration we have only one active constraint

∇g1 =

{
0.2619
0.0659

}
, ∇f =

{
3√
3

}
.

The linear program for obtaining s is

maximize β

subject to − 0.2619s1 − 0.0659s2 + β ≤ 0 ,

3s1 +
√

3s2 + β ≤ 0 ,

− 1 ≤ s1 ≤ 1 ,

− 1 ≤ s2 ≤ 1 .

185

Chapter 5: Constrained Optimization

The solution of the linear program is s1 = 0.5512, s2 = −1, so that the one-
dimensional search is

x =

{
8.29
12.56

}
+ α

{
0.5512
−1

}
.

Again α is limited only by the constraints. The lower limit on x2 dictates α ≤ 5.35.
However, the constraint g1 is again more critical. It can be verified that for α > 4.957
it is violated, so we take α = 4.957, x1 = 11.02, x2 = 7.60, f = 46.22. The optimum
design found in Example 5.1.2 is x1 = x2 = 9.464, f = 44.78. The design space and
the two iterations are shown in Figure 5.6.2. • • •

5.7 Penalty Function Methods

When the energy crisis erupted in the middle seventies, the United States Congress
passed legislation intended to reduce the fuel consumption of American cars. The
target was an average fuel consumption of 27.5 miles per gallon for new cars in 1985.
Rather than simply legislate this limit Congress took a gradual approach, with a
different limit set each year to bring up the average from about 14 miles per gallon
to the target value. Thus the limit was set at 26 for 1984, 25 for 1983, 24 for 1982,
and so on. Furthermore, the limit was not absolute, but there was a fine of $50 per
0.1 miles per gallon violation per car.

This approach to constraining the automobile companies to produce fuel efficient
cars has two important aspects. First, by legislating a penalty proportional to the
violation rather than an absolute limit, the government allowed the auto companies
more flexibility. That meant they could follow a time schedule that approximated
the government schedule without having to adhere to it rigidly. Second, the gradual
approach made enforcement easier politically. Had the government simply set the ul-
timate limit for 1985 only, nobody would have paid attention to the law in the 1970’s.
Then as 1985 moved closer there would have been a rush to develop fuel efficient cars.
The hurried effort could mean both non-optimal car designs and political pressure to
delay the enforcement of the law.

The fuel efficiency law is an example in which constraints on behavior or eco-
nomic activities are imposed via penalties whose magnitude depends on the degree of
violation of the constraints. It is no wonder that this simple and appealing approach
has found application in constrained optimization. Instead of applying constraints
we replace them by penalties which depend on the degree of constraint violations.
This approach is attractive because it replaces a constrained optimization problem
by an unconstrained one.

The penalties associated with constraint violation have to be high enough so
that the constraints are only slightly violated. However, just as there are political
problems associated with imposing abrupt high penalties in real life, so there are
numerical difficulties associated with such a practice in numerical optimization. For
this reason we opt for a gradual approach where we start with small penalties and
increase them gradually.

186

Section 5.7: Penalty Function Methods

5.7.1 Exterior Penalty Function

The exterior penalty function associates a penalty with a violation of a constraint.
The term ‘exterior’ refers to the fact that penalties are applied only in the exterior
of the feasible domain. The most common exterior penalty function is one which
associates a penalty which is proportional to the square of a violation. That is, the
constrained minimization problem, Eq. (5.1)

minimize f(x)

such that hi(x) = 0, i = 1, . . . , ne ,

gj(x) ≥ 0, j = 1, . . . , ng ,

(5.7.1)

is replaced by

minimize φ(x, r) = f(x) + r
ne∑
i=1

h2
i (x) + r

ng∑
j=1

< −gj >
2

r = r1, r2, . . . , ri →∞ ,

(5.7.2)

where < a > denote the positive part of a or max(a, 0). The inequality terms are
treated differently from the equality terms because the penalty applies only for con-
straint violation. The positive multiplier r controls the magnitude of the penalty
terms. It may seem logical to choose a very high value of r to ensure that no con-
straints are violated. However, as noted before, this approach leads to numerical
difficulties illustrated later in an example. Instead the minimization is started with
a relatively small value of r, and then r is gradually increased. A typical value for
ri+1/ri is 5. A typical plot of φ(x, r) as a function of r is shown in Figure 5.7.1 for a
simple example.

Figure 5.7.1 Exterior penalty function for f = 0.5x subject to x− 4 ≥ 0.

We see that as r is increased, the minimum of φ moves closer to the constraint
boundary. However, the curvature of φ near the minimum also increases. It is

187

Chapter 5: Constrained Optimization

the high values of the curvature associated with large values of r which often lead
to numerical difficulties. By using a sequence of values of r, we use the minima
obtained for small values of r as starting points for the search with higher r values.
Thus the ill-conditioning associated with the large curvature is counterbalanced by
the availability of a good starting point.

