
Section 4.1: Minimization of Functions of One Variable

Unconstrained Optimization 4

In this chapter we study mathematical programming techniques that are commonly
used to extremize nonlinear functions of single and multiple (n) design variables
subject to no constraints. Although most structural optimization problems involve
constraints that bound the design space, study of the methods of unconstrained op-
timization is important for several reasons. First of all, if the design is at a stage
where no constraints are active then the process of determining a search direction and
travel distance for minimizing the objective function involves an unconstrained func-
tion minimization algorithm. Of course in such a case one has constantly to watch
for constraint violations during the move in design space. Secondly, a constrained
optimization problem can be cast as an unconstrained minimization problem even if
the constraints are active. The penalty function and multiplier methods discussed in
Chapter 5 are examples of such indirect methods that transform the constrained min-
imization problem into an equivalent unconstrained problem. Finally, unconstrained
minimization strategies are becoming increasingly popular as techniques suitable for
linear and nonlinear structural analysis problems (see Kamat and Hayduk[1]) which
involve solution of a system of linear or nonlinear equations. The solution of such
systems may be posed as finding the minimum of the potential energy of the system
or the minimum of the residuals of the equations in a least squared sense.

4.1 Minimization of Functions of One Variable

In most structural design problems the objective is to minimize a function with
many design variables, but the study of minimization of functions of a single de-
sign variable is important for several reasons. First, some of the theoretical and
numerical aspects of minimization of functions of n variables can be best illustrated,
especially graphically, in a one dimensional space. Secondly, most methods for un-
constrained minimization of functions f(x) of n variables rely on sequential one-
dimensional minimization of the function along a set of prescribed directions, sk, in
the multi-dimensional design space Rn. That is, for a given design point x0 and a
specified search direction at that point s0, all points located along that direction can
be expressed in terms of a single variable α by

x = x0 + αs0 , (4.1.1)

115

Chapter 4: Unconstrained Optimization

where α is usually referred to as the step length. The function f(x) to be minimized
can, therefore, be expressed as

f(x) = f(x0 + αs0) = f(α) . (4.1.2)

Thus, the minimization problem reduces to finding the value α∗ that minimizes the
function, f(α). In fact, one of the simplest methods used in minimizing functions
of n variables is to seek the minimum of the objective function by changing only
one variable at a time, while keeping all other variables fixed, and performing a one-
dimensional minimization along each of the coordinate directions of an n-dimensional
design space. This procedure is called the univariate search technique.

In classifying the minimization algorithms for both the one-dimensional and
multi-dimensional problems we generally use three distinct categories. These cat-
egories are the zeroth, first, and second order methods. Zeroth order methods use
only the value of the function during the minimization process. First order methods
employ values of the function and its first derivatives with respect to the variables.
Finally, second order methods use the values of the function and its first and sec-
ond derivatives. In the following discussion of one-variable function minimizations,
the function is assumed to be in the form f = f(α). However, the methods to be
discussed are equally applicable for minimization of multivariable problems along a
preselected direction, s, using Eq. (4.1.1).

4.1.1 Zeroth Order Methods

Bracketing Method. As the name suggests, this method brackets the minimum of the
function to be minimized between two points, through a series of function evaluations.
The method begins with an initial point α0, a function value f(α0), a step size β0,
and a step expansion parameter γ > 1. The steps of the algorithm [2] are outlined as

1. Evaluate f(α0) and f(α0 + β0).

2. If f(α0 + β0) < f(α0), let α1 = α0 + β0 and β1 = γβ0, and evaluate
f(α1 + β1). Otherwise go to step 4.

3. If f(α1 + β1) < f(α1), let α2 = α1 + β1 and β2 = γβ1, and continue
incrementing the subscripts this way until f(αk + βk) > f(αk). Then, go to step 8.

4. Let α1 = α0 and β1 = −ξβ0, where ξ is a constant that satisfies 0 < ξ < 1/γ,
and evaluate f(α1 + β1).

5. If f(α1 + β1) > f(α1) go to step 7.

6. Let α2 = α1 + β1 and β2 = γβ1, and continue incrementing the subscripts
this way until f(αk + βk) > f(αk). Then, go to step 8.

7. The minimum has been bracketed between points (α0 − ξβ0) and (α0 + β0).
Go to step 9.

8. The last three points satisfy the relations f(αk−2) > f(αk−1) and f(αk−1) <
f(αk), and hence, the minimum is bracketed.

116

Section 4.1: Minimization of Functions of One Variable

9. Use either one of the two end points of the bracket as the initial point. Begin
with a reduced step size and repeat steps 1 through 8 to locate the minimum to a
desired degree of accuracy.

Quadratic Interpolation. The method known as quadratic interpolation was first
proposed by Powell [3] and uses the values of the function f to be minimized at three
points to fit a parabola

p(α) = a + bα + cα2 , (4.1.3)

through those points. The method starts with an initial point, say, α = 0 with
a function value p0 = f(x0), and a step size β. Two more function evaluations
are performed as described in the following steps to determine the points for the
polynomial fit. In general, however, we start with a situation where we have already
bracketed the minimum between α1 = αl and α2 = αu by using the bracketing
method described earlier. In that case we will only need an intermediate point α0 in
the interval (αl, αu).

1. Evaluate p1 = p(β) = f(x0 + βs)

2. If p1 < p0, then evaluate p2 = p(2β) = f(x0 + 2βs). Otherwise evaluate
p2 = p(−β) = f(x0−βs). The constants a, b, and c in equation Eq. (4.1.3) can now
be uniquely expressed in terms of the function values p0, p1, and p2 as

a = p0 ,

b =
4p1 − 3p0 − p2

2β
, and c =

p2 + p0 − 2p1

2β2
, if p2 = f(x0 + 2βs) , (4.1.4)

or

b =
p1 − p2

2β
, and c =

p1 − 2p0 + p2

2β2
, if p2 = f(x0 − βs) . (4.1.5)

3. The value of α = α∗ at which p(α) is extremized for the current cycle is then
given by

α∗ = − b

2c
. (4.1.6)

4. α∗ corresponds to a minimum of p if c > 0, and the prediction based on
Eq. (4.1.3) is repeated using (x0 + α∗s) as the initial point for the next cycle with
p0 = f(x0 + α∗s) until the desired accuracy is obtained.

5. If the point α = α∗ corresponds to a maximum of p rather than a minimum, or
if it corresponds to a minimum of p which is at a distance greater than a prescribed
maximum βmax (possibly meaning α∗ is outside the bracket points), then the max-
imum allowed step is taken in the direction of decreasing f and the point furthest
away from this new point is discarded in order to repeat the process.

In step 4, instead of starting with (x0 + α∗s) as the initial point and repeating
the previous steps, there is a cheaper alternative in terms of the number of function
evaluations. The point (x0 + α∗s) and the two points closest to it from the left and

117

Chapter 4: Unconstrained Optimization

right can be used in another quadratic interpolation to give a better value of α∗.
Other strategies for improving the accuracy of the prediction will be discussed later
in Section 4.1.4.

Fibonacci and the Golden Section Search. Like bracketing, the Fibonacci and
the golden section search techniques are very reliable, if not the most efficient, line
search techniques for locating the unconstrained minimum of a function f(α) within
the interval a0 ≤ α ≤ b0. It is assumed that the function f is unimodal, or that it
has only one minimum within the interval. Unimodal functions are not necessarily
continuous or differentiable, nor convex (see Figure 4.1.1). A function is said to be
unimodal [3] in the interval I0 if there exist an α∗ ∈ I0 such that α∗ minimizes f on
I0, and for any two points α1, α2 ∈ I0 such that α1 < α2 we have

α2 ≤ α∗ implies that f(α1) > f(α2) , (4.1.7)

α1 ≥ α∗ implies that f(α2) > f(α1) . (4.1.8)

Figure 4.1.1 A typical unimodal function.

The assumption of unimodality is central to the Fibonacci search technique which
seeks to reduce the interval of uncertainty within which the minimum of the function
f lies.

The underlying idea behind the Fibonacci and the golden section search tech-
niques can be explained as follows. Consider the minimization of f in the interval
(a0, b0). Let us choose two points in the interval (a0, b0) at α = α1 and at α = α2

such that α1 < α2, and evaluate the function f at these two points. If f(α1) > f(α2),
then since the function is unimodal the minimum cannot lie in the interval (a0, α1).
The new interval is (α1, b0) which is smaller than the original interval. Similarly, if
f(α2) > f(α1), then the new interval will be (a0, α2). The process can be repeated to

118

Section 4.1: Minimization of Functions of One Variable

reduce the interval to any desired level of accuracy. Only one function evaluation is
required in each iteration after the first one, but we have not specified how to choose
the locations where f is evaluated. The best placement of these points will minimize
the number of function evaluations for a prescribed accuracy requirement (i.e., re-
duction of the interval of uncertainty to a prescribed size). If the number of function
evaluations is n the most efficient process is provided by a symmetric placement of
the points provided by the relations [4]

α1 = a0 +
fn−1

fn+1

l0 , (4.1.9)

α2 = b0 −
fn−1

fn+1

l0 , (4.1.10)

and

αk+1 = ak +
fn−(k+1)

fn−(k−1)

lk = bk −
fn−(k+1)

fn−(k−1)

lk , (4.1.11)

where fn are Fibonacci numbers defined by the sequence f0 = 1, f1 = 1, fn =
fn−2 + fn−1, and lk is the length of the kth interval (ak, bk). The total number of
required function evaluations n may be determined from the desired level of accuracy.
It can be shown that the interval of uncertainty after n function evaluations is 2εl0
where

ε =
1

fn+1

. (4.1.12)

A disadvantage of the technique is that the number of function evaluations has
to be specified in advance in order to start the Fibonacci search. To eliminate this
undesirable feature a quasi-optimal technique known as the golden section search
technique has been developed. The golden section search technique is based on the
finding that for sufficiently large n, the ratio

fn−1

fn+1

→ 0.382 . (4.1.13)

Thus, it is possible to approximate the optimal location of the points given by Eqs.
(4.1.9 - 4.1.11) by the following relations

α1 = a0 + 0.382l0 , (4.1.14)

α2 = b0 − 0.382l0 , (4.1.15)

and

αk+1 = ak + 0.382lk = bk − 0.382lk . (4.1.16)

119

Chapter 4: Unconstrained Optimization

Example 4.1.1

Determine the value of α, to within ε = ±0.1, that minimizes the function f(α) =
α(α− 3) on the interval 0 ≤ α ≤ 2 using the golden section search technique.

From Eqs. (4.1.14) and (4.1.15) we can calculate

α1 = 0 + 0.382(2) = 0.764, f(α1) = −1.708 ,

α2 = 2− 0.382(2) = 1.236, f(α2) = −2.180 .

