
Chapter 2

Optimality Conditions

2.1 Global and Local Minima for Unconstrained Problems

When a minimization problem does not have any constraints, the problem is to find the minimum
of the objective function. We distinguish between two kinds of minima. The global minimum is
the minimum of the function over the entire domain of interest, while a local minimum is the
minimum over a smaller subdomain. The design point where the objective function f reaches a
minimum is called the minimizer and is denoted by an asterisk as x∗. The global minimizer is
the point x∗ which satisfies

f(x∗) ≤ f(x) . (2.1.1)

A point x∗ is a local minimizer if you for some r > 0

f(x∗) ≤ f(x) . if ||x− x∗|| < r . (2.1.2)

That is, x∗ is a local minimizer, if you can find a sphere around it in which it is the minimizer.

2.2 Taylor series Expansion

To find conditions for a point to be a minimizer, we use the Taylor series expansion around a
presumed minimizer x∗

f(x) = f(x∗)+
n∑

i=1

(xi−x∗i )
∂f

∂xi
(x∗)+

1
2

n∑

i=1

n∑

k=1

(xi−x∗i )(xk−x∗k)
∂2f

∂xi∂xk
(x∗)+higher order terms

(2.2.1)
When x is very close to x∗, we can neglect even the second derivative terms. Furthermore, if x
and x∗ are identical except for the jth component, then Eq. 2.2.1 becomes

f(x) ≈ f(x∗) + (xj − x∗j )
∂f

∂xj
(x∗) . (2.2.2)

Then, for Eq. 2.1.2 to hold for both positive and negative values of (xj − x∗j ), we must have the
familiar first order condition

∂f

∂xj
(x∗) = 0 , , j = 1, . . . , n (2.2.3)
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CHAPTER 2. OPTIMALITY CONDITIONS

Equation 2.2.3 is not applicable only to a minimum; the same condition is derived in the same
manner for a maximum. It is called a stationarity condition, and a point satisfying it is called
a stationary point.

To obtain conditions specific to a minimizer, we need to use the second derivative terms in
the Taylor expansion. However, to facilitate working with these terms, we would like to rewrite
this expansion in matrix notation, which is more compact. We define the gradient vector to be
the vector whose components are the first derivatives, and denote it as ∇f . That is,

∇f =





∂f
∂x1
∂f
∂x2

.

.
. ∂f
∂xn





(2.2.4)

Similarly, we define the Hessian (after the German mathematician) Otto Ludwig Hesse (1811-
1874)) matrix H, to be the symmetric matrix of second derivatives. That is, hij , the element of
the matrix H at the ith row and jth column is ∂2

∂xixj
,

H =




∂2f
∂x2

1

∂2f
∂x1x2

. . . ∂2f
∂x1xn

∂2f
∂x2x1

∂2f
∂x2

2
. . . ∂2f

∂x2xn

. . .

. . .

. . .
∂2f

∂xnx1

∂2f
∂xnx2

. . . ∂2f
∂x2

n




. (2.2.5)

Finally, we define ∆x = x− x∗, and then we can write the Taylor expansion, Eq. 2.2.1 as

f(x) = f(x∗) + ∆xT∇f(x∗) +
1
2
∆xT H(x∗)∆x + higher order terms (2.2.6)

For a minimum, the gradient vector is zero, so that if

∆xT H(x∗)∆x > 0 (2.2.7)

then for small enough ∆x, the higher order terms can be neglected, and we will be assured
that x∗ is at least a local minimizer of f . A symmetric matrix which satisfies such positivity
condition for any vector ∆x is called positive definite. It can be shown that a matrix is positive
definite if and only if all of its eigenvalues are positive. In one dimension, the condition of
positive definiteness reduces to the condition that the second derivative is positive, indicating a
positive curvature or a convex function. In two dimensions, a positive definite Hessian means
that the curvature is positive in any direction, or again that f is convex.