Based on the type of constraint normalization given by Eq. (5.2) we can select
a reasonable starting value for the penalty multiplier r. A rule of thumb is that
one should start with the total penalty being about equal to the objective function
for typical constraint violation of 50% of the response limits. In most optimization
problems the total number of active constraints is about the same as or just slightly
lower than the number of design variables. Assuming we start with one quarter of
the eventual active constraints being violated by about 50% (or g = −0.5) then we
have

f(x0) ≈ r0
n

4
(0.5)2, or r0 = 16

f(x0)

n
. (5.7.3)

It is also important to obtain a good starting point for restarting the optimization
as r is increased. The minimum of the optimization for the previous value of r is a
reasonable starting point, but one can do better. Fiacco and McCormick [13] show
that the position of the minimum of φ(x, r) has the asymptotic form

x∗(r) = a + b/r, as r →∞ . (5.7.4)

Once the optimum has been found for two values of r, say ri−1, and ri, the vectors a
and b may be estimated, and the value of x∗(r) predicted for subsequent values of r.
It is easy to check that in order to satisfy Eq. (5.7.4), a and b are given as

a =
cx∗(ri−1)− x∗(ri)

c− 1
,

b = [x∗(ri−1)− a] ri−1 ,
(5.7.5)

where
c = ri−1/ri . (5.7.6)

In addition to predicting a good value of the design variables for restarting the op-
timization for the next value of r, Eq. (5.7.4) provides us with a useful convergence
criterion, namely

‖x∗ − a‖ ≤ ε1 , (5.7.7)

where a is estimated from the last two values of r, and ε1 is a specified tolerance
chosen to be small compared to a typical value of ‖x‖.

A second convergence criterion is based on the magnitude of the penalty terms,
which, as shown in Example 5.7.1, go to zero as r goes to infinity. Therefore, a
reasonable convergence criterion is ∣∣∣∣φ− f

f

∣∣∣∣ ≤ ε2 . (5.7.8)

188

Section 5.7: Penalty Function Methods

Finally, a criterion based on the change in the value of the objective function at the
minimum f ∗ is also used ∣∣∣∣f ∗(ri)− f ∗(ri−1)

f ∗(ri)

∣∣∣∣ ≤ 0 . (5.7.9)

A typical value for ε2 or ε3 is 0.001.

Example 5.7.1

Minimize f = x2
1 + 10x2

2 such that x1 + x2 = 4. We have

φ = x2
1 + 10x2

2 + r(4− x1 − x2)
2 .

The gradient ∇φ is given as

g =

{
2x1(1 + r) + 2rx2 − 8r
2x2(10 + r) + 2rx1 − 8r

}
.

Setting the gradient to zero we obtain

x1 =
40 r

10 + 11r
, x2 =

4 r

10 + 11r
.

The solution as a function of r is shown in Table 5.7.1.

Table 5.7.1 Minimization of φ for different penalty multipliers.

r x1 x2 f φ

1 1.905 0.1905 3.992 7.619
10 3.333 0.3333 12.220 13.333

100 3.604 0.3604 14.288 14.144
1000 3.633 0.3633 14.518 14.532

It can be seen that as r is increased the solution converges to the exact solution
of xT = (3.636, 0.3636), f = 14.54. The convergence is indicated by the shrinking
difference between the objective function and the augmented function φ. The Hessian
of φ is given as

H =

[
2 + 2r 2r

2r 20 + 2r

]
.

As r increases this matrix becomes more and more ill-conditioned, as all four compo-
nents become approximately 2r. This ill-conditioning of the Hessian matrix for large
values of r often occurs when the exterior penalty function is used, and can cause
numerical difficulties for large problems.

We can use Table 5.7.1 to test the extrapolation procedure, Eq. (5.7.4). For
example, with the values of r = 1 and r = 10, Eq. (5.7.5) gives

a =
0.1x∗(1)− x∗(10)

−0.9
=

{
3.492
0.3492

}
,

189

Chapter 5: Constrained Optimization

b = x∗(1)− a =

{
−0.159
−0.0159

}
.

We can now use Eq. (5.7.4) to find a starting point for the optimization for r = 100
to get

a + b/100 = (3.490, 0.3490)T ,

which is substantially closer to x∗(100) = (3.604, 0.3604)T than to x∗(10) = (3.333,
0.3333)T . • • •

5.7.2 Interior and Extended Interior Penalty Functions

With the exterior penalty function, constraints contribute penalty terms only when
they are violated. As a result, the design typically moves in the infeasible domain.
If the minimization is terminated before r becomes very large (for example, because
of shortage of computer resources) the resulting designs may be useless. When only
inequality constraints are present, it is possible to define an interior penalty function
that keeps the design in the feasible domain. The common form of the interior penalty
method replaces the inequality constrained problem

minimize f(x)

such that gj(x) ≥ 0, j = 1, . . . , ng ,
(5.7.10)

by

minimize φ(x, r) = f(x) + r

ng∑
j=1

1/gj(x) ,

r = r1, r2, . . . , ri → 0, ri > 0 .

(5.7.11)

Figure 5.7.2 Interior penalty function for f(x) = 0.5x subject to x− 4 ≥ 0.

190

Section 5.7: Penalty Function Methods

The penalty term is proportional to 1/gj and becomes infinitely large at the
boundary of the feasible domain creating a barrier there (interior penalty function
methods are sometimes called barrier methods). It is assumed that the search is
confined to the feasible domain. Otherwise, the penalty becomes negative which
does not make any sense. Figure 5.7.2 shows the application of the interior penalty
function to the simple example used for the exterior penalty function in Figure 5.7.1.
Besides the inverse penalty function defined in Eq. (5.7.11), there has been some use
of a logarithmic interior penalty function

φ(x, r) = f(x)− r

ng∑
j=1

log(gj(x)) . (5.7.12)

While the interior penalty function has the advantage over the exterior one in
that it produces a series of feasible designs, it also requires a feasible starting point.
Unfortunately, it is often difficult to find such a feasible starting design. Also, because
of the use of approximation (see Chapter 6), it is quite common for the optimization
process to stray occasionally into the infeasible domain. For these reasons it may be
advantageous to use a combination of interior and exterior penalty functions called
an extended interior penalty function. An example is the quadratic extended interior
penalty function of Haftka and Starnes [14]

φ(x, r) = f(x) + r

ng∑
j=1

p(gj) ,

r = r1, r2, . . . , ri → 0 ,

(5.7.13)

where

p(gj) =

{
1/gj for gj ≥ g0

1/g0[3− 3(gj/g0) + (gj/g0)
2] for gi < g0 .