Since f(α2) < f(α1) we retain (α1, 2). Thus, the next point is located at

α3 = 2− 0.382(2− 0.764) = 1.5278, f(α3) = −2.249 .

Since f(α3) < f(α2) we reject the interval (α1, α2). The new interval is (α2, 2). The
next point is located at

α4 = 2− 0.382(2− 1.236) = 1.7082, f(α4) = −2.207 .

Since f(α4) < f(α2) < f(2) we reject the interval (α4, 2) and retain (α2, α4) as the
next interval and locate the point α5 at

α5 = 1.236 + 0.382(1.7082− 1.236) = 1.4164, f(α5) = −2.243 .

Since f(α5) < f(α4) < f(α2) we retain the interval (α5, α4). The next point is located
at

α6 = 1.7082 + 0.382(1.7082− 1.4164) = 1.5967, f(α6) = −2.241 .

Figure 4.1.2 Iteration history for the function minimization f(α) = α(α− 3).

Since f(α6) < f(α4) we reject the interval (α6, α4) and retain the interval (α5, α6)
of length 0.18, which is less than the interval of specified accuracy, 2ε = 0.2. The
iteration history for the problem is shown in Figure 4.1.2. Hence, the minimum has
been bracketed to within a resolution of ±0.1. That is, the minimum lies between
α5 = 1.4164 and α6 = 1.5967. We can take the middle of the interval, α = 1.5066±
0.0902 as the solution. The exact location of the minimum is at α = 1.5 where the
function has the value −2.25. • • •

120

Section 4.1: Minimization of Functions of One Variable

4.1.2 First Order Methods

Bisection Method. Like the bracketing and the golden section search techniques
which progressively reduce the interval where the minimum is known to lie, the
bisection technique locates the zero of the function f ′ by reducing the interval of
uncertainty. Beginning with the known interval (a, b) for which f ′(a)f ′(b) < 0, an
approximation to the root of f ′ is obtained from

α∗ =
a + b

2
, (4.1.17)

which is the point midway between a and b. The value of f ′ is then evaluated at
α∗. If f ′(α∗) agrees in sign with f ′(a) then the point a is replaced by α∗ and the new
interval of uncertainty is given by (α∗, b). If on the other hand f ′(α∗) agrees in sign
with f ′(b) then the point b is replaced by α∗ and the new interval of uncertainty is
(a, α∗). The process is then repeated using Eq. (4.1.17).

Davidon’s Cubic Interpolation Method. This is a polynomial approximation
method which uses both the function values and its derivatives for locating its min-
imum. It is especially useful in those multivariable minimization techniques which
require the evaluation of the function and its gradients.

We begin by assuming the function to be minimized f(x0 + αs0) to be approxi-
mated by a polynomial in the form

p(α) = a + bα + cα2 + dα3 , (4.1.18)

with constants a, b, c, and d to be determined from the values of the function,
p0 and p1, and its derivatives, g0 and g1, at two points, one located at α = 0 and
the other at α = β.

p0 = p(0) = f(x0), p1 = p(β) = f(x0 + βs) , (4.1.19)

and

g0 =
dp

dα
(0) = sT∇f(x0), g1 =

dp

dα
(β) = sT∇f(x0 + βs) . (4.1.20)

After substitutions, Eq. (4.1.18) takes the following form

p(α) = p0 + g0α−
g0 + e

β
α2 +

g0 + g1 + 2e

3β2
α3 , (4.1.21)

where

e =
3

β
(p0 − p1) + g0 + g1 . (4.1.22)

We can now locate the minimum, α = αm, of Eq. (4.1.21) by setting its derivative
with respect to α to be zero. This results in

αm = β

(
g0 + e± h

g0 + g1 + 2e

)
, (4.1.23)

121

Chapter 4: Unconstrained Optimization

where
h = (e2 − 2g0g1)

1/2 . (4.1.24)

It can be easily verified, by checking d2p/dα2, that the positive sign must be retained
in Eq. (4.1.23) for αm to be a minimum rather than a maximum. Thus, the algorithm
for Davidon’s cubic interpolation [5] may be summarized as follows.

1. Evaluate p0 = f(x0) and g0 = sT∇f(x0) and make sure that g0 < 0.

2. In the absence of an estimate of the initial step length β, we may calculate it
on the basis of a quadratic interpolation derived using p0, g0 and an estimate of pmin.
Thus,

β =
2(pmin − p0)

g0

. (4.1.25)

3. Evaluate p1 = f(x0 + βs) and g1 =
df(x0 + βs)

dβ

4. If g1 > 0 or if p1 > p0 go to step 6, or else go to step 5.

5. Replace β by 2β and go to step 3.

6. Calculate αm using Eq. (4.1.23) with a positive sign.

7. Use the interval (0, αm) if

gαm =
df(x0 + αms)

dαm

≥ 0 , (4.1.26)

or else use the interval (αm, β) and return to step 4.

8. If αm corresponds to a maximum, restart the algorithm by using new points.
Selection of the new points may be performed by using a strategy similar to that
described for the quadratic interpolation technique.

4.1.3 Second Order Method

The problem of minimizing the function f(α) is equivalent to obtaining the root of
the nonlinear equation

f ′(α) = 0 , (4.1.27)

because this is the necessary condition for the extremum of f . A convenient method
for solving (4.1.27) is Newton’s method. This method consists of linearizing f ′(α)
about a point α = αi and then determining the point αi+1 at which the linear
approximation

f ′(αi+1) = f ′(αi) + f ′′(αi)(αi+1 − αi) , (4.1.28)

vanishes. This point

αi+1 = αi −
f ′(αi)

f ′′(αi)
, (4.1.29)

122

Section 4.2: Minimization of Functions of Several Variables

serves as a new approximation for a repeated application of Eq. (4.1.29) with i re-
placed by i+1. For a successful convergence to the minimum it is necessary that the
second derivative of the function f be greater than zero. Even so the method may
diverge depending on the starting point. Several strategies exist [6] which modify
Newton’s method to make it globally convergent (that is, it will converge to a mini-
mum regardless of the starting point) for multivariable functions; some of these will
be covered in the next section.

The reason this method is known as a second order method is not only because
it uses second derivative information about the function f , but also because it has
a rate of convergence to the minimum that is quadratic. In other words, Newton’s
algorithm converges to the minimum α∗ such that

lim
i→∞

|αi+1 − α∗|
(αi − α∗)2 = β , (4.1.30)

where αi and αi+1 are the ith and the (i + 1)st estimates of the minimum value of
the α∗, β is a non-zero constant.

4.1.4 Safeguarded Polynomial Interpolation [7], p. 92

Polynomial interpolations such as the Quadratic interpolation and the Davidon’s
cubic interpolation are sometimes found to be quite inefficient and unreliable for
locating the minimum of a function along a line. If the interpolation function is not
representative of the behavior of the function to be minimized within the interval
of uncertainty, the minimum may fall outside the interval, or become unbounded
below, or the successive iterations may be too close to one another without achieving
a significant improvement in the function value. In such cases, we use what are
known as safeguarded procedures. These procedures consist of combining polynomial
interpolations with a simple bisection technique or the golden section search technique
described earlier. At the end of the polynomial interpolation, the bisection technique
would be used to find the zero of the derivative of the function f . The golden
section search, on the other hand, would work with the function f itself using the
known interval of uncertainty (a, b) and locate the point α∗ which corresponds to the
minimum of f within the interval.

4.2 Minimization of Functions of Several Variables

4.2.1 Zeroth Order Methods

Several methods exist for minimizing a function of several variables using only func-
tion values. However, only two of these methods may be regarded as being useful.
These are the sequential simplex method of Spendley, Hext and Himsworth [8] and

123

Chapter 4: Unconstrained Optimization

Powell’s conjugate direction method [3]. Both of these methods require that the
function f(x),x ∈ Rn, be unimodal; that is the function f has only one minimum.
The sequential simplex does not require that the function f be differentiable, while
the differentiability requirement on f is implicit in the exact line searches of Powell’s
method. It appears from tests by Nelder and Mead [9] that for most problems the
performance of the sequential simplex method is comparable to if not better than
Powell’s method. Both of these methods are considered inefficient for n ≥ 10; Pow-
ell’s method may fail to converge for n ≥ 30. A more recent modification of the
simplex method by Chen, et al. [10] extends the applicability of this algorithm for
high dimensional cases. If the function is differentiable, it is usually more efficient
to use the more powerful first and second order methods with derivatives obtained
explicitly or from finite difference formulae.

Sequential Simplex Method. The sequential simplex method was originally pro-
posed by Spendley, Hext and Himsworth [8] and was subsequently improved by Nelder
and Mead [9]. The method begins with a regular geometric figure called the simplex
consisting of n + 1 vertices in an n-dimensional space. These vertices may be defined
by the origin and by points along each of the n coordinate directions. Such a simplex
may not be geometrically regular. The following equations are suggested in Ref. 8
for the calculation of the positions of the vertices of a regular simplex of size a in the
n-dimensional design space

xj = x0 + pej +
n∑

k=1
k 6=j

qek, j = 1, . . . , n , (4.2.1)

with

p =
a

n
√

2
(
√

n + 1 + n− 1), and q =
a

n
√

2
(
√

n + 1− 1) , (4.2.2)

where ek is the unit base vector along the kth coordinate direction, and x0 is the
initial base point. For example, for a problem in two-dimensional design space Eqs.
(4.2.1) and (4.2.2) lead to an equilateral triangle of side a.

Once the simplex is defined, the function f is evaluated at each of the n+1 vertices
x0,x1, . . . ,xn. Let xh and xl denote the vertices where the function f assumes its
maximum and minimum values, respectively, and xs the vertex where it assumes the
second highest value. The simplex method discards the vertex xh and replaces it
by a point where f has a lower value. This is achieved by three operations namely
reflection, contraction, and expansion.

The reflection operation creates a new point xr along the line joining xh to the
centroid x̄ of the remaining points defined as

x̄ =
1

n

n∑
i=0

xi, i 6= h . (4.2.3)

The vertex at the end of the reflection is calculated by

xr = x̄ + α(x̄− xh) , (4.2.4)

124

Section 4.2: Minimization of Functions of Several Variables

with α being a positive constant called the reflection coefficient which is usually
assumed to be unity. Any positive value of the reflection coefficient in Eq. (4.2.4)
guarantees that xr is on the other side of the x̄ from xh. If the value of the function
at this new point, fr = f(xr), satisfies the condition fl < fr ≤ fs, then xh is replaced
by xr and the process is repeated with this new simplex. If, on the other hand, the
value of the function fr at the end of the reflection is less than the lowest value of the
function fl = f(xl), then there is a possibility that we can still decrease the function
by going further along the same direction. We seek an improved point xe by the
expansion technique using the relation

xe = x̄ + β(xr − x̄) , (4.2.5)

with the expansion coefficient β often being chosen to be 2. If the value of the function
fe is smaller than the value at the end of the reflection step, then we replace xh by
xe and repeat the process with the new simplex. However, if the expansion leads to a
function value equal to or larger than fr, then we form the new simplex by replacing
xh by xr and continue.