The condition that H is positive definite is a sufficient condition for a local minimizer, but
it is not a necessary condition. It can be shown that the necessary condition is a slightly milder
version of Eq. 2.2.7

∆xT H(x∗)∆x ≥ 0 . (2.2.8)

With this condition, the second-order terms in the Taylor series can be zero, and then the higher-
order terms determine whether the point is a minimizer or not. In one dimension, the condition
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2.2. TAYLOR SERIES EXPANSION

is that the second derivative, or the curvature, is non-negative, and a zero second derivative
implies that the minimum is decided on the basis of higher derivatives. For example, f = x4

has zero first and second derivatives at x = 0, and this point is a minimum. However, f = −x4

satisfies the same conditions, but has a maximum at that point. Finally, f = x3 satisfies this
condition, and it has an inflection point. A matrix H which satisfies Eq. 2.2.8 for every vector
∆x is called positive semi-definite, and all of its eigenvalues are non-negative (but some may be
zero).

Since minimizing f is equivalent to maximizing −f , it follows that at a stationary point
if −H is positive definite, we have sufficient conditions for a local maximizer. Such a matrix
is called negative definite and all of its eigenvalues are negative. Similarly, if −H is positive
semi-definite, we call H negative semi-definite, and the matrix has eigenvalues which are all
non-positive.

In one dimension the second derivative can be positive, negative, or zero. corresponding
to a minimum, maximum, or uncertainty about the nature of the stationary point. In higher
dimensions we have the 4 possibilities that we have already listed, plus the possibility that
the some of the eigenvalues of the matrix are positive and some are negative. A matrix with
both positive and negative eigenvalues is called indefinite. In two dimensions, a function with
an indefinite matrix will have one positive eigenvalue and one negative eigenvalue. These two
eigenvalues will correspond to the extreme values of the curvature of the function in different
directions. The two directions will be perpendicular to each other, and with one direction having
positive curvature and the other having negative curvature, the function will locally look like a
saddle. Therefore, a stationary point with an indefinite Hessian is called a saddle point.

To summarize, at a stationary point we need to inspect the Hessian. If it is positive definite
we have a minimum. If it is positive semi-definite we may have a minimum, an inflection point
or a saddle point. If the Hessian is indefinite we have a saddle point. If it is negative definite
we must have a maximum, while if it is negative semi-definite we may have a maximum or an
inflection point or a saddle point.

Example 2.2.1

Find the stationary point of the quadratic function f = x2
1 + x2

2 + rx1x2 − 2x1. Determine the
nature of the stationary point for all possible values of r.

The stationary point is found by setting the first derivatives to zero

∂f

∂x1
= 2x1 + rx2 − 2 = 0 (2.2.9)

∂f

∂x2
= rx1 + 2x2 = 0 (2.2.10)

For any value of r beside r = 2, the solution is

x1 =
2

4− r2
, x2 =

−2r

4− r2
. (2.2.11)

The Hessian is

H =
[

2 r
r 2

]
. (2.2.12)

The eigenvalues µ of H are found be setting the determinant of H − µI, where I is the identity
matrix

|H − µI| =
∣∣∣∣
2− µ r

r 2− µ

∣∣∣∣ = (2− µ)2 − r2 = 0 . (2.2.13)
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f

x

Figure 2.1: Function with several local minima

So that the two eigenvalues are µ1,2 = 2 ± r. For r < 2 we have two positive eigenvalues so that
H is positive definite and the stationary point is a minimum. For r > 2, we have one positive and
one negative eigenvalue, so that H is indefinite and the stationary point is a saddle point. For r = 2
one of the eigenvalues is zero so that the matrix is positive semidefinite. However, we do not have
a stationary point for r = 2. • • •