(5.7.14)

It is easy to check that p(gj) has continuity up to second derivatives. The transi-
tion parameter g0 which defines the boundary between the interior and exterior parts
of the penalty terms must be chosen so that the penalty associated with the con-
straint, rp(gj), becomes infinite for negative gj as r tends to zero. This results in the
requirement that

r/g3
0 →∞, as r → 0 . (5.7.15)

This can be achieved by selecting g0 as

g0 = cr1/2 , (5.7.16)

where c is a constant.

It is also possible to include equality constraints with interior and extended in-
terior penalty functions. For example, the interior penalty function Eq. (5.7.11) is
augmented as

φ(x, r) = f(x) + r

ng∑
j=1

1/gj(x) + r−1/2

ne∑
i=1

h2
i (x) ,

r = r1, r2, . . . , ri → 0 .

(5.7.17)

191

Chapter 5: Constrained Optimization

Figure 5.7.3 Extended interior penalty function for f(x) = 0.5x subject to g(x) =
x− 4 ≥ 0.

The considerations for the choice of an initial value of r are similar to those for
the exterior penalty function. A reasonable choice for the interior penalty function
would require that n/4 active constraints at g = 0.5 (that is 50% margin for properly
normalized constraints) would result in a total penalty equal to the objective function.
Using Eq. (5.7.11) we obtain

f(x) =
n

4

r

0.5
, or r = 2f(x)/n .

For the extended interior penalty function it is more reasonable to assume that the
n/4 constraints are critical (g = 0), so that from Eq. (5.7.13)

f(x) = r
n

4

3

g0

, or r =
4

3
g0f(x)/n .

A reasonable starting value for g0 is 0.1. As for the exterior penalty function, it is
possible to obtain an expression for the asymptotic (as r → 0) coordinates of the
minimum of φ as [10]

x∗(r) = a + br1/2, as r → 0 , (5.7.18)

and
f ∗(r) = a+ br1/2, as r → 0 .

a, b, a and b may be estimated once the minimization has been carried out for two
values of r. For example, the estimates for a and b are

a =
c1/2x∗(ri−1)− x∗(ri)

c1/2 − 1
,

b =
x∗(ri−1)− a

r
1/2
i−1

,
(5.7.19)

where c = ri/ri−1. As in the case of exterior penalty function, these expressions may
be used for convergence tests and extrapolation.

192

Section 5.7: Penalty Function Methods

5.7.3 Unconstrained Minimization with Penalty Functions

Penalty functions convert a constrained minimization problem into an unconstrained
one. It may seem that we should now use the best available methods for uncon-
strained minimization, such as quasi-Newton methods. This may not necessarily be
the case. The penalty terms cause the function φ to have large curvatures near the
constraint boundary even if the curvatures of the objective function and constraints
are small. This effect permits an inexpensive approximate calculation of the Hessian
matrix, so that we can use Newton’s method without incurring the high cost of cal-
culating second derivatives of constraints. This may be more attractive than using
quasi-Newton methods (where the Hessian is also approximated on the basis of first
derivatives) because a good approximation is obtained with a single analysis rather
than with the n moves typically required for a quasi-Newton method. Consider, for
example, an exterior penalty function applied to equality constraints

φ(x, r) = f(x) + r

ne∑
i=1

h2
i (x) . (5.7.20)

The second derivatives of φ are given as

∂2φ

∂xk∂xl

=
∂2f

∂xk∂xl

+ r
ne∑
i=1

2

(
∂hi

∂xk

∂hi

∂xl

+ hi
∂2hi

∂xk∂xl

)
. (5.7.21)

Because of the equality constraint, hi is close to zero, especially for the later stages
of the optimization (large r), and we can neglect the last term in Eq. (5.7.21). For
large values of r we can also neglect the first term, so that we can calculate second
derivatives of φ based on first derivatives of the constraints. The availability of
inexpensive second derivatives permits the use of Newton’s method where the number
of iterations is typically independent of the number of design variables. Quasi-Newton
and conjugate gradient methods, on the other hand, require a number of iterations
proportional to the number of design variables. Thus the use of Newton’s method
becomes attractive when the number of design variables is large. The application of
Newton’s method with the above approximation of second derivatives is known as
the Gauss-Newton method.

For the interior penalty function we have a similar situation. The augmented
objective function φ is given as

φ(x, r) = f(x) + r

ng∑
j=1

1/gj(x) , (5.7.22)

and the second derivatives are

∂2φ

∂xk∂xl

=
∂2f

∂xk∂xl

+ r

ng∑
j=1

1

g3
j

(
2
∂gj

∂xk

∂gj

∂xl

− gj
∂2gj

∂xk∂xl

)
. (5.7.23)

193

Chapter 5: Constrained Optimization

Now the argument for neglecting the first and last terms in Eq. (5.7.23) is somewhat
lengthier. First we observe that because of the 1/g3

j term, the second derivatives
are dominated by the critical constraints (gj small). For these constraints the last
term in Eq. (5.7.23) is negligible compared to the first-derivative term because gj is
small. Finally, from Eq. (5.7.18) it can be shown that r/g3

j goes to infinity for active
constraints as r goes to zero, so that the first term in Eq. (5.7.23) can be neglected
compared to the second. The same argument can also be used for extended interior
penalty functions [14].