Finally, if the process of reflection leads to a point xr such that, fr < fh, then
we replace xh by xr and perform contraction. Otherwise (fr ≥ fh), we perform
contraction without any replacement using

xc = x̄ + γ(xh − x̄) , (4.2.6)

with the contraction coefficient γ, 0 < γ < 1, usually chosen to be 1/2. If fc = f(xc)
is greater than fh, then we replace all the points by a new set of points

xi = xi +
1

2
(xl − xi), i = 0, 1, . . . , n , (4.2.7)

and restart the process with this new simplex. Otherwise, we simply replace xh by
xc and restart the process with this simplex. The operation in Eq. (4.2.7) causes the
distance between the points of the old simplex and the point with the lowest function
value to be halved and is therefore referred to as the shrinkage operation. The flow
chart of the complete method is given in Figure 4.2.1. For the convergence criterion
to terminate the algorithm Nelder and Mead [9] proposed the following{

1

1 + n

n∑
i=0

[fi − f(x̄)]2

} 1
2

< ε , (4.2.8)

where ε is some specified accuracy requirement.

An improvement in the performance of the simplex algorithm for those cases with
large number of design variables, n, is achieved by Chen, Saleem, and Grace [10]. A
modified simplex search procedure proposed in Ref. [10] executes the reflection,
expansion, contraction, and, shrinkage operations on more than one vertex of the
simplex at a given step. This is achieved by first separating the vertices of the simplex

125

Chapter 4: Unconstrained Optimization

Figure 4.2.1 Flow chart of the Sequential Simplex Algorithm.

into two groups by defining a cutting value (CV) of the function, fcv. The cutting
value is defined by the relation

fcv =
(fh + fl)

2
+ ηs , (4.2.9)

where s is the standard deviation of the values of the function corresponding to the

126

Section 4.2: Minimization of Functions of Several Variables

vertices of the simplex,

s =

[
n∑

i=0

(fi − f̄)2/(n + 1)

] 1
2

, (4.2.10)

and η is a parameter (discussed below) that controls the number of vertices to be
operated on. The f̄ value in Eq. (4.2.10) is the average of the function values over
the entire current simplex.

The vertices with function values higher than the cutting value form the group
to be reflected (and to be dropped). The other vertices serve as reference points.
If the parameter η is sufficiently large, all the vertices of the simplex except the xh

stay in the group to be used as the reference points and, therefore, the algorithm is
equivalent to the original form. For sufficiently small values of the parameter η, all
points except the xn are dropped. The selection of the parameter η depends on the
difficulty of the problem as well as the number of variables. Recommended values
for η are given in Table II of Ref. [10]. Among the n + 1 vertices of the current
simplex, we rearrange and number the vertices from largest to smallest function
values as x0,x1, . . . ,xcv, . . . ,xn where i = 0, . . . , ncv are the elements of the group to
be reflected next. The centroid of the vertices in the reference group is defined as

x̄ =
1

n− ncv

n∑
i=ncv+1

xi . (4.2.11)

The performance of this modified simplex method has been compared [10] with the
simplex method proposed by Nelder and Mead, and also with more powerful meth-
ods such as the second order Davidon-Fletcher-Powell (DFP) method which will be
discussed later in this chapter. For high dimensional problems the modified simplex
algorithm was found to be more efficient and robust than the DFP algorithm. Nelder
and Mead [9] have also provided several illustrations of the use of their algorithm
in minimizing classical test functions and compared its performance with Powell’s
conjugate directions method which will be discussed next.

Powell’s Conjugate Directions Method and its Subsequent Modification. Al-
though most problems have functions which are not quadratic, many unconstrained
minimization algorithms are developed to minimize a quadratic function. This is be-
cause a function can be approximated well by a quadratic function near a minimum.
Powell’s conjugate directions algorithm is a typical example. A quadratic function in
Rn may be written as

f(x) =
1

2
xTQx + bTx + c . (4.2.12)

A set of directions si, i = 1, 2 . . . are said to be Q-conjugate if

sT
i Qsj = 0, for i 6= j . (4.2.13)

Furthermore, it can be shown that if the function f is minimized once along each
direction of a set s of linearly independent Q-conjugate directions then the minimum

127

Chapter 4: Unconstrained Optimization

of f will be located at or before the nth step regardless of the starting point provided
that no round-off errors are accumulated. This property is commonly referred to as
the quadratic termination property. Powell provided a convenient method for gen-
erating such conjugate directions by a suitable combination of the simple univariate
search and a pattern search technique [3]. However, in certain cases Powell’s algo-
rithm generates directions which are linearly dependent and thereby fails to converge
to the minimum. Hence, Powell modified his algorithm to make it robust but at the
expense of its quadratic termination property.

Powell’s strategy for generating conjugate directions is based on the following
property (see Ref. 3 for proof). If x1 and x2 are any two points and s a specified
direction, and x1s corresponds to the minimum point of a quadratic function f on
a line starting at x1 along s and x2s is the minimum point on a line starting at x2

along s, then the directions s and (x2s − x1s) are Q-conjugate. The basic steps of
Powell’s modified method are based on a cycle of univariate minimizations. For each
cycle we use the following steps.

1. Minimize f along each of the coordinate directions (univariate search) starting
at xk

0 and generating the points xk
1, . . . ,x

k
n where k is the cycle number.

2. After completing the univariate cycle find the index m corresponding to the
direction of the univariate search which yields the largest function decrease in going
from xk

m−1 to xk
m.

3. Calculate the “pattern” direction sk
p = xk

n − xk
0 (which is the sum of all the

univariate moves) and determine the value of α from xk
0 along sk

p that minimizes f .

Denote this new point by xk+1
0 .

4. If

|α| <
[

f(xk
0)− f(xk+1

0)

f(xk
m−1)− f(xk

m)

] 1
2

, (4.2.14)

then use the same old directions again for the next univariate cycle (that is do not
discard any of the directions of the previous cycle in preference to the pattern direction
sk
p). If Eq. (4.2.14) is not satisfied then replace the mth direction by the pattern

direction sk
p.

5. Begin the next univariate cycle with the directions decided in step 4, and
repeat the steps 2 through 4 until convergence to a specified accuracy. Convergence
is assumed to be achieved when the Euclidean norm ‖xk−1 − xk‖ is less than a pre-
specified quantity ε.

Although Powell’s original method does possess a quadratic termination property,
his modified algorithm does not [3]. The modified method will now be illustrated on
the following simple example from structural analysis.

128

Section 4.2: Minimization of Functions of Several Variables

Example 4.2.1

The problem of determination of the maximum deflection and tip-rotation of a can-
tilever beam of length l shown in Figure (4.2.2) loaded at its tip is considered. Solution
of this problem is formulated as a minimization of the total potential energy of the
beam which is modelled using a single cubic beam finite element. For a two-noded
beam element with two degrees of freedom at each node, the displacement field is
assumed to be

Figure 4.2.2 Tip loaded cantilever beam and its finite element model.

v(ξ) =
[
(1− 3ξ2 + 2ξ3) l(ξ − 2ξ2 + ξ3) (3ξ2 − 2ξ3) l(−ξ2 + ξ3)

]
v1

θ1

v2

θ2

 ,

(4.2.15)
where ξ = x/l. The corresponding potential energy of the beam model is given by

Π =
EI

2l3

l∫
0

(
d2v

dξ2

)2

dξ + pv2 . (4.2.16)

Because of the cantilever end condition at ξ = 0, the first two degrees of freedom
in Eq. (4.2.15) are zero. Therefore, substituting Eq. (4.2.15) into Eq. (4.2.16) we
obtain

Π =
EI

2l3
(12v2

2 + 4θ2
2l

2 − 12v2θ2l) + pv2 . (4.2.17)

Defining f = 2Πl3/EI, x1 = v2, x2 = θ2l, and choosing pl3/EI = 1, the problem
of determining the tip deflection and rotation of the beam reduces to an unconstrained
minimization of

f = 12x2
1 + 4x2

2 − 12x1x2 + 2x1 . (4.2.18)

Starting with an initial point of x1
0 = (−1, −2)T and f(x1

0) = 2 we will minimize
f using Powell’s conjugate directions method. The exact solution of this problem is
at x∗ = (−1/3, −1/2)T .

129

Chapter 4: Unconstrained Optimization

Since we have an explicit relation for the objective function f , the one dimensional
minimizations along a given direction will be performed exactly without resorting to
any of the numerical techniques discussed in the previous section. However, if these
minimizations were done numerically, one of the zeroth order techniques would be
sufficient. We use superscripts to denote the univariate cycle number and subscripts
to denote the iteration number within a cycle.

First, we perform the univariate search along the x1 and x2 directions. Choosing
s1
1 = (1, 0)T we have

x1
1 =

{
−1
−2

}
+ α

{
1
0

}
=

{
−1 + α
−2

}
, (4.2.19)

and

f(α) = 12(−1 + α)2 + 4(−2)2 − 12(−1 + α)(−2) + 2(−1 + α) . (4.2.20)

Taking the derivative of Eq. (4.2.20) with respect to α, we obtain the value of α
which minimizes f to be α = −1/12. Hence,

x1
1 =

{
−13
12
−2

}
and f(x1

1) = 1.916666667 .

Choosing s1
2 = (0, 1)T , we obtain

x1
2 =

{
−13
12
−2

}
+ α

{
0
1

}
=

{
−13
12

−2 + α

}
, (4.2.21)

and

f(α) = 12

(
−13

12

)2

+ 4(−2 + α)2 − 12

(
−13

12

)
(−2 + α) + 2

(
−13

12

)
, (4.2.22)

which is minimum at α = 3/8. Therefore, at the end of the univariate search we have

x1
2 =

{ −13
12

−13
8

}
and f(x1

2) = 1.354166667 .

At this point we construct a pattern direction as

s1
p = x1

2 − x1
0 =

{ −13
12

−13
8

}
−
{
−1
−2

}
=

{ −1
12

3
8

}
, (4.2.23)

and minimize the function along this direction by

x2
0 =

{
−1
−2

}
+ α

{ −1
12

3
8

}
=

{−1− α
12

−2 + 3α
8

}
, (4.2.24)

130

Section 4.2: Minimization of Functions of Several Variables

which attains its minimum value for α = 40/49 at

x2
0 =

{ −157
147

−83
49

}
and f(x2

0) = 1.319727891 .