2.3 Condition for global minimum

Up to now we discussed the condition for a local minimizer. A function can have several local
minima, as shown in the Fig. 2.1, and have a positive definite Hessian at each one of the minima.
Therefore, when we find a stationary point where the Hessian is positive definite, we usually
cannot tell whether the point is a local minimizer or a global one. However, if the function
is convex everywhere it can be shown that any local minimizer is also a global minimizer. If
f is twice differentiable everywhere, then convexity just means that the Hessian is positive
semidefinite everywhere. However, it is useful to define convex functions even if they do not
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posses second derivatives. For example, the function f = |x| is convex looking and has a global
minimum at x = 0. Similarly, we can replace a smooth convex function by short straight
segments, see Fig. 2.2, we would still have a convex looking function. Therefore, the definition
of convex function is generalized to include these cases, and it can be shown that the proper
definition is the following: A function f(x) is defined to be convex if for every two points x1

and x2 and every scalar 0 < α < 1

f [αx1 + (1− α)x2] ≤ αf(x1) + (1− α)f(x2) . (2.3.1)

Equation 2.3.1 simply states that if we connect any two points on the surface of the function by
a straight segment, the segment will lie above the function. If we can have strict inequality in
Eq. /refeq:convex, then the function f is strictly convex.

A local minimum of a convex function can be shown to be also the global minimum, or the
only minimum of the function. If the function is strictly convex, the minimizer is a single point,
while a more general convex function can have the minimum be attained in entire region of
design space.

It is usually not convenient to check on the convexity of a function from the definition of
a convex function. If the function is C2 (twice continuously differentiable), then convexity is
assured if the Hessian of the function is positive semi-definite everywhere, and strict convexity
is assured if the function is positive definite everywhere. One implication of this result is that
the minimum of a quadratic function is the global minimum, because if a quadratic function
is positive definite at one point, it is positive definite everywhere (the Hessian is a constant
matrix).

2.4 Necessary conditions for constrained local minimizer

We will consider first the case when we have only a single equality constraint

minimize f(x) ,

such that h(x) = 0 , (2.4.1)
(2.4.2)

In this case, if we want to check whether a candidate point x∗ is a minimizer, we can no longer
compare it with any neighboring point. Instead we have to limit ourselves only to points that
satisfy the equality constraint. That is, instead of Eq. 2.1.2 the condition should be

f(x∗) ≤ f(x) . if ||x− x∗|| < r ,

and h(x) = 0 , (2.4.3)
(2.4.4)

We can obtain a first order optimality condition by considering a point x which is infinitesimally
close to x∗, that is x = x∗ + dx. Then

df = f(x)− f(x∗) =
n∑

i=1

∂f

∂xi
dxi . (2.4.5)
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f

x

Figure 2.2: Convex function
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2.4. NECESSARY CONDITIONS FOR CONSTRAINED LOCAL MINIMIZER

Similarly, with h(x)− h(x∗) = dh = 0 we have

dh =
n∑

i=1

∂h

∂xi
dxi = 0 . (2.4.6)

This equation indicates that we cannot choose the components of dx independently. Rather, we
can express one of them, say the jth one, in terms of the other n−1, provided that ∂h/∂xj 6= 0.
That is

dxj = − 1
∂h/∂xj

∑

i6=j

∂h

∂xi
dxi . (2.4.7)

We will therefore assume that we can choose all the components of dx arbitrarily except for the
jth one.

We now calculate df + λdh where λ is any number. Because dh = 0 we have

df = df + λdh =
n∑

i=1

(
∂f

∂xi
+ λ

∂h

∂xi

)
dxi (2.4.8)

We now choose λ to eliminate the contribution of the dependent component dxj , that is

∂f

∂xj
+ λ

∂h

∂xj
= 0 . (2.4.9)

Then in Eq. 2.4.8 if we choose the dxk 6= 0 and dxi = 0 for i 6= k and i 6= j then

df =
(

∂f

∂xk
+ λ

∂h

∂xk

)
dxk . (2.4.10)

Then, because dxk can be either positive or negative, to insure that df ≥ 0 we must have