The power of the Gauss-Newton method is shown in [14] for a high- aspect-ratio
wing made of composite materials (see Figure 5.7.4) designed subject to stress and
displacement constraints.

Figure 5.7.4 Aerodynamic planform and structural box for high-aspect ratio wing,
from [14].

Table 5.7.2 Results of high-aspect-ratio wing study

Number of CDC 6600 Total number of
design CPU time unconstrained Total number Final
variables sec minimizations of analyses mass, kg

13 142 4 21 887.3
25 217 4 19 869.1
32 293 5 22 661.7
50 460 5 25 658.2
74 777 5 28 648.6

146 1708 5 26 513.0

The structural box of the wing was modeled with a finite element model with
67 nodes and 290 finite elements. The number of design variables controlling the
thickness of the various elements was varied from 13 to 146. The effect of the number
of design variables on the number of iterations (analyses) is shown in Table 5.7.2.
It is seen that the number of iterations per unconstrained minimization is almost

194

Section 5.7: Penalty Function Methods

constant (about five). With a quasi-Newton method that number may be expected
to be similar to the number of design variables.

Because of the sharp curvature of φ near the constraint boundary, it may also be
appropriate to use specialized line searches with penalty functions [15].

5.7.4 Integer Programming with Penalty Functions

An extension of the penalty function approach has been implemented by Shin et
al. [16] for problems with discrete-valued design variables. The extension is based
on introduction of additional penalty terms into the augmented-objective function
φ(x, r) to reflect the requirement that the design variables take discrete values,

xi ∈ Xi = {di1, di2, . . . , dil}, i ∈ Id , (5.7.24)

where Id is the set of design variables that can take only discrete values, and Xi is
the set of allowable discrete values. Note that several variables may have the same
allowable set of discrete values. In this case the augmented objective function which
includes the penalty terms due to constraints and the non-discrete values of the design
variables is defined as

φ(x, r, s) = f(x) + r

ng∑
j=1

p(gj) + s
∑
i∈Id

ψd(xi) , (5.7.25)

where s is a penalty multiplier for non-discrete values of the design variables, and
ψd(xi) the penalty term for non-discrete values of the ith design variable. Different
forms for the discrete penalty function are possible. The penalty terms ψd(xi) are
assumed to take the following sine-function form in Ref. [16],

ψd(xi) =
1

2

(
sin

2π[xi − 1
4
(di(j+1) + 3dij)]

di(j+1) − dij

+ 1

)
, dij ≤ xi ≤ di(j+1) . (5.7.26)

While penalizing the non-discrete valued design variables, the functions ψd(xi) as-
sure the continuity of the first derivatives of the augmented function at the discrete
values of the design variables. The response surfaces generated by Eq. (5.7.25) are
determined according to the values of the penalty multipliers r and s. In contrast
to the multiplier r, which initially has a large value and decreases as we move from
one iteration to another, the value of the multiplier s is initially zero and increases
gradually.

One of the important factors in the application of the proposed method is to
determine when to activate s, and how fast to increase it to obtain discrete optimum
design. Clearly, if the initial value of s is too big and introduced too early in the
design process, the design variables will be trapped away from the global minimum,
resulting in a sub-optimal solution. To avoid this problem, the multiplier s has to be
activated after optimization of several response surfaces which include only constraint
penalty terms. In fact, since sometimes the optimum design with discrete values is
in the neighborhood of the continuous optimum, it may be desirable not to activate

195

Chapter 5: Constrained Optimization

the penalty for the non-discrete design variables until reasonable convergence to the
continuous solution is achieved. This is especially true for problems in which the
intervals between discrete values are very small.

A criterion for the activation of the non-discrete penalty multiplier s is the same
as the convergence criterion of Eq. (5.7.6), that is∣∣∣∣φ− f

f

∣∣∣∣ ≤ εc . (5.7.27)

A typical value for εc is 0.01. The magnitude of the non-discrete penalty multiplier,
s, at the first discrete iteration is calculated such that the penalty associated with
the discrete-valued design variables that are not at their allowed values is of the order
of 10 percent of the constraint penalty.

s ≈ 0.1rp(g) . (5.7.28)

As the iteration for discrete optimization proceeds, the non-discrete penalty multiplier
for the new iteration is increased by a factor of the order of 10. It is also important to
decide how to control the penalty multiplier for the constraints, r, during the discrete
optimization process. If r is decreased for each discrete optimization iteration as in
the continuous optimization process, the design can be stalled due to high penalties
for constraint violation. Thus, it is suggested that the penalty multiplier r be frozen at
the end of the continuous optimization process. However, the nearest discrete solution
at this response surface may not be a feasible design, in which case the design must
move away from the continuous optimum by moving back to the previous response
surface. This can be achieved by increasing the penalty multiplier, r, by a factor of
10.

The solution process for the discrete optimization is terminated if the design
variables are sufficiently close to the prescribed discrete values. The convergence
criterion for discrete optimization is

max
i∈Ii

{
min

{
|xi − dij|
di(j+1) − dij

,
|xi − di(j+1)|
di(j+1) − dij

}}
≤ εd , (5.7.29)

where a typical value of the convergence tolerance εd is 0.001.