The direction that corresponds to the largest decrease in the objective function f
during the first cycle of the univariate search is associated with the second variable.
We can now decide whether we want to replace the second (m = 2) univariate search
direction by the pattern direction or not by checking the condition stated in step 4
of the algorithm, Eq. (4.2.24). That is, Powell’s criterion

|α| = 40

49
<

[
2− 1.319727891

1.916666667− 1.354166667

] 1
2

. (4.2.25)

is satisfied, therefore, we retain the old univariate search directions for the second
cycle and restart the procedure by going back to step 2 of the algorithm. The results
of the second cycle are tabulated in Table 4.2.1.

Table 4.2.1. Solution of the beam problem using Powell’s conjugate directions method

CycleNo. x1 x2 f

0 −1.0 −2.0 2.0
1 −1.083334 −2.0 1.916667
1 −1.083334 −1.625 1.354167
2 −0.895834 −1.625 0.9322967
2 −0.895834 −1.34375 0.6158854
2 −0.33334 −0.499999 −0.333333

The effectiveness of Powell’s modified method can be seen to be much more
pronounced on the minimization of the following function considered by Avriel [2],

f = (x1 + x2 − x3)
2 + (x1 − x2 + x3)

2 + (−x1 + x2 + x3)
2 ,

and left as an exercise for the reader (see Exercise 2). • • •
Before we proceed to the discussion of first order methods, it is worthwhile to

consider when zeroth order method should be used. The sequential simplex method
can be used for non differentiable functions where first order methods are not appro-
priate. For those unconstrained minimization problems with differentiable functions,
it is preferable to calculate the exact derivatives, or generate such derivatives by
using finite differences and subsequently use a first order method for minimization
when these derivatives can be calculated accurately. Zeroth order methods such as
Powell’s conjugate directions algorithm may still have a place for problems with a
highly nonlinear objective functions where the accuracy of the function evaluations
may be poor. The poor accuracy in function evaluations may call for high order
finite difference formulae to be used for derivative calculations, therefore, the use of
a zeroth order method for minimization may be a prudent alternative.

131

Chapter 4: Unconstrained Optimization

4.2.2 First Order Methods

First order methods for unconstrained minimization of a function f in Rn use the
gradient of the function as well as its value in calculating the move direction for
the function minimization. These methods possess a linear or a superlinear rate of
convergence. A sequence xk, k = 0, 1, 2, . . ., is said to be q-superlinear convergent to
x∗ of order at least p if

‖xk+1 − x∗‖ ≤ ck‖xk − x∗‖p , (4.2.26)

where ck converges to zero. If ck in Eq.(4.2.26) is a constant then the convergence is
said to be a simple q-order convergence of order at least p. Thus, if p = 1 with ck

equal to a constant then we have a linear convergence rate, whereas if p = 1 and ck is
a sequence that converges to zero then the convergence is said to be superlinear (see
Ref. 6 for additional definitions).

Perhaps the oldest known method for minimizing a function of n variables is the
steepest descent method first proposed by Cauchy [11] for solving a system of linear
equations. It can be used for function minimization as follows. The direction of move
is obtained by minimizing the directional derivative of f

∇fT s =
n∑

i=1

∂f

∂xi

si , (4.2.27)

subject to the condition that s be a unit vector in Rn in the Euclidean sense.

sT s = 1 . (4.2.28)

It can easily be verified (see Exercise 6) that the steepest descent direction is given
by

s = − ∇f

‖∇f‖
, (4.2.29)

where ‖ ‖ denotes the Euclidean norm, and it provides the largest decrease in the
function f . Starting with a point xk at the kth iteration of the minimization process,
we obtain the next point xk+1 as

xk+1 = xk + αs . (4.2.30)

Here s is given by Eq. (4.2.29) and α is determined such that f is minimized along
the chosen direction by using any one of the one-dimensional minimization techniques
covered in the previous section. If the function to be minimized is quadratic in Rn

and expressed as

f =
1

2
xTQx + bTx + c , (4.2.31)

the step length can be determined directly by substituting Eq. (4.2.30) into Eq.
(4.2.31) for the (k + 1)st iteration followed by a minimization of f with respect to α
which yields

α∗ = −(xk
TQ + bT)s

(sTQs)
. (4.2.32)

132

Section 4.2: Minimization of Functions of Several Variables

In obtaining Eq. (4.2.32) we assume that the Hessian matrix Q of the quadratic form
is available explicitly, and we make use of the symmetry of Q.

The performance of the steepest descent method depends on the condition number
of the Hessian matrix Q. The condition number of a matrix is the ratio of the largest
to the smallest eigenvalue. A large condition number implies that the contours of
the function to be minimized form an elongated design space, and therefore the
progress made by the steepest descent method is very slow and proceeds in a zigzag
pattern known as hemstitching. This is even true for quadratic functions, and can
be improved by re-scaling the variables.

Example 4.2.2

Figure 4.2.3 Contours of the cantilever beam potential energy function.

The cantilever problem discussed in the previous example illustrates this behavior
most vividly. The steepest descent method when applied to this problem may exhibit
the typical hemstitching phenomenon as shown in Figure 4.2.3 for certain initial
starting points. However, a simple transformation of variables to improve the scaling
of the variables causes the steepest descent method to converge to the minimum in a
single step. For example, consider the following transformation

y1 = (x1 −
1

2
x2), y2 =

1√
12

x2 . (4.2.33)

The function f may now be expressed in terms of the new variables y1 and y2 as

f(y1, y2) = y2
1 + y2

2 +
1

6
(y1 +

√
3y2) . (4.2.34)

133

Chapter 4: Unconstrained Optimization

As a result of the scaling and elimination of the cross-product term, the condition
number of the Hessian of f is unity. Contours of the function f in the y1 − y2 plane
will appear as circles. Beginning with any arbitrary starting point y0 and applying
the steepest descent method we have

y1 = y0 + α

{
2y10 + 1

6

2y20 +
√

3
6

}
. (4.2.35)

It can be easily verified that the value of α∗ that minimizes f is 0.5. Therefore,

y1 =

{ −1
12
−
√

3
12

}
,

at which the gradient of f is zero, implying that it is a minimum point. The corre-
sponding values of the original variables x∗1, and x∗2 are −1/3 and −1/2, respectively.
This simple demonstration clearly shows the effectiveness of scaling in convergence
of the steepest descent algorithm to the minimum of a function in Rn. It can be
shown [6] that the steepest descent method has only a linear rate of convergence in
the absence of an appropriate scaling. • • •

Unfortunately, in most multivariable function minimizations it is not easy to de-
termine the appropriate scaling transformation that leads to a one step convergence
to the minimum of a general quadratic form in Rn using the steepest descent algo-
rithm. This would require calculating the Hessian matrix and then performing an
expensive eigenvalue analysis of the matrix. Hence, we are forced to look at other
alternatives for rapid convergence to the minimum of a quadratic form. One such
alternative is provided by minimizing along a set of conjugate gradient directions
which guarantees a quadratic termination property. Hestenes and Stiefel [12] and
later Fletcher and Reeves [13] offered such an algorithm which will be covered next.

Fletcher-Reeves’ Conjugate Gradient Algorithm. This algorithm begins from
an initial point x0 by first minimizing f along the steepest descent direction,
s0 = −∇f(x0) = g0, to the new iterate x1. The direction for the next iteration
s1 must be constructed so that it is Q-conjugate to s0 where Q is the Hessian of
the quadratic f . The function is then minimized along s1 to yield the next iterate
x2. The next direction s2 from x2 is constructed to be Q-conjugate to the previous
directions s0 and s1, and the process is continued until convergence to the mini-
mum is achieved. By virtue of Powell’s theorem on conjugate directions for quadratic
functions, convergence to the minimum is theoretically guaranteed at the end of the
minimization of the function f along the conjugate direction sn−1. For functions
which are not quadratic, conjugacy of the directions si, i = 1, . . . , n loses its mean-
ing since the Hessian of the functions is not a matrix of constants. However, it is a
common practice to use this algorithm for non-quadratic functions. Since, for such
functions, convergence to the minimum will rarely be achieved in n steps or less, the
algorithm is restarted after every n steps. The basic steps of the algorithm at the
(k + 1)th iterate is as follows

1. Calculate xk+1 = xk + αk+1sk where αk+1 is determined such that

df(αk+1)

dαk+1

= 0 . (4.2.36)

134

Section 4.2: Minimization of Functions of Several Variables

2. Let sk = gk = −∇f(xk) if k = 0; and sk = gk + βksk−1 if k > 0 with

βk =
gT

k gk

gT
k−1gk−1

, and gk = −∇f(xk) . (4.2.37)

3. If ‖gk+1‖ or |f(xk+1)− f(xk)| is sufficiently small, then stop. Otherwise

4. If k < n go to step number 1, or else restart

Example 4.2.3

We will show the effectiveness of this method on the cantilever beam problem for
which we minimize

f = 12x2
1 + 4x2

2 − 12x1x2 + 2x1 ,

starting with the initial design point xT
0 = (−1,−2). The initial move direction is

calculated from the gradient

∇f(x0) =

{
24x1 − 12x2 + 2

8x2 − 12x1

}
x=x0

,

s0 = −∇f(x0) =

{
−2
4

}
,

and at the end of the first step we have

x1 =

{
−1
−2

}
+ α1

{
−2
4

}
,

f(α1) = 12(−1− 2α1)
2 + 4(−1 + 4α1)

2 − 12(−1− 2α1)(−2 + 4α1) + 2(−1− 2α1) .

The value of α1 for which the function f is a minimum is obtained from the condition
df/dα1 = 0, or α1 = 0.048077. The new design point and the gradient at that point
are

x1 =

{
−1.0961
−1.8077

}
, and ∇f(x1) =

{
−2.6154
−1.3077

}
.

Next, let s1 = −∇f(x1) + β1s0 with β1 from Eq. (4.2.37), or

β1 =
(−2.6154)2 + (−1.3077)2

(−2)2 + (4)2
= 0.4275 ,

The new move direction is

s1 = −
{
−2.6154
−1.3077

}
+ 0.4275

{
−2
4

}
=

{
1.76036
3.0178

}
,

and

x2 =

{
−1.0961
−1.8077

}
+ α2

{
1.76036
3.0178

}
.

135

Chapter 4: Unconstrained Optimization

Again setting df(α2)/d(α2) = 0 we obtain α2 = 0.4334,

x2 =

{
−0.3334
−0.50

}
, and ∇f(x2) =

{
0
0

}
.