∂f

∂xk
+ λ

∂h

∂xk
= 0 (2.4.11)

This applies to every k 6= j, but for j we have Eq. 2.4.9, which is also the same. These equations
are usually made to look the same as the conditions for an unconstrained minimization by
defining a new function L called the Lagrangian

L = f + λh , (2.4.12)

and call λ a Lagrange multiplier. Then the condition for optimality is that we can find a
Lagrange multiplier that satisfies the following equation

∂L

∂xi
=

∂f

∂xi
+ λ

∂h

∂xi
= 0 , , i = 1, . . . , n . (2.4.13)

As in the case of unconstrained minimization, Eq. 2.4.13 is only a stationarity condition, which
applies equally well to minima and maxima. Equations 2.4.13 together with the condition h = 0
can be viewed as n + 1 equations for the components of the minimizer x∗ and the Lagrange
multiplier λ. However, we usually calculate the minimizer by some graphical or numerical
method, and then use Eq. 2.4.13 to check whether we are at the minimum. When we have only
a single design variable, we can always find a Lagrange multiplier that will satisfy Eq. 2.4.13, so
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that it does not seem that the optimality condition is much of a condition. However, indeed, with
a single design variable and a single constraint, we are not left with any freedom to optimize.
If we have a point that satisfies the constraint, in most cases we will not be able to move the
single design variable from this point without violating the constraint. When we have multiple
design variables, then Eq. 2.4.13 will give us a different equation for each design variable. At
the optimum point all of these equations should give us the same value of λ.

Another useful function of the Lagrangian is to estimate the effect of changing the data in
a problem on the optimum design. That is, consider a situation where the objective function f
and the constraint h are a function of a parameter p, then the minimizer x∗ and the minimum
value of the objective function f∗ will depend on p,

f = f(x, p) , h = h(x, p) , x∗ = x∗(p) , f∗(p) = f(x∗, p) . (2.4.14)

It can be shown that the derivative of f∗ with respect to p is equal to the partial derivative of
the Lagrangian with respect to p,

df∗

dp
=

∂L

∂p
(x∗, p) . (2.4.15)

Example 2.4.1

For the soft-drink can design, Example1.2.1, assume that l, the design variable which decides the
aspect ratio constraint on the can, is an outside parameter rather than a design variable. Further
assume that the aspect ratio condition is imposed as an equality constraint, with H = 2D for l = 0
and H = 2.2D for l = 1. Check that for l = 0, the maximum profit per ounce, po is achieved for
D = 2.04 in. Calculate the derivative of po with respect to l, and use it to estimate the effect on
the profit of changing l from 0 to 1. Check your answer.

The equality constraint dictates that H = 4.08 in. and Vo = 7.409 ounces. Because this design
point is not at the limits of either the dimensions or the volume, we can reformulate the design
problem as

minimize −po =
C − P

Vo

such that h = 1− H

(2 + 0.2l)D
= 0 . (2.4.16)

For convenience the equations for the cost, C, price, P , and volume in ounces Vo are copied from
Example 1.2.1

C = 0.8Vo + 0.1S , P = 2.5Vo − 0.02V 2
o + 5l . (2.4.17)

where

Vo = 0.25πD2H/1.8 , S = 2(0.25πD2) + πDH , (2.4.18)

For the candidate point, these equations give us po = 1.11065 cents per ounce. In order to check the
optimality condition, Eq. 2.4.13, it may be tempting to substitute the expressions for the cost, price,
volume and area into the objective function. However, differentiating the complicated expression
that will result from the substitution is difficult. Instead, it is more convenient to differentiate the
individual expressions as shown below. The Lagrangian function is given as

L =
C − P

Vo
+ λ

[
1− H

(2 + 0.2l)D

]
, (2.4.19)
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and the optimality condition, Eq. 2.4.13 is obtained by differentiating the Lagrangian with respect
to the two design variables