Example 5.7.2

Cross-sectional areas of members of a two-bar truss shown in the Figure 5.7.5 are
to be selected from a discrete set of values, Ai ∈ {1.0, 1.5, 2.0}, i = 1, 2. Determine
the minimum weight structure using the modified penalty function approach such
that the horizontal displacement u at the point of application of the force does not
exceed 2/3(Fl/E). Use a tolerance εc = 0.1 for the activation of the penalty terms
for non-discrete valued design variables, and a convergence tolerance for the design
variables εd = 0.001.

196

Section 5.7: Penalty Function Methods

Figure 5.7.5 Two-bar truss.

Upon normalization, the design problem is posed as

minimize f =
W

ρl
= x1 + x2

subject to g =
uE

Fl
= 1.5− 1/x1 − 1/x2 ≥ 0 ,

xi = Ai ∈ {1.0, 1.5, 2.0}, i = 1, . . . , 2 .

Using an initial design of x1 = x2 = 5 and transition parameter g0 = 0.1, we have
g = 1.1 > g0, therefore, from Eq. (5.7.14) the penalty terms for the constraints are
in the form of p(g) = 1/g. The augmented function for the extended interior penalty
function approach is

φ = x1 + x2 +
r

1.5− 1/x1 − 1/x2

.

Setting the gradient to zero, we can show that the minimum of the augmented func-
tion as a function of the penalty multiplier r is

x1 = x2 =
24 +

√
576− 36 (16− 4r)

18
.

The initial value of the penalty multiplier r is chosen so that the penalty introduced
for the constraint is equal to the objective function value,

r
1

g(x0)
= f(x0), r = 11 .

The minima of the augmented function as functions of the penalty multiplier r are
shown in Table 5.7.3 . After four iterations the constraint penalty (φ− f) is within
the desired range of the objective function to activate the penalty terms for the
non-discrete values of the design variables.

From Eq. (5.7.25) the augmented function for the modified penalty function
approach has the form

φ =x1 + x2 +
r

1.5− 1/x1 − 1/x2

+
s {1 + sin[4π (x1 − 1.125)]}

2

+(s/2) {1 + sin[4π (x2 − 1.125)]} .

197

Chapter 5: Constrained Optimization

Table 5.7.3 Minimization of φ without the discrete penalty

r x1 x2 f g φ

- 5.000 5.000 10.00 1.100 -
11 3.544 3.544 7.089 0.9357 18.844

1.1 2.033 2.033 4.065 0.5160 6.197
0.11 1.554 1.554 3.109 0.2134 3.624

0.011 1.403 1.403 2.807 0.0747 2.954

The minimum of the augmented function can again be obtained by setting the gra-
dient to zero

1− r

(1.5− 2/x1)
2x1

2
+ 2πs cos[4π (x1 − 1.125)] = 0 ,

which can be solved numerically. The initial value of the penalty multiplier s is
calculated from Eq. (5.7.28)

s = 0.1 (0.011)
1

0.0747
= 0.0147 .

The minima of the augmented function (which includes the penalty for the non-
discrete valued variables) are shown in Table 5.7.4 as a function of s.

Table 5.7.4 Minimization of φ with the discrete penalty

r s x1 x2 f φ

0.011 0.0147 1.406 1.406 2.813 2.963
0.1472 1.432 1.432 2.864 3.021
1.472 1.493 1.493 2.986 3.060
14.72 1.499 1.499 2.999 3.065
147.2 1.500 1.500 3.000 3.066

After four discrete iterations we obtain a minimum at x1 = x2 = 3/2. There are
two more minima, x = (2, 1) and x = (1, 2), with the same value of the objective
function of f = 3.0. • • •

5.8 Multiplier Methods

Multiplier methods combine the use of Lagrange multipliers with penalty functions.
When only Lagrange multipliers are employed the optimum is a stationary point
rather than a minimum of the Lagrangian function. When only penalty functions
are employed we have a minimum but also ill-conditioning. By using both we may
hope to get an unconstrained problem where the function to be minimized does not
suffer from ill-conditioning. A good survey of multiplier methods was conducted by

198

Section 5.8: Multiplier Methods

Bertsekas [17]. We study first the use of multiplier methods for equality constrained
problems.

minimize f(x)

such that hj(x) = 0, j = 1, . . . , ne .
(5.8.1)

We define the augmented Lagrangian function

L(x,λ, r) = f(x)−
ne∑

j=1

λjhj(x) + r

ne∑
j=1

h2
j(x) . (5.8.2)

If all the Lagrange multipliers are set to zero, we get the usual exterior penalty
function. On the other hand, if we use the correct values of the Lagrange multipliers,
λ∗j , it can be shown that we get the correct minimum of problem (5.8.1) for any
positive value of r. Then there is no need to use the large value of r required for the
exterior penalty function. Of course, we do not know what are the correct values of
the Lagrange multipliers.

Multiplier methods are based on estimating the Lagrange multipliers. When the
estimates are good, it is possible to approach the optimum without using large r
values. The value of r needs to be only large enough so that L has a minimum rather
than a stationary point at the optimum. To obtain an estimate for the Lagrange
multipliers we compare the stationarity conditions for L,

∂L
∂xi

=
∂f

∂xi

−
ne∑

j=1

(λj − 2rhj)
∂hj

∂xi

= 0 , (5.8.3)

with the exact conditions for the Lagrange multipliers

∂f

∂xi

−
ne∑

j=1

λ∗j
∂hj

∂xi

= 0 . (5.8.4)

Comparing Eqs. (5.8.3) and (5.8.4) we expect that

λj − 2rhj → λ∗j , (5.8.5)

as the minimum is approached. Based on this relation, Hestenes [18] suggested using
Eq. (5.8.5) as an estimate for λ∗j . That is

λ
(k+1)
j = λ

(k)
j − 2r(k)h

(k)
j , (5.8.6)

where k is an iteration number.