Finally, since {
−2
4

}T [
24 −12
−12 8

]{
1.76036
3.0178

}
' 0 .

we have verified the Q-conjugacy of the two directions s0 and s1. The progress of
minimization using this method is illustrated in Figure (4.2.3). • • •

Beale’s Restarted Conjugate Gradient Technique. In minimizing non-quadratic
functions using the conjugate gradient method, restarting the method after every
n steps is not always a good strategy. Such a strategy seems to be insensitive to
the nonlinear character of the function being minimized. Beale [14] and later Powell
[15] have proposed restart techniques that take the nonlinearity of the function into
account in deciding when to restart the algorithm. Numerical experiments with
minimization of several general functions have led to the following algorithm by Powell
[15].

1. Given x0, define s0 to be the steepest descent direction,

s0 = −∇f(x0) = g0 ,

let k = t = 0, and begin iterations by incrementing k.

2. For k ≥ 1 the direction sk is defined by Beale’s formula [14]

sk = −gk + βksk−1 + γkst, and gk = −∇f(xk) , (4.2.38)

where

βk =
gT

k [gk − gk−1]

sT
k−1[gk − gk−1]

, (4.2.39)

and

γk =
gT

k [gt+1 − gt]

sT
t [gt+1 − gt]

, if k > t + 1 , (4.2.40)

γk = 0, if k = t + 1 . (4.2.41)

3. For k ≥ 1 test the inequality

|gT
k−1gk| ≥ 0.2‖gk‖2 . (4.2.42)

If this inequality holds, then it is taken to be an indication that enough orthogonality
between gk−1and gk has been lost to warrant a restart. Accordingly, t is reset
t = k − 1 to imply restart.

4. For k > t + 1 the direction sk is also checked to guarantee a sufficiently large
gradient by testing the inequalities

−1.2‖gk‖2 ≤ sT
k gk ≤ −0.8‖gk‖2 . (4.2.43)

136

Section 4.2: Minimization of Functions of Several Variables

If these inequalities are not satisfied, the algorithm is restarted by setting t = k − 1.

5. Finally, the algorithm is also restarted by setting t = k − 1, if k − t ≥ n as in
the case of the Fletcher-Reeves method.

6. The process is terminated if ‖gk−1‖ or |f(xk+1) − f(xk)| is sufficiently small.
If not, k is incremented by one and the process is repeated by going to step 2.

Powell [15] has examined in great detail the effectiveness of the new restart proce-
dure using Beale’s basic algorithm on a variety of problems. These experiments clearly
establish the superiority of the new procedure over the algorithms of Fletcher-Reeves
and Polak-Ribiere [16]. The only disadvantage of this new algorithm appears to be its
slightly increased storage requirements arising from the need for storing the vectors
st and (gt+1 − gt) after a restart. More recent enhancement for the first order con-
jugate gradient type algorithms [17, 18] involve inclusion of certain preconditioning
schemes to improve the rate of convergence.

4.2.3 Second Order Methods

The oldest second order method for minimizing a nonlinear multivariable function
in Rn is Newton’s method. The motivation behind Newton’s method is identical
to the steepest descent method. In arriving at the steepest descent direction, s, we
minimized the directional derivative, Eq. (4.2.27), subject to the condition that the
Euclidean norm of s was unity, Eq. (4.2.28). The Euclidean norm, however, does not
consider the curvature of the surface. Hence, it motivates the definition of a different
norm or a metric of the surface. Thus, we pose the problem as finding the direction
s that minimizes

∇fT s =
n∑

i=1

∂f

∂xi

si , (4.2.44)

subject to the condition that
sTQs = 1 . (4.2.45)

The solution of this problem is provided by Newton direction (see Exercise 6) to
within a multiplicative constant, namely

s = −Q−1∇f , (4.2.46)

where Q is the Hessian of the objective function. The general form of the update
equation of Newton’s method for minimizing a function in Rn is given by

xk+1 = xk − αk+1Q
−1
k ∇f(xk) , (4.2.47)

where αk+1 is determined by minimizing f along the Newton direction. For Q = I,
Eq. (4.2.47) yields the steepest descent solution since the norm in Eq. (4.2.45)
reduces to the Euclidean norm. For quadratic functions it can be shown that the
update equation reaches the optimum solution in one step with α = 1

x∗ = x0 − [Q(x0)]
−1[∇f(x0)] , (4.2.48)

137

Chapter 4: Unconstrained Optimization

regardless of the initial point x0.

Newton’s method can also shown to have a quadratic rate of convergence (see
for example [4] or [8]), but the serious disadvantages of the method are the need to
evaluate the Hessian Q and then solve the system of equations

Qs = −∇f , (4.2.49)

to obtain the direction vector s. For every iteration (if Q is non-sparse), Newton’s
method involves the calculation of n(n + 1)/2 elements of the symmetric Q matrix,
and n3 operations for obtaining s from the solution of Eqs. (4.2.49). It is this feature
of Newton’s method that has led to the development of methods known as quasi-
Newton or variable-metric methods which seek to use the gradient information to
construct approximations for the Hessian matrix or its inverse.

Quasi-Newton or Variable Metric Algorithms . Consider the Taylor series expan-
sion of the gradient of f around xk+1

∇f(xk+1) ' ∇f(xk) + Q(xk+1 − xk) , (4.2.50)

where Q is the actual Hessian of the function f . Assuming Ak(Ak ≡ A(xk)) to be
an approximation to the Hessian at the kth iteration, we may write equation (4.2.50)
in a more compact form as

yk = Akpk , (4.2.51)

where

yk = ∇f(xk+1)−∇f(xk), and pk = xk+1 − xk , (4.2.52)

Similarly, the solution of Eq. (4.2.51) for pk can be written as

Bk+1yk = pk , (4.2.53)

with Bk+1 being an approximate inverse of the Hessian Q. If Bk+1 is to behave
eventually as Q−1 then Bk+1Ak = I. Equation (4.2.53) is known as the quasi-Newton
or the secant relation. The basis for all variable-metric or quasi-Newton methods is
that, the formulae which update the matrix Ak or its inverse Bk must satisfy Eq.
(4.2.53) and, in addition, maintain the symmetry and positive definiteness properties.
In other words, if Ak or Bk are positive definite then Ak+1 or Bk+1 must remain so.

A typical variable-metric algorithm with an inverse Hessian update may be stated
as

xk+1 = xk − αk+1sk , (4.2.54)

where
sk = −Bk∇f(xk) , (4.2.55)

with Bk being a positive definite symmetric matrix.

Rank-One Updates. In the class of rank-one updates we have the well-known
symmetric Broyden’s update [19] for Bk+1 given as

Bk+1 = Bk +
(pk −Bkyk)(pk −Bkyk)

T

(pk −Bkyk)Tyk

. (4.2.56)

138

Section 4.2: Minimization of Functions of Several Variables

To start the algorithm, an initial positive definite symmetric matrix B0 is assumed
and the next point x1 is calculated from Eq. (4.2.54). Then, Eq. (4.2.56) is used
to calculate the updated approximate inverse Hessian matrix. It is easy to verify
that the columns of the second matrix on the right-hand side of Eq. (4.2.56) are
multiples of each other. In other words, the update matrix has a single independent
column and, hence is rank-one. Furthermore, if Bk is symmetric then Bk+1 will also
be symmetric. It is, however, not guaranteed that Bk+1 will remain positive definite
even if Bk is. This fact can lead to a breakdown of the algorithm especially when
applied to general non-quadratic functions. Broyden [19] suggests choosing the step
lengths αk+1 in Eq. (4.2.54) by either (i) an exact line search, or by (ii) αk+1 = 1 for
all steps, or by (iii) choosing αk+1 such that ‖∇f‖ is minimized or reduced.

Irrespective of the type of line search used, Broyden’s update guarantees a
quadratic termination property. However, because of the lack of robustness in min-
imizing general non-quadratic functions, rank-one updates have been superseded by
rank-two updates which guarantee both symmetry and positive definiteness of the
updated matrices.

Rank-Two Updates. Rank-two updates for the inverse Hessian approximation
may generally be written as

Bk+1 =

[
Bk −

Bkyky
T
k Bk

yT
k Bkyk

+ θkvkv
T
k

]
ρk +

pkp
T
k

pT
k yk

, (4.2.57)

where

vk = (yT
k Bkyk)

1
2

[
pk

pT
k yk

− Bkyk

yT
k Bkyk

]
, (4.2.58)

and θk and ρk are scalar parameters that are chosen appropriately. Updates given
by Eqs. (4.2.57) and (4.2.58) are subsets of Huang’s family of updates [20] which
guarantee that Bk+1yk = pk for all choices of θk and ρk. If we set θk = 0 and
ρk = 1 for all k we obtain the Davidon-Fletcher-Powell’s (DFP) update formula [21,
22] which is given as

Bk+1 = Bk −
Bkyky

T
k Bk

yT
k Bkyk

+
pkp

T
k

pT
k yk

. (4.2.59)

The DFP update formula preserves the positive definiteness and symmetry of the
matrices Bk, and has some other interesting properties as well. When used for mini-
mizing quadratic functions, it generates Q-conjugate directions and, therefore, at the
nth iteration Bn becomes the exact inverse of the Hessian Q. Thus, it has the features
of the conjugate gradient as well as the Newton-type algorithms. The DFP algorithm
can be used without an exact line search in determining αk+1 in Eq. (4.2.54). How-
ever, the step length must guarantee a reduction in the function value, and must
be such that pT

k yk > 0 in order to maintain positive definiteness of Bk. The perfor-
mance of the algorithm, however, was shown to deteriorate as the accuracy of the line
search decreases [20]. In most cases the DFP formula works quite successfully. In a
few cases the algorithm has been known to break down because Bk became singular.
This has led to the introduction of another update formula developed simultaneously

139

Chapter 4: Unconstrained Optimization

by Broyden [19], Fletcher [23], Goldfarb [24], and Shanno [25] and known known as
BFGS formula. This formula can be obtained by putting θk = 1 and ρk = 1 in Eq.
(4.2.57) which reduces to

Bk+1 = Bk +

[
1 +

yT
k Bkyk

pT
k yk

]
pkp

T
k

pT
k yk

− pky
T
k Bk

pT
k yk

− Bkykp
T
k

pT
k yk

. (4.2.60)

Equation (4.2.60) can also be written in a more compact manner as

Bk+1 =

[
I− pky

T
k

pT
k yk

]
Bk

[
I− ykp

T
k

pT
k yk

]
+

pkp
T
k

pT
k yk

. (4.2.61)

Using Ak+1 = B−1
k+1 and Ak = B−1

k we can invert the above formula to arrive at an
update for the Hessian approximations. It is found that this update formula reduces
to

Ak+1 = Ak −
Akpkp

T
k Ak

pT
k Akpk

+
yky

T
k

yT
k pk

, (4.2.62)

which is the analog of the DFP formula (4.2.59) with Bk replaced by Ak, and
pk and yk interchanged. Conversely, if the inverse Hessian Bk is updated by the DFP
formula then the Hessian Ak is updated according to an analog of the DFP formula.
It is for this reason that the BFGS formula is often called the complementary DFP
formula. Numerical experiments with BFGS algorithm [26] suggest that it is superior
to all known variable-metric algorithms. We will illustrate its use by minimizing the
potential energy function of the cantilever beam problem.