∂L

∂D
= 1

Vo

(
∂C
∂D − ∂P

∂D

)− C−P
V 2

o

∂Vo

∂D + λ H
(2+0.2l)D2 ,

∂L

∂H
= 1

Vo

(
∂C
∂H − ∂P

∂H

)− C−P
V 2

o

∂Vo

∂H − λ
(2+0.2l)D . (2.4.20)

To evaluate the derivatives appearing in the optimality conditions we differentiate the equations for
the cost

∂C

∂D
= 0.8

∂Vo

∂D
+ 0.1

∂S

∂D
,

∂C

∂H
= 0.8

∂Vo

∂H
+ 0.1

∂S

∂H
, (2.4.21)

and the price
∂P

∂D
= (2.5− 0.04Vo)

∂Vo

∂D
,

∂P

∂H
= (2.5− 0.04Vo)

∂Vo

∂H
. (2.4.22)

Finally, we differentiate the equations for Vo

∂Vo

∂D
= 0.5πDH/1.8 ,

∂Vo

∂H
= 0.25πD2/1.8 , (2.4.23)

and S
∂S

∂D
= πD + πH ,

∂S

∂H
= πD . (2.4.24)

Now we can substitute the values of D and H at the candidate optimum into the above equations
in reverse order. First we evaluate the derivatives of the volume and the area. For D = 2.04 in. and
H = 4.08 in. we get

∂Vo

∂D
= 7.263 oz/in ,

∂Vo

∂H
= 1.816 oz/in ,

∂S

∂D
= 19.23 in ,

∂S

∂H
= 6.409 in . (2.4.25)

Next we evaluate the derivatives of the price from Eq. 2.4.22

∂P

∂D
= 16.01 cents/in ,

∂P

∂H
= 4.001 cents/in , (2.4.26)

and the derivatives of the cost from Eq. 2.4.21

∂C

∂D
= 7.733 cents/in ,

∂C

∂H
= 2.094 cents/in . (2.4.27)

Finally, we can substitute these values into the optimality conditions, Eq. 2.4.20

∂L

∂D
= −0.02774 + 0.4902λ = 0 , (2.4.28)

∂L

∂H
= 0.01469− 0.2451λ = 0 . (2.4.29)

The first equation gives us a value of λ = 0.0566, while the other gives us λ = 0.0599. The
difference reflects the fact that the candidate point, which we found by graphical optimization, is
not exactly the optimum. However, the closeness of the two values indicates that we are close to
the optimum design. For this problem we can check the exact optimum by substituting H = 2D
from the constraint into the objective function. After some algebra we get

po = 1.7− 0.9
D

− 0.0174533D2 . (2.4.30)

Setting the derivative of po to zero we get D = 2.036 in., so that H = 4.072, and po = 1.11065 cents
per ounce. That is, the small change in the design variables did not change the objective function
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even in the sixth significant digit. This insensitivity of the value of the optimum to a small error in
the design variables is extreme. However, in most problems the value of the optimum objective is
not very sensitive to such small errors in the design variables.

Also, in most problems we do not have the luxury of solving the optimization problem analytically,
and so we will continue with the slightly inaccurate candidate optimum, and take an average value
of the Lagrange multiplier, λ ≈ 0.0572 to estimate the effect of changing the aspect ratio constraint.
From Eq. 2.4.15 we have

dp∗o
dl

= −df∗

dl
= −∂L

∂l
=

1
Vo

∂P

∂l
− λ

∂h

∂l
= (2.4.31)

5
Vo
− λ

0.2H

(2 + 0.2l)2D
= 0.67 cents, . (2.4.32)

Note that the second term, involving the Lagrange multiplier, is only -0.0056 cents per ounce. That
is, most of the change in profit comes from the 5 cents higher price that can be charged for the taller
can, and the decrease in efficiency due to the higher aspect ratio has only a small effect.