199

Chapter 5: Constrained Optimization

Example 5.8.1

We repeat Example 5.7.1 using Hestenes’ multiplier method.

f(x) = x2
1 + 10x2

2 ,

h(x) = x1 + x2 − 4 = 0 .

The augmented Lagrangian is

L = x2
1 + 10x2

2 − λ(x1 + x2 − 4) + r(x1 + x2 − 4)2 .

To find the stationary points of the augmented Lagrangian we differentiate with
respect to x1 and x2 to get

2x1 − λ+ 2r(x1 + x2 − 4) = 0 ,

20x2 − λ+ 2r(x1 + x2 − 4) = 0 ,

which yield

x1 = 10x2 =
5λ+ 40r

10 + 11r
.

We want to compare the results with those of Example 5.7.1, so we start with the
same initial r value r0 = 1, the initial estimate of λ = 0 and get

x1 = (1.905, 0.1905)T , h = −1.905 .

So, using Eq. (5.8.6) we estimate λ(1) as

λ(1) = −2× 1× (−1.905) = 3.81 .

We next repeat the optimization with r(1) = 10, λ(1) = 3.81 and get

x2 = (3.492, 0.3492)T , h = −0.1587 .

For the same value of r, we obtained in Example 5.7.1 x2 = (3.333, 0.3333)T , so that
we are now closer to the exact solution of x = (3.636, 0, 3636)T . Now we estimate a
new λ from Eq. (5.8.6)

λ(2) = 3.81− 2× 10× (−0.1587) = 6.984 .

For the next iteration we may, for example, fix the value of r at 10 and change only
λ. For λ = 6.984 we obtain

x3 = (3.624, 0.3624), h = −0.0136 ,

which shows that good convergence can be obtained without increasing r.• • •

200

Section 5.9: Projected Lagrangian Methods (Sequential Quadratic Programming)

There are several ways to extend the multiplier method to deal with inequality
constraints. The formulation below is based on Fletcher’s work [19]. The constrained
problem that we examine is

minimize f(x)

such that gj(x) ≥ 0, j = 1, . . . , ng .
(5.8.7)

The augmented Lagrangian function is

L(x,λ, r) = f(x) + r

ng∑
j=1

〈λj

2r
− gj〉2 , (5.8.8)

where < a >= max(a, 0). The condition of stationarity of L is

∂f

∂xi

− 2r

ng∑
j=1

〈λj

2r
− gj〉

∂gj

∂xi

= 0 . (5.8.9)

The exact stationarity condition is

∂f

∂xi

−
ng∑
j=1

λ∗j
∂gj

∂xi

= 0 , (5.8.10)

where it is also required that λ∗jgj = 0. Comparing Eqs (5.8.9) and (5.8.10) we expect
an estimate for λ∗j of the form

λ∗j = max(λj − 2rgj, 0) . (5.8.11)

5.9 Projected Lagrangian Methods (Sequential Quadratic Programming)

The addition of penalty terms to the Lagrangian function by multiplier methods
converts the optimum from a stationary point of the Lagrangian function to a min-
imum point of the augmented Lagrangian. Projected Lagrangian methods achieve
the same result by a different method. They are based on a theorem that states that
the optimum is a minimum of the Lagrangian function in the subspace of vectors
orthogonal to the gradients of the active constraints (the tangent subspace). Pro-
jected Lagrangian methods employ a quadratic approximation to the Lagrangian in
this subspace. The direction seeking algorithm is more complex than for the methods
considered so far. It requires the solution of a quadratic programming problem, that
is an optimization problem with a quadratic objective function and linear constraints.
Projected Lagrangian methods are part of a class of methods known as sequential
quadratic programming (SQP)methods. The extra work associated with the solution
of the quadratic programming direction seeking problem is often rewarded by faster
convergence.

201

Chapter 5: Constrained Optimization

The present discussion is a simplified version of Powell’s projected Lagrangian
method [20]. In particular we consider only the case of inequality constraints

minimize f(x)

such that gj(x) ≥ 0, j = 1, . . . , ng .
(5.9.1)

Assume that at the ith iteration the design is at xi, and we seek a move direction s.
The direction s is the solution of the following quadratic programming problem

minimize φ(s) = f(xi) + sTg(xi) +
1

2
sTA(xi,λi)s

such that gj(xi) + sT∇gj(xi) ≥ 0, j = 1, . . . , ng ,
(5.9.2)

where g is the gradient of f , and A is a positive definite approximation to the Hessian
of the Lagrangian function discussed below. This quadratic programming problem
can be solved by a variety of methods which take advantage of its special nature. The
solution of the quadratic programming problem yields s and λi+1. We then have

xi+1 = xi + αs , (5.9.3)

where α is found by minimizing the function

ψ(α) = f(x) +

ng∑
j=1

µj|min(0, gj(x))| , (5.9.4)

and the µj are equal to the absolute values of the Lagrange multipliers for the first
iteration, i.e.