Example 4.2.4

Minimize f(x1, x2) = 12x2
1 +4x2

2−12x1x2 +2x1 by using the BFGS update algorithm
with exact line searches starting with the initial guess xT

0 = (−1,−2).

We initiate the algorithm with a line search along the steepest descent direction.
This is associated with the assumption that B0 = I which is symmetric and positive
definite. The resulting point is previously calculated in example 4.2.3 to be

x1 =

{
−1.0961
−1.8077

}
, and ∇f(x1) =

{
−2.6154
−1.3077

}
.

From Eq. (4.2.52) we calculate

p0 =

{
−1.0961
−1.8077

}
−
{
−1
−2

}
=

{
−0.0961
0.1923

}
,

y0 =

{
−2.6154
−1.3077

}
−
{

2
−4

}
=

{
−4.6154
2.6923

}
.

Substituting the terms

pT
0 y0 = (−0.0961)(−4.6154) + (0.1923)(2.6923) = 0.96127 ,

140

Section 4.2: Minimization of Functions of Several Variables

p0y
T
0 =

{
−0.0961
0.1923

}
[−4.6154 2.6923]

=

[
0.44354 −0.25873
−0.88754 0.51773

]
,

into Eq. (4.2.61), we obtain

B1 =

([
1 0
0 1

]
− 1

0.96127

[
0.44354 −0.25873
−0.88754 0.51773

])[
1 0
0 1

]

×
([

1 0
0 1

]
− 1

0.96127

[
0.44354 −0.88754
−0.25873 0.51773

])
+

1

0.96127

[
0.00923 −0.01848
−0.01848 0.03698

]
,

=

[
0.37213 0.60225
0.60225 1.10385

]
.

Next, we calculate the new move direction from Eq. (4.2.55)

s1 = −
[

0.37213 0.60225
0.60225 1.10385

]{
−2.6154
−1.3077

}
=

{
1.7608
3.0186

}
,

and obtain

x2 =

{
−1.0961
−1.8077

}
+ α2

{
1.7608
3.0186

}
.

Setting the derivative of f(x2) with respect to α2 to 0 yields the value α2 = 0.4332055,
and

x2 =

{
−0.3333
−0.5000

}
, with ∇f(x2) '

{
0
0

}
.

This implies convergence to the exact solution. It is left to the reader to verify that
if B1 is updated once more we obtain

B2 =

[
0.1667 0.25
0.25 0.5

]
,

which is the exact inverse of the Hessian matrix

Q =

[
24 −12
−12 8

]
.

It can also be verified that, as expected, the directions s0 and s1 are Q-conjugate.
• • •

Q-conjugacy of the directions of travel has meaning only for quadratic functions,
and is guaranteed for such problems in the case of variable-metric algorithms be-
longing to Huang’s family only if the line searches are exact. In fact, Q-conjugacy
of the directions is not necessary for ensuring a quadratic termination property [26].
This realization has led to the development of methods based on the DFP and BFGS
formulae that abandon the computationally expensive exact line searches. The line
searches must be such that they guarantee positive definiteness of the Ak or Bk

matrices while reducing the function value appropriately. Positive definiteness is

141

Chapter 4: Unconstrained Optimization

guaranteed as long as pT
k yk > 0. To ensure a wide radius of convergence for a quasi-

Newton method, it is also necessary to satisfy the following two criteria. First, a
sufficiently large decrease in the function f must be achieved for the step taken and,
second, the rate of decrease of f in the direction sk at xk+1 must be smaller than the
rate of decrease of f at xk [26]. In view of this observations, most algorithms with
inexact line searches require the satisfaction of the following two conditions.

f(xk+1) < f(xk) + 10−4αsT∇f(xk) , (4.2.63)

and ∣∣∣∣sT∇f(xk+1)

sT∇f(xk)

∣∣∣∣ < 0.9 . (4.2.64)

The convergence of the BFGS algorithm under these conditions has been studied by
Powell [27]. Similar convergence studies with Beale’s restarted conjugate gradient
method under the same two conditions have been carried out by Shanno [28].

4.2.4 Applications to Analysis

Several of the algorithms for unconstrained minimization of functions in Rn can also
be used for solving a system of linear or nonlinear equations. In some cases, like the
problems of nonlinear structural analysis, the necessary condition for the potential
energy to be stationary is that its gradient vanish. The latter can be construed as
solving a system of equations of the type

∇f(x) = g(x) = 0 , (4.2.65)

where the Hessian of f and the Jacobian of g are the same. In cases where the
problems are posed directly as

g(x) = 0 , (4.2.66)

Dennis and Schnabel [6] and others solve Eq. (4.4.2) by minimizing the nonlinear
least squares function

f =
1

2
gTg . (4.2.67)

In this case, however, the Hessian of f and the Jacobian of g are not identical but a
positive definite approximation to the Hessian of f appropriate for most minimiza-
tion schemes can be easily generated from the Jacobian of g [6]. Minimization of f
then permits the determination of not only stable but also unstable equilibrium con-
figurations provided the minimization does not converge to a local minimum. In the
case of convergence to a local minimum, certain restart [6] or deflation and tunnelling
techniques [29, 30] can be invoked to force convergence to the global minimum of f
at which ‖g‖ = 0.

142

Section 4.3: Specialized Quasi-Newton Methods

4.3 Specialized Quasi-Newton Methods

4.3.1 Exploiting Sparsity

The rank-one and rank-two updates that we discussed in the previous section yield
updates which are symmetric but not necessarily sparse. In other words the Hessian
or Hessian inverse updates lead to symmetric matrices which are fully populated. In
most structural analysis problems using the finite element method it is well known
that the Hessian of the potential energy (the tangent stiffness matrix) is sparse. This
may be also true of many structural optimization problems. For such sparse systems
the solution phase for finite element models exploits the triple LDLT factorization.
Thus the Hessian or the Hessian inverse updates discussed previously are not ap-
propriate for solving large-scale structural analysis problems which involve sparse
Hessians.

In applying the BFGS method for solving large-scale nonlinear problems of struc-
tural analysis Matthies and Strang [31] have proposed an alternate implementation
of the method suitable for handling large sparse problems by storing the vectors

pk = xk+1 − xk , (4.3.1)

and
yk = ∇f(xk+1)−∇f(xk) , (4.3.2)

and reintroducing them to compute the new search directions. After a sequence of
five to ten iterations during which the BFGS updates are used, the stiffness matrix
is recomputed and the update information is deleted.

Sparse updates for solving large-scale problems were perhaps first proposed by
Schubert [32], who proposed a modification of Broyden’s method [33] according to
which the ith row of the Hessian Ak+1 is updated by using

A
(i)
k+1 = A

(i)
k +

[gi(xk+1)− (1− αk)g(xk)]

αkp̂T
k p̂k

, (4.3.3)

with p̂k obtained from pk by setting to zero those components corresponding to

known zeros in A
(i)
k . The method has the drawback, however, that it cannot retain

symmetry of the resulting matrix even when starting with a symmetric, positive
definite matrix. Not only does this result in slightly increased demands on storage,
but it also requires special sparse linear equation solvers. Toint [34] and Shanno
[35] have recently proposed algorithms which find updating formulae for symmetric
Hessian matrices that preserve known sparsity conditions. The update is obtained
by calculating the smallest correction subject to linear constraints that include the
sparsity conditions. This involves the solution of a system of equations with the same
sparsity pattern as the Hessian.

143

Chapter 4: Unconstrained Optimization

Curtis, Powell and Reid [36], and Powell and Toint [37] have proposed finite
difference strategies for the direct evaluation of sparse Hessians of functions. In
addition to using the finite difference operations, they used concepts from graph
theory that minimize the number of gradient evaluations required for computing the
few non-zero entries of a sparse Hessian. By using these strategies, we can exploit
the sparsity not only in the computation of the Newton direction but also in the
formation of Hessians [38, 39]

The Curtis-Powell-Reid (CPR) strategy exploits sparsity, but not the symmetry
of the Hessian. It divides the columns of the Hessian into groups, so that in each
group the row numbers of the unknown elements of the column vectors are all dif-
ferent. After the formation of the first group, other groups are formed successively
by applying the same strategy to columns not included in the previous groups. The
number of such groups for sparse or banded matrices is usually very small by compar-
ison with n. To evaluate the Hessian of f at x0 we evaluate the gradient of f at x0.
After this initial gradient evaluation, only as many more gradient evaluations as the
number of groups are needed to evaluate all the non-zero elements of the Hessian
using forward difference approximation. Thus

aij =
∂gi

∂xj

=
gi(x0 + hjej)− gi(x0)

hj

, (4.3.4)

where ej is the jth coordinate vector and hj is a suitable step size. Each step size may
be adjusted such that the greatest ratio of the round-off to truncation error for any
column of the Hessian falls within a specified range. However, such an adjustment of
step sizes would require a significantly large number of gradient evaluations. Hence,
to economize on the number of gradient evaluations the step sizes are not allowed to
leave the range

[max(ε|xj|, ηhuj), huj] , (4.3.5)

where ε is the greatest relative round-off in a single operation, η is the relative machine
precision, and huj is an upper bound on hj [36].

Powell and Toint [37] extended the CPR strategy to exploit symmetry of the
Hessian. They proposed two methods, one of which is known as the substitution
method. According to this, the CPR strategy is first applied to the lower triangular
part, L, of the symmetric Hessian, A. Because, all the elements of A computed this
way will not be correct, the incorrect elements are corrected by a back-substitution
scheme. Details of this back-substitution scheme may be found in Ref. 37.

The Powell-Toint (PT) strategy of estimating sparse Hessians directly appears
to be a much better alternative to Toint’s sparse update algorithm [38]. One major
drawback of Toint’s update algorithm is that the updated Hessian approximation is
not guaranteed to remain positive definite even if the initial Hessian approximation
was positive definite.