To predict the change in profit per ounce we can use the derivative

p∗o(l = 1) = p∗o(l = 0) +
dp∗o
dl

= 1.11 + 0.67 = 1.78 cents/ounce . (2.4.33)

To check this prediction, we can again use the aspect ratio constraint, H = 2.2D, and obtain
the optimum can corresponding to this constraint. With some more algebra we get the following
expression for the profit per ounce

po = 1.7− 0.883636
D

− 0.0191986D3 +
5.20871

D3
. (2.4.34)

This time we cannot find a real solution that maximizes po. The last term, corresponding to the 5
cents extra that a taller can commands, dominates. With this extra charge, it pays to make the can
as small as possible, so that the additional 5 cents will have large effect on the profit per volume.
We assume then that we will go to the smallest can possible, with Vo = 5 oz., and calculate the
dimensions of D = 1.733 in., H = 3.816 corresponding to po = 2.090 cents per ounce. This is
substantially higher than the predicted value of 1.7828 cents. The discrepancy is due to the fact
that Eq. 2.4.33 is only a linear extrapolation. • • •
Next we consider the case of multiple equality constraints. The optimization problem is

written as

minimize f(x) ,

such that hi(x) = 0, i = 1, . . . , ne . (2.4.35)

For this case we define Lagrange multipliers for each constraint, λi, i = 1, . . . , ne, and a La-
grangian function L given as

L = f +
ne∑

i=1

λihi . (2.4.36)

Then, if the gradients of the constraints are linearly independent at a point x∗, it can be shown
that a necessary condition for an optimum is that the derivatives of the Lagrangian with respect
to all the design variables are zero, that is

∂f

∂xj
(x∗) +

ne∑

i=1

λi
∂hi

∂xj
= 0 , j = 1, . . . , n (2.4.37)
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This is again a stationarity condition, equally applicable to a minimum or a maximum. As in
the case of a single constraint, the derivative of the Lagrangian with respect to a parameter
is equal to the derivative of the optimum objective function with respect to that parameter.
That is, if the objective function and constraints depend on a parameter p, f = f(x, p), and
hi = hi(x, p), Eq. 2.4.15 applies.

When we have inequality constraints the treatment remains very similar. Consider the
standard format

minimize f(x) ,

such that hi(x) = 0, i = 1, . . . , ne , (2.4.38)
gj(x) ≤ 0, j = 1, . . . , ng ,

(2.4.39)

where any upper and lower limits on the design variables are assumed here to be included in
the inequality constraints. We now construct a Lagrangian as

L = f +
ne∑

i=1

λihi +
ne+ng∑

i=ne+1

λigi−ne . (2.4.40)

The conditions for a stationary point are again that the derivatives of the Lagrangian with
respect to all the design variables are equal to zero. Again, if the objective function and con-
straints depend on a parameter p, then the derivative of the optimum objective function f∗ with
respect to that parameter, are given by Eq. 2.4.15. That is

df∗

dp
=

∂f

∂p
+

ne∑

i=1

λi
∂hi

∂p
+

ng∑

i=1

λi+ne

∂gi

∂p
. (2.4.41)

From Eq. 2.4.41 it is seen that the Lagrange multipliers measure the sensitivity of the objective
function to changes in the constraints. For these reasons, the Lagrange multipliers are sometimes
called ’shadow prices’. It should also be clear that when a constraint is not active, it should not
contribute anything to the derivative of the optimum objective with respect to the parameter.
The reason is that for small changes in p, the constraint will remain inactive, so that the solution
of the optimization problem will not depend at all on this constraint. Furthermore, consider the
case when the parameter p enters an inequality constraints in the form of

gi(x, p) = ḡ(x) + p ≤ 0 , (2.4.42)

so that ∂gi/∂p = 1. In this case, it is clear that as p increases, it becomes more difficult to
satisfy the constraint, so that the optimum value of the objective function could become worse
but not improve. That is, df∗/dp ≥ 0. From Eq. 2.4.41 this indicates that λi has to be positive.