µj = max[|λ(i)
j ,

1

2
(µ

(i−1)
j + |λ(i−1)

j |)] , (5.9.5)

with the superscript i denoting iteration number. The matrix A is initialized to some
positive definite matrix (e.g the identity matrix) and then updated using a BFGS type
equation (see Chapter 4).

Anew = A− A∆x∆xTA

∆xTA∆x
+

∆l∆lT

∆xT ∆x
, (5.9.6)

where
∆x = xi+1 − xi , ∆l = ∇xL(xi+1,λi)−∇xL(xi,λi) , (5.9.7)

where L is the Lagrangian function and ∇x denotes the gradient of the Lagrangian
function with respect to x. To guarantee the positive definiteness of A, ∆l is modified
if ∆xT ∆l ≤ 0.2∆xTA∆x and replaced by

∆l′ = θ∆l + (1− θ)A∆x , (5.9.8)

where

θ =
0.8∆xTA∆x

∆xTA∆x−∆xT ∆l
. (5.9.9)

202

Section 5.9: Projected Lagrangian Methods (Sequential Quadratic Programming)

Example 5.9.1

Consider the four bar truss of Example 5.1.2. The problem of finding the minimum
weight design subject to stress and displacement constraints was formulated as

minimize f = 3x1 +
√

3x2

subject to g1 = 3− 18

x1

− 6
√

3

x2

≥ 0 ,

g2 = x1 − 5.73 ≥ 0 ,

g3 = x2 − 7.17 ≥ 0 .

Assume that we start the search at the intersection of g1 = 0 and g3 = 0 where
x1 = 11.61, x2 = 7.17 and f = 47.25. The gradient of the objective function and two
active constraints are

∇f =

{
3√
3

}
, ∇g1 =

{
0.1335
0.2021

}
, ∇g3 =

{
0
1

}
, N =

[
0.1335 0
0.2021 1

]
.

We start with A set to the unit matrix so that

φ(s) = 47.25 + 3s1 +
√

3s2 + 0.5s2
1 + 0.5s2

2 ,

and the linearized constraints are

g1(s) = 0.1335s1 + 0.2021s2 ≥ 0 ,

g2(s) = 5.88 + s1 ≥ 0 ,

g3(s) = s2 ≥ 0 .

We solve this quadratic programming problem directly with the use of the Kuhn-
Tucker conditions

3 + s1 − 0.1335λ1 − λ2 = 0 ,
√

3 + s2 − 0.2021λ1 − λ3 = 0 .

A consideration of all possibilities for active constraints shows that the optimum is
obtained when only g1 is active, so that λ2 = λ3 = 0 and λ1 = 12.8, s1 = −1.29,
s2 = 0.855. The next design is

x1 =

{
11.61
7.17

}
+ α

{
−1.29
0.855

}
,

where α is found by minimizing ψ(α) of Eq. (5.9.4). For the first iteration µj = |λj|
so

ψ = 3(11.61−1.29α)+
√

3(7.17+0.855α)+12.8

∣∣∣∣∣3− 18

11.61− 1.29α
− 6

√
3

7.17 + 0.855α

∣∣∣∣∣ .
203

Chapter 5: Constrained Optimization

By changing α systematically we find that ψ is a minimum near α = 2.2, so that

x1 = (8.77, 9.05)T , f(x1) = 41.98, g1(x1) = −0.201 .

To update A we need ∆x and ∆l. We have

L = 3x1 +
√

3x2 − 12.8(3− 18/x1 + 6
√

3/x2) ,

so that
∇xL = (3− 230.4/x2

1,
√

3− 133.0/x2
2)

T ,

and

∆x = x1 − x0 =

{
−2.84
1.88

}
, ∆l = ∇xL(x1)−∇xL(x0) =

{
−1.31
0.963

}
.

With A being the identity matrix we have ∆xTA∆x = 11.6, ∆xT ∆l = 5.53. Because
∆xT ∆l > 0.2∆xTA∆x we can use Eq. (5.9.5) to update A

Anew = I − ∆x∆xT

∆xT ∆x
+

∆l∆lT

∆xT ∆x
=

[
0.453 0.352
0.352 0.775

]
.

For the second iteration

φ(s) = 41.98 + 3s1 +
√

3s2 + 0.5(0.453s2
1 + 0.775s2

2 + 0.704s1s2) ,

g1(s) = −0.201 + 0.234s1 + 0.127s2 ≥ 0 ,

g2(s) = 3.04 + s1 ≥ 0 ,

g3(s) = 1.88 + s2 ≥ 0 .

We can again solve the quadratic programming directly with the use of the Kuhn-
Tucker conditions

3 + 0.453s1 + 0.352s2 − 0.234λ1 − λ2 = 0 ,
√

3 + 0.352s1 + 0.775s2 − 0.127λ1 − λ3 = 0 .

The solution is

λ1 = 14.31, λ2 = λ3 = 0, s1 = 1.059, s2 = −0.376 .

The one dimensional search seeks to minimize

ψ(α) = f(α) + µ1g1(α) ,

where

µ1 = max(λ1,
1

2
(|λ1|+ µold

1)) = 14.31 .

The one-dimensional search yields approximately α = 0.5, so that

x2 = (9.30, 8.86)T , f(x2) = 43.25, g1(x2) = −0.108 ,

so that we have made good progress towards the optimum x∗ = (9.46, 9.46)T . • • •

204

Section 5.11: References

5.10 Exercises

1. Check the nature of the stationary points of the constrained problem

minimize f(x) = x2
1 + 4x2

2 + 9x2
3

such that x1 + 2x2 + 3x3 ≥ 30 ,

x2x3 ≥ 2 ,

x3 ≥ 4 ,

x1x2 ≥ 0 .