4.3.2 Coercion of Hessians for Suitability with Quasi-Newton Methods

In minimizing a multivariable function f using a discrete Newton method or the
Toint’s update algorithm we must ensure that the Hessian approximation is positive

144

Section 4.4: Probabilistic Search Algorithms

definite. If this is not so, then Newton’s direction is not guaranteed to be a descent
direction. There are several strategies for coercing an indefinite Hessian to a positive
definite form. Prominent among these strategies is the one proposed by Gill and
Murray [40]. The most impressive feature of this strategy is that the coercion of
the Hessian takes place during its LDLT decomposition for the computation of the
Newton direction. The diagonal elements of the D matrix are forced to be sufficiently
positive to avoid numerical difficulties while the off-diagonal terms of LD1/2 are lim-
ited by a quantity designed to guarantee positive definiteness of the resulting matrix.
This is equivalent to modifying the original non-positive definite Hessian matrix by
the addition of an appropriate diagonal matrix. Because this matrix modification
is carried out during its LDLT decomposition, the strategy for the computation of
Newton’s descent direction does not entail a great deal of additional computations.

4.3.3 Making Quasi-Newton Methods Globally Convergent

It is well known that despite a positive definite Hessian approximation, New-
ton’s method can diverge for some starting points. Standard backtracking along
the Newton direction by choosing shorter step lengths can achieve convergence to
the minimum. However, backtracking along the Newton direction fails to use the
n-dimensional quadratic model of the function f . Dennis and Schnabel [7] have pro-
posed a strategy called the double-dogleg strategy which uses the full n-dimensional
quadratic model to choose a new direction obtained by a linear combination of the
steepest descent and the Newton direction. This new direction is a function of the
radius of the trust region within which the n-dimensional quadratic model of the
function approximates the true function well. The double-dogleg strategy not only
makes Newton’s method globally convergent (that is converge to the minimum of the
function irrespective of the starting point) but also makes it significantly more effi-
cient for certain poorly scaled problems. For details about the double-dogleg strategy
readers are advised to consult Ref. 7. More recent attempts to widen the domain of
convergence of the quasi-Newton method or make it globally convergent for a wide
class of problems are studied in Refs. [41, 42].

4.4 Probabilistic Search Algorithms

A common disadvantage of most of the algorithms discussed so far is their inability
to distinguish local and global minima. Many structural design problems have more
than one local minimum, and depending on the starting point, these algorithms
may converge to one of these local minima. The simplest way to check for a better
local solution is to restart the optimization from randomly selected initial points to
check if other solutions are possible. However, for problems with a large number of
variables the possibility of missing the global minimum is large unless unpractically
large number of optimization runs are performed. The topic of global optimization
is an area of active research where new algorithms are emerging and old algorithms
are constantly being improved [43–45].

145

Chapter 4: Unconstrained Optimization

Dealing with the problem of local minima becomes even worse if the design vari-
ables are required to take discrete values. First of all, for such problems the design
space is discontinuous and disjointed, therefore derivative information is either useless
or is not defined. Secondly, the use of discrete values for the design variables intro-
duces multiple minima corresponding to various combinations of the variables, even if
the objective function for the problem has a single minimum for continuous variables.
A methodical way of dealing with multiple minima for discrete optimization prob-
lems is to use either random search techniques that would sample the design space
for a global minimum or to employ enumerative type algorithms. In either case, the
efficiency of the solution process deteriorates dramatically as the number of variables
is increased.

Two algorithms, Simulated Annealing and Genetic Algorithms (see, Laarhoven
[46] and Goldberg [47], respectively), have emerged more recently as tools ideally
suited for optimization problems where a global minimum is sought. In addition to
being able to locate near global solutions, these two algorithms are also powerful tools
for problems with discrete-valued design variables. Both algorithms rely on naturally
observed phenomena and their implementation calls for the use of a random selection
process which is guided by probabilistic decisions. In the following sections brief
descriptions of the two algorithms are presented. Application of the algorithms to
structural design will be demonstrated for laminated composites in Chapter 11.

4.4.1 Simulated Annealing

The development of the simulated annealing algorithm was motivated by studies in
statistical mechanics which deal with the equilibrium of large number of atoms in
solids and liquids at a given temperature. During solidification of metals or forma-
tion of crystals, for example, a number of solid states with different internal atomic
or crystalline structure that correspond to different energy levels can be achieved
depending on the rate of cooling. If the system is cooled too rapidly, it is likely that
the resulting solid state would have a small margin of stability because the atoms will
assume relative positions in the lattice structure to reach an energy state which is
only locally minimal. In order to reach a more stable, globally minimum energy state,
the process of annealing is used in which the metal is reheated to a high temperature
and cooled slowly, allowing the atoms enough time to find positions that minimize
a steady state potential energy. It is observed in the natural annealing process that
during the time spent at a given temperature it is possible to have the system jump
to a higher energy state temporarily before the steady state is reached. As will be
explained in the following paragraphs, it is this characteristic of the annealing process
which makes it possible to achieve near global minimum energy states.

A computational algorithm that simulates the annealing process was proposed
by Metropolis et al. [48], and is referred to as the Metropolis algorithm. At a given
temperature, T , the algorithm perturbs the position of an atom randomly and com-
putes the resulting change in the energy of the system, ∆E. If the new energy state
is lower than the initial state, then the new configuration of the atoms is accepted.
If, on the other hand ∆E ≥ 0, the perturbed state causes an increase in the energy,

146

Section 4.4: Probabilistic Search Algorithms

the new state might be accepted or rejected based on a random probabilistic decision.
The probability of acceptance, P(∆E), of a higher energy state is computed as

P(∆E) = e

(
−∆E
kBT

)
, (4.4.1)

where kB is the Boltzmann’s constant. If the temperature of the system is high, then
the probability of acceptance of a higher energy state is close to one. If, on the other
hand, the temperature is close to zero, then the probability of acceptance becomes
very small.

The decision to accept or reject is made by randomly selecting a number in an
interval (0, 1) and comparing it with P(∆E). If the number is less than P(∆E), then
the perturbed state is accepted, if it is greater than P(∆E), the state is rejected.
At each temperature, a pool of atomic structures would be generated by randomly
perturbing positions until a steady state energy level is reached (commonly referred
to as thermal equilibrium). Then the temperature is reduced to start the iterations
again. These steps are repeated iteratively while reducing the temperature slowly to
achieve the minimal energy state.

The analogy between the simulated annealing and the optimization of functions
with many variables was established recently by Kirkpatrick et al. [49], and Cerny
[50]. By replacing the energy state with an objective function f , and using variables
x for the the configurations of the particles, we can apply the Metropolis algorithm
to optimization problems. The method requires only function values. The moves in
the design space from one point, xi to another xj causes a change in the objective
function, ∆f ij. The temperature T now becomes a control parameter that regulates
the convergence of the process. Important elements that affect the performance of
the algorithm are the selection of the initial value of the “temperature”, T0, and
how to update it. In addition, the number of iterations (or combinations of design
variables) needed to achieve “thermal equilibrium” must be decided before the T can
be reduced. These parameters are collectively referred to as the “cooling schedule”.

A flow chart of a typical simulated annealing algorithm is shown in Figure 4.4.1.
The definition of the cooling schedule begins with the selection of the initial temper-
ature. If a low value of T0 is used, the algorithm would have a low probability of
reaching a global minimum. The initial value of T0 must be high enough to permit vir-
tually all moves in the design space to be acceptable so that almost a random search
is performed. Typically, T0 is selected such that the acceptance ratio X (defined as
the ratio of the number of accepted moves to total number of proposed moves) is
approximately X0 = 0.95 [51]. Johnson et al. [52] determined T0 by calculating the

average increase in the objective function, ∆f
(+)

, over a predetermined number of
moves and solved

X0 = e

(
−∆f

(+)

T0

)
, (4.4.2)

leading to

T0 =
∆f

(+)

ln(X−1
0)

. (4.4.3)

147

Chapter 4: Unconstrained Optimization

Figure 4.4.1 Flow chart of the simulated annealing algorithm.

Once the temperature is set, a number of moves in the variable space is performed
by perturbing the design. The number of moves at a given temperature must be large
enough to allow the solution to escape from a local minimum. One possibility is to
move until the value of the objective function does not change for a specified number,
M , of successive iterations. Another possibility suggested by Aarts [53] for discrete
valued design variables is to make sure that every possible combinations of design
variables in the neighborhood of a steady state design is visited at least once with a

148

Section 4.4: Probabilistic Search Algorithms

probability of P . That is, if there are S neighboring designs, then

M = S ln

(
1

1− P

)
, (4.4.4)

where P = 0.99 for S > 100, and P = 0.995 for S < 100. For discrete valued
variables there are often many options for defining the neighborhood of the design.
One possibility is to define it as all the designs that can be obtained by changing one
design variable to its next higher or lower value. A broader immediate neighborhood
can be defined by changing more than one design variables to their next higher or
lower values. For an n variable problem, the immediate neighborhood has

S = 3n − 1 . (4.4.5)

Once convergence is achieved at a given temperature, generally referred to as thermal
equilibrium, the temperature is reduced and the process is repeated.

Many different schemes have been proposed for updating the temperature. A
frequently used rule is a constant cooling update

Tk+1 = αTk, k = 0, 1, 2, . . . , K , (4.4.6)

where 0.5 ≤ α ≤ 0.95. Nahar [54] fixes the number of decrement steps K, and
suggests determination of the values of the Tk experimentally. It is also possible to
divide the interval [0, T0] into a fixed K number of steps and use

TK =
K − k

K
T0, k = 1, 2, . . . , K . (4.4.7)

The number of intervals typically ranges from 5 to 20.

The use of simulated annealing for structural optimization has been quite recent.
Elperin [55] applied the method to the design of a ten-bar truss problem where
member cross-sectional dimensions were to be selected from a set of discrete values.
Kincaid and Padula [56] used it for minimizing the distortion and internal forces in a
truss structure. A 6-story 156 member frame structure with discrete valued variables
was considered by Balling and May [57]. Optimal placement of active and passive
members in a truss structure was investigated by Chen et al. [58] to maximize the
finite-time energy dissipation to achieve increased damping properties.

4.4.2 Genetic Algorithms

Genetic algorithms use techniques derived from biology, and rely on the principle of
Darwin’s theory of survival of the fittest. When a population of biological creatures
is allowed to evolve over generations, individual characteristics that are useful for
survival tend to be passed on to the future generations, because individuals carry-
ing them get more chances to breed. Those individual characteristics in biological
populations are stored in chromosomal strings. The mechanics of natural genetics
is based on operations that result in structured yet randomized exchange of genetic

149

Chapter 4: Unconstrained Optimization

information (i.e., useful traits) between the chromosomal strings of the reproducing
parents, and consists of reproduction, crossover, occasional mutation, and inversion
of the chromosomal strings.