Altogether, for a problem with inequality constraints, we have two other conditions besides
the vanishing of the derivatives of the Lagrangian. The Lagrange multipliers associated with in-
active constraints have to be zero, and the Lagrange multipliers associated with active inequality
constraints have to be positive. These conditions are summarized as

∂f

∂xk
+

ne∑

i=1

λi
∂hi

∂xk
+

ng∑

i=1

λi+ne

∂gi

∂xk
= 0, , k = 1, . . . , n

giλi+ne = 0 , i = 1, . . . , ng , (2.4.43)
λi+ne ≥ 0 , i = 1, . . . , ng .
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The second equation, which stipulates that the product of the inequality constraint times its
Lagrange multiplier is equal to zero is a convenient way of requiring zero Lagrange multipliers
for inactive constraints, as inactive constraints have values different from zero. These conditions,
which need to be satisfied at the minimizer x∗ are called the Kuhn-Tucker conditions.

The Kuhn-Tucker conditions are necessary but not sufficient for a minimum. To get sufficient
conditions, we again need to examine the second derivatives. However, now we need to consider
only directions that are tangent to the active constraints. That is, we define the tangent space
T as

T (x∗) = {y;yT∇gaj(x∗) = 0, yT∇hi(x∗) = 0, i = 1, ne} , (2.4.44)

where ∇f is the gradient of f , that is the vector of first derivatives of f , and where gaj indicates
the active inequality constraints at the minimizer, x∗. That is T is the space of all vectors which
are tangent to the active constraints, that is vectors that are perpendicular to the gradient of
these constraints. A necessary second-order condition for a minimum is that

yTHL(x∗)y ≥ 0 , for every yinT , (2.4.45)

where HL is the Hessian matrix of the Lagrangian. A strict equality in the equation is a sufficient
condition for a minimum, when the point satisfies the Kuhn-Tucker conditions.

2.5 Conditions for global optimality

We have seen that the condition for global optimality of unconstrained minimum requiress the
convexity of the objective function. A similar condition for a global minimum requires the
convexity of the inequality constraints. However, more rigorously, the condition is that the
feasible domain is convex, and so we start by defining a convex domain.

A set of points S is convex, if for any pair of points x1 and x2 that belong to the set, the
line segment connecting them also belongs to the set. That is,

αx1 + (1− α)x2 belong to S , (2.5.1)

It can be shown that the feasible domain is convex if all the inequality constraint function are
convex and all the equality constraints are linear.

This condition, however, means not only that the local minimizer is a global minimizer,
but also that there is only one local minimum. This condition, therefore, is quite strong, and
is rarely satisfied. For most engineering problems, it is impossible to prove that a point is a
global minimum, and instead we have to keep looking for local minima, and be satisfied with
probabilistic estimates of the chance that we have found the local minimum which is also the
global one.

2.6 Exercises

Find all the stationary points for the following functions and characterize them as minima,
maxima, saddle points or inflection points:

1. f = 2x2
1 + x1x2 + 3x2

2 + 6x1

2. f = x2
1 + 4x1x2 + 3x2

2 + 5
3. f = cosx1 sinx2
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2.6. EXERCISES

4. For the soft-drink can problem in Chapter 1, the optimum design for a standard-size can
(l = 0) was D = 2.581 in., H = 5.162 in., and the profit per can was 15.77 cents. The two
active constraints for that problem were the aspect ratio and the volume constraints. Ignoring
the other constraints we can formulate the problem as

minimize −pc = C − P

such that g1 = 1− H

(2 + 0.2l)D
≤ 0 , (2.6.1)

g2 =
Vo

15
− 1 ≤ 0 .

Find the Lagrange multipliers associated with this solution, and use them to estimate the
profit per can for the tall can design (l = 1). Check how well the estimate agrees with the actual
optimum at l = 1.
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