2. For the problem

minimize f(x) = 3x2
1 − 2x1 − 5x2

2 + 30x2

such that 2x1 + 3x2 ≥ 8 ,

3x1 + 2x2 ≤ 15 ,

x2 ≤ 5 .

Check for a minimum at the following points: (a) (5/3, 5.00) (b) (1/3, 5.00) (c)
(3.97,1.55).

3. Calculate the derivative of the solution of Example 5.1.2 with respect to a change in
the allowable displacement. First use the Lagrange multiplier to obtain the derivative
of the objective function, and then calculate the derivatives of the design variables
and Lagrange multipliers and verify the derivative of the objective function. Finally,
estimate from the derivatives of the solution how much we can change the allowable
displacement without changing the set of active constraints.

4. Solve for the minimum of problem 1 using the gradient projection method from
the point (17, 1/2, 4).

5. Complete two additional moves in Example 5.5.2.

6. Find a feasible usable direction for problem 1 at the point (17, 1/2, 4).

7. Use an exterior penalty function to solve Example 5.1.2.

8. Use an interior penalty function to solve Example 5.1.2.

9. Consider the design of a box of maximum volume such that the surface area is
equal to S and there is one face with an area of S/4. Use the method of multipliers
to solve this problem, employing three design variables.

10. Complete two more iterations in Example 5.9.1.

205

Chapter 5: Constrained Optimization

5.11 References

[1] Kreisselmeier, G., and Steinhauser, R., “Systematic Control Design by Optimiz-
ing a Vector Performance Index,”Proceedings of IFAC Symposium on Computer
Aided Design of Control Systems, Zurich, Switzerland, pp. 113-117, 1979.

[2] Sobieszczanski-Sobieski, J., “A Technique for Locating Function Roots and for
Satisfying Equality Constraints in Optimization,” NASA TM-104037, NASA
LaRC, 1991.

[3] Wolfe, P.. “The Simplex Method for Quadratic Programming,” Econometrica, 27
(3), pp. 382–398, 1959.

[4] Gill, P.E., Murray, W., and Wright, M.H., Practical Optimization, Academic
Press, 1981.

[5] Dahlquist, G., and Bjorck, A., Numerical Methods, Prentice Hall, 1974.

[6] Sobieszczanski-Sobieski, J., Barthelemy, J.F., and Riley, K.M., “Sensitivity of
Optimum Solutions of Problem Parameters”, AIAA Journal, 20 (9), pp. 1291–
1299, 1982.

[7] Rosen, J.B., “The Gradient Projection Method for Nonlinear Programming—
Part I: Linear Constraints”, The Society for Industrial and Appl. Mech. Journal,
8 (1), pp. 181– 217, 1960.

[8] Abadie, J., and Carpentier, J., “Generalization of the Wolfe Reduced Gradient
Method for Nonlinear Constraints”, in: Optimization (R. Fletcher, ed.), pp. 37–
49, Academic Press, 1969.

[9] Rosen, J.B., “The Gradient Projection Method for Nonlinear Programming—Part
II: Nonlinear Constraints”, The Society for Industrial and Appl. Mech. Journal,
9 (4), pp. 514–532, 1961.

[10] Haug, E.J., and Arora, J.S., Applied Optimal Design: Mechanical and Structural
Systems, John Wiley, New York, 1979.

[11] Zoutendijk, G., Methods of Feasible Directions, Elsevier, Amsterdam, 1960.

[12] Vanderplaats, G.N., “CONMIN—A Fortran Program for Constrained Function
Minimization”, NASA TM X-62282, 1973.

[13] Fiacco, V., and McCormick, G.P., Nonlinear Programming: Sequential Uncon-
strained Minimization Techniques, John Wiley, New York, 1968.

[14] Haftka, R.T., and Starnes, J.H., Jr., “Applications of a Quadratic Extended
Interior Penalty Function for Structural Optimization”, AIAA Journal, 14 (6),
pp.718–724, 1976.

[15] Moe, J., “Penalty Function Methods in Optimum Structural Design—Theory and
Applications”, in: Optimum Structural Design (Gallagher and Zienkiewicz, eds.),
pp. 143–177, John Wiley, 1973.

206

Section 5.11: References

[16] Shin, D.K, Gürdal, Z., and Griffin, O. H. Jr., “A Penalty Approach for Nonlinear
Optimization with Discrete Design Variables,” Engineering Optimization, 16, pp.
29–42, 1990.

[17] Bertsekas, D.P., “Multiplier Methods: A Survey,” Automatica, 12, pp. 133–145,
1976.

[18] Hestenes, M.R., “Multiplier and Gradient Methods,” Journal of Optimization
Theory and Applications, 4 (5), pp. 303–320, 1969.

[19] Fletcher, R., “An Ideal Penalty Function for Constrained Optimization,” Journal
of the Institute of Mathematics and its Applications, 15, pp.319–342, 1975.

[20] Powell, M.J.D., “A Fast Algorithm for Nonlinearly Constrained Optimization
Calculations”, Proceedings of the 1977 Dundee Conference on Numerical Analy-
sis, Lecture Notes in Mathematics, Vol. 630, pp. 144–157, Springer-Verlag, Berlin,
1978.

207

Chapter 5: Constrained Optimization

208