Genetic algorithms, developed by Holland [59], simulate the mechanics of natural
genetics for artificial systems based on operations which are the counterparts of the
natural ones (even called by the same names), and are extensively used as multi-
variable search algorithms. As will be described in the following paragraphs, these
operations involve simple, easy to program, random exchanges of location of num-
bers in a string, and, therefore, at the outset look like a completely random search
of extremum in the parameter space based on function values only. However, ge-
netic algorithms are experimentally proven to be robust, and the reader is referred to
Goldberg [47] for further discussion of the theoretical properties of genetic algorithms.
Here we discuss the genetic representation of a minimization problem, and focus on
the mechanics of three commonly used genetic operations, namely; reproduction,
crossover, and mutation.

Application of the operators of the genetic algorithm to a search problem first
requires the representation of the possible combinations of the variables in terms
of bit strings that are counterparts of the chromosomes. Naturally, the measure of
goodness of a specific combination of genes is represented in an artificial system by
the objective function of the search problem. For example, if we have a minimization
problem

minimize f(x), x = {x1, x2, x3, x4} , (4.4.8)

a binary string representation of the variable space could be of the form

0 1 1 0︸ ︷︷ ︸
x1

1 0 1︸ ︷︷ ︸
x2

1 1︸︷︷︸
x3

1 0 1 1︸ ︷︷ ︸
x4

,
(4.4.9)

where string equivalents of the individual variables are connected head-to-tail, and,
in this example, base 10 values of the variables are x1 = 6, x2 = 5, x3 = 3, x4 = 11,
and their ranges correspond to {15 ≥ x1, x4 ≥ 0}, {7 ≥ x2 ≥ 0}, and {3 ≥ x3 ≥
0}. Because of the bit string representation of the variables, genetic algorithms are
ideally suited for problems where the variables are required to take discrete or integer
variables. For problems where the design variables are continuous values within a
range xL

i ≤ xi ≤ xU
i , one may need to use a large number of bits to represent the

variables to high accuracy. The number of bits that are needed depends on the
accuracy required for the final solution. For example, if a variable is defined in a
range {0.01 ≤ xi ≤ 1.81} and the accuracy needed for the final value is xincr = 0.001,
then the number of binary digits needed for an appropriate representation can be
calculated from

2m ≥
(
(xU

i − xL
i)/xincr + 1

)
, (4.4.10)

where m is the number of digits. In this example, the smallest number of digits that
satisfy the requirement would be m = 11, which actually produces increments of
0.00087 in the value of the variable, instead of the required value of 0.001.

Unlike the search algorithms discussed earlier that move from one point to another
in the design variable space, genetic algorithms work with a population of strings

150

Section 4.4: Probabilistic Search Algorithms

(chromosomes). This aspect of the genetic algorithms is responsible for capturing
near global solutions, by keeping many solution points that may have the potential
of being close to minima (local or global) in the pool during the search process rather
than singling out a point early in the process and running the risk of getting stuck at
a local minimum. Working on a population of designs also suggests the possibility of
implementation on parallel computers. However, the concept of parallelism is even
more basic to genetic algorithms in that evolutionary selection can improve in parallel
many different characteristics of the design. Also, the outcome of a genetic search is
a population of good designs rather than a single design. This aspect can be very
useful to the designer.

Initially the size of the population is chosen and the values of the variables in
each string are decided by randomly assigning 0’s and 1’s to the bits. The next
important step in the process is reproduction, in which individual strings with good
objective function values are copied to form a new population, an artificial version
of the survival of the fittest. The bias towards strings with better performance can
be achieved by increasing the probability of their selection in relation to the rest of
the population. One way to achieve this is to create a biased roulette wheel where
individual strings occupy areas proportional to their function values in relation to
the cumulative function value of the entire population. Therefore, the population
resulting from the reproduction operation would have multiple copies of the highly
fit individuals.

Once the new population is generated, the members are paired off randomly for
crossover. The mating of the pair also involves a random process. A random integer
k between 1 and L− 1, where L is the string length, is selected and two new strings
are generated by exchanging the 0’s and 1’s that comes after the kth location in the
first parent with the corresponding locations of the second parent. For example, the
two strings of length L = 9

parent 1: 0 1 1 0 1‖0 1 1 1

parent 2: 0 1 0 0 1‖0 0 0 1
, (4.4.11)

are mated with a crossover point of k = 5, the offsprings will have the following
composition,

offspring 1: 0 1 1 0 1 0 0 0 1

offspring 2: 0 1 0 0 1 0 1 1 1
. (4.4.12)

Multiple point crossovers in which information between the two parents are swapped
among more string segments are also possible, but because of the mixing of the strings
the crossover becomes a more random process and the performance of the algorithm
might degrade, De Jong [60]. Exception to this is the two-point crossover. In fact,
the one point crossover can be viewed as a special case of the two point crossover in
which the end of the string is the second crossover point. Booker [61] showed that
by choosing the end-point of the segment to be crossed randomly, the performance
of the algorithm can actually be improved.

Mutation serves an important task of preventing premature loss of important
genetic information by occasional introduction of random alteration of a string. As

151

Chapter 4: Unconstrained Optimization

mentioned earlier, at the end of reproduction it is possible to have populations with
multiple copies of the same string. In the worst scenario, it is possible to have the
entire pool to be made of the same string. In such a case, the algorithm would
be unable to explore the possibility of a better solution. Mutation prevents this
uniformity, and is implemented by randomly selecting a string location and changing
its value from 0 to 1 or vice versa. Based on small rate of occurrence in biological
systems and on numerical experiments, the role of the mutation operation on the
performance of a genetic algorithm is considered to be a secondary effect. Goldberg
[49] suggests a rate of mutation of one in one thousand bit operations.

Application of genetic algorithms in optimal structural design has started only
recently. The first application of the algorithm to a structural design was presented by
Goldberg and Samtani [62] who used the 10-bar truss weight minimization problem.
More recently, Hajela [63] used genetic search for several structural design problems
for which the design space is known to be either nonconvex or disjoint. Rao et al.
[64] address the optimal selection of discrete actuator locations in actively controlled
structures via genetic algorithms.

In closing, the basic ideas behind the simulation of a natural phenomena is find-
ing a more mathematically sound foundation in the area of probabilistic search al-
gorithms, especially for discrete variables. Improvements in the performance of the
algorithms are constantly being made. For example, modifications in the cooling
schedule proposed by Szu [65] led to the development of a new algorithm know as
the fast simulated annealing. Applications and analysis of other operations that
mimic the natural biological genetics (such as inversion, dominance, niches, etc.) are
currently being evaluated for genetic algorithms.

4.5 Exercises

1. Solve the problem of the cantilever beam problem of example 4.2.1 by

(a) Nelder-Mead’s simplex algorithm, and

(b) Davidon-Fletcher-Powell’s algorithm.

Begin with xT
0 = (−1,−2). For the simplex algorithm assume an initial simplex

of size a=2.0. Assume an initial base point x0 with the coordinates of the other
vertices to be given by Eqs. (4.2.1) and (4.2.1).

2. Find the minimum of the function

f = (x1 + x2 − x3)
2 + (x1 − x2 + x3)

2 + (−x1 + x2 + x3)
2 ,

using Powell’s conjugate directions method, starting with x0 = (0, 0, 0)T .

152

Section 4.5: Exercises

Figure 4.5.1 Two bar unsymmetric shallow truss.

3. Determine the minimum of

f(x) = 100(x2 − x2
1)

2 + (1− x1)
2 ,

using steepest descent method, starting with x0 = (1.2, 1.0)T .

4. The stable equilibrium configuration of the two bar unsymmetric shallow truss of
Figure 4.5.1 can be obtained by minimizing the potential energy function f of the
non-dimensional displacement variables x1, x2 as

f(x1, x2) =
1

2
mγ(−α1x1 +

1

2
x2

1 + x2)
2 +

1

2

(
−α1x1 +

1

2
x2

1 −
x2

γ

)
γ4 − pγx1 ,

where m, γ, α1, p are nondimensional quantities defined as

m =
A1

A2

, γ =
l1
l2

, α1 =
h

l1
, p =

p

EA2

,

and E is the elastic modulus, A1 and A2 are the cross-sectional areas of the bars. Us-
ing the BFGS algorithm determine the equilibrium configuration in terms of x1 and x2

for m = 5, γ = 4, α1 = 0.02, p = 2× 10−5. Use xT
0 = (0, 0).

5. Continuing the analysis of the problem 4 it can be shown that the critical load pcr

at which the shallow truss is unstable (snap-through instability) is given by

pcr =
EA1A2γ(γ + 1)2

(A1 + A2γ)

α3
1

3
√

3
.

Suppose now that pcr as given above is to be maximized subject to the condition that

A1l1 + A2l2 = v0 = constant .

The exterior penalty formulation of Chapter 5 reduces the above problem to the
unconstrained minimization of

p∗cr(A1, A2, r) =
EA1A2γ(γ + 1)2

(A1 + A2γ)

α3
1

3
√

3
+ r(A1l1 + A2l2 − v0)

2 ,

153

Chapter 4: Unconstrained Optimization

where r is a penalty parameter. Carry out the minimization of an appropriately
nondimensionalized form of p∗cr for l1 = 200 in, l2 = 50 in, h = 2.50 in, v0 =
200 in3, E = 106 psi, r = 104 to determine an approximate solution for the op-
timum truss configuration and the corresponding value of pcr. Use the BFGS al-
gorithm for unconstrained minimization beginning with an initial feasible guess of
A1 = 0.952381in2 and A2 = 0.190476in2.

6. a) Minimize the directional derivative of f in the direction s

∇fT s =
n∑

i=1

∂f

∂xi

si ,

subject to the condition
n∑

i=1

s2
i = 1 ,

to show that the steepest descent direction is given by

s = − ∇f

‖∇f‖
. (4.5.1)

b) Repeat the above with the constraint condition on s replaced by

sTQs = 1 ,

to show that the Newton direction is given by

s = −Q−1∇f ,

Q being the Hessian of the quadratic function f .

4.6 References

[1] Kamat, M.P. and Hayduk, R.J., “Recent Developments in Quasi–Newton Meth-
ods for Structural Analysis and Synthesis,” AIAA J., 20 (5), 672–679, 1982.

[2] Avriel, M., Nonlinear Programming: Analysis and Methods. Prentice–Hall, Inc.,
1976.

[3] Powell, M.J.D., “An Efficient Method for Finding the Minimum of a Function of
Several Variables without Calculating Derivatives,” Computer J., 7, pp. 155–162,
1964.

[4] Kiefer, J., “Sequential Minmax Search for a Maximum,” Proceedings of the Amer-
ican Mathematical Society, 4, pp. 502–506, 1953.

154

Section 4.6: References

[5] Walsh, G.R., Methods of Optimization, John Wiley, New York, 1975.

[6] Dennis, J.E. and Schnabel, R.B., Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations, Prentice–Hall, 1983.

[7] Gill