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INTRODUCTION

• FEA: determining the response of a given structure for a 
given set of loads and boundary conditions
– Geometry, material properties, BCs and loads are well defined

• Engineering design: a process of synthesis in which parts 
are put together to build a structure that will perform a 
given set of functions satisfactorily

• Analysis is very systematic and can be taught easily; 
design is an iterative process

• Creative design: creating a new structure or machine that 
does not exist

• Adaptive design: modifying an existing design 
(evolutionary process)
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INTRODUCTION – STRUCTURAL DESIGN

• Structural design: a procedure to improve or enhance the 
performance of a structure by changing its parameters

• Performance: a measurable quantity (constraint and goal)
– the weight, stiffness or compliance; the fatigue life; noise and 

vibration levels; safety

• Constraint: As long as the performance satisfies the 
criterion, its level is not important
– Ex: the maximum stress should be less than the allowable stress

• Goal: the performance that the engineer wants to improve 
as much as possible

• Design variables: system parameters that can be changed 
during the design process
– Plate thickness, cross-sectional area, shape, etc
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EXAMPLE

• Design the height h of cantilevered beam with SF = 1.5
– E = 2.9104 ksi, w = 2.25 in.

1) Allowable tip deflection Dallowable = 2.5 in. (No need SF)
– FE equation after applying BCs

– FE solution
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EXAMPLE cont.

2) Failure strength = 40 ksi (Need SF)
– Supporting moment at the wall

– Maximum stress at the wall

– Height calculation with the factor of safety
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FSD EXAMPLE – CANTILEVERED BEAM

• w = 2.25, h = 3.5 in. Determine new height using FSD

• Section modulus and max. stress at the initial design

• New section modulus using stress ratio resizing
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DESIGN PARAMETERS

• Selecting design variables – easy for beam and truss, but 
more complicated for plane or 3D solids

• Material property design variable
– Varying material properties to find the best material

– Not common, but useful for designing composite materials

• Sizing design variable
– Geometric parameters as design (parametric design variable)

– Appears as a parameter in FEM

– Thickness of plate/shell, cross-sectional geometry of truss/beam, 
etc
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DESIGN PARAMETERS cont.

• Shape design variable
– Related to the structure’s geometry, which does not appear 

explicitly as a parameter

– Beam cross-section is a geometry, but it appears as a moment of 
inertia

– Cx, Cy, and r determine the size and location of the hole

– Shape design variables change FE mesh

– Design variables must be limited so that the hole remains inside of 
the plate
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PARAMETER STUDY – SENSITIVITY ANALYSIS

• Parameter study
– Effect of a design variable on performance (gradual change of DV)

– Cantilevered beam example:

Allowable 

stress

Acceptable 

region

w (in) h (in) max (ksi)

2.0 4.0 37.5

2.0 4.5 29.6

2.0 5.0 24.0

2.5 4.0 30.0

2.5 4.5 23.7

2.5 5.0 19.2

3.0 4.0 25.0

3.0 4.5 19.8

3.0 5.0 16.0
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SENSITIVITY ANALYSIS

• Parameter study becomes too expensive with many DVs

• Unable to capture rapid change in performance locally

• Design sensitivity analysis computes the rate of 
performance change with respect to design variables

• Sensitivity analysis calculates gradient of performance for 
optimization

• Explicit dependence
– Analytical relationship exists between performance and DVs

– Weight of circular cross-section beam

– Sensitivity w.r.t. r :
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SENSITIVITY ANALYSIS cont.

• Implicit dependence
– Performance depends on DVs through state variable (displacement)

– Sensitivity of stress:

• How to calculate displacement sensitivity?
– Differentiate finite element equation: 

– [dK/db] and {dF/db} can be evaluated using either their analytical 
expression or numerical differentiation

 
 

dd d

d d dr r
q

q

Easy to calculate from given expression of stress

Difficult to calculate, time consuming

[ ( )]{ } { ( )}b bK Q F

 
     

         
     

d d d
db db db
Q F K

K Q



12

SENSITIVITY ANALYSIS cont.

• Sensitivity equation must be solved for each DV

• Sensitivity equation uses the same stiffness matrix with 
the original finite element analysis

• Consider RHS as a pseudo-force vector

• Similar to finite element analysis with multiple load cases

• Thus, solving sensitivity equation is very inexpensive using 
factorized stiffness matrix

• General form of performance

– Sensitivity
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FINITE DIFFERENCE SENSITIVITY

• Easiest way to compute sensitivity information of the 
performance

• Calculate performance at two different designs

• Forward difference method

• Central difference method

• Consider FEA as a black-box

• Sensitivity computation cost becomes high for many 
design variables
– N+1 analyses for forward FDM

– 2N+1 analyses for central FDM
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FINITE DIFFERENCE SENSITIVITY cont.

• Accuracy of finite difference sensitivity 
– Accurate results can be expected when b approaches zero

– For nonlinear performances, a large perturbation yields completely 
inaccurate results

– Numerical noise becomes dominant for a too-small perturbation 
size
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EXAMPLE – CANTILEVERED BEAM

• At optimum design (w=2.25 in, h=4.47 in), calculate 
sensitivity of tip displacement w.r.t. h

• Exact sensitivity:

• Differentiate [K]

• Pseudo load vector
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EXAMPLE – CANTILEVERED BEAM cont.

• Sensitivity equation:

• Same way of applying BC

• Sensitivity of nodal DOFs

– Same with the exact sensitivity
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STRUCTURAL OPTIMIZATION

• What Is Design Optimization?
– To find the best design parameters that meet the design goal and 

satisfies constraints.

• Design Parameters: Anything the Designer Can Change
– Thickness of a plate

– Cross-sectional geometry of a beam or truss

– Geometric dimensions

• Design Goal: Objective Function
– Design criterion that will be minimized (or maximized)

– Mass, Stress, Displacement, Natural Frequency, ETC

• Constraint: Conditions that the system must satisfy
– Stress, Displacement, ETC

• Note: Design parameters must affect the design goal and 
constraints.
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OPTIMIZATION FLOW CHART
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THREE-STEP PROBLEM FORMULATION

1. Design Parameterization
• Clear identification

• Independence of designs

2. Objective Function
• Must be a function of design parameters

• Minimization ( –Maximization)

3. Constraint Functions
• Inequality constraints 

• Equality constraints

• Equality constraints must be less than the number of design 
parameters
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STANDARD FORM

• Standard form of design optimization

• Feasible set: the set of designs that satisfy constraints
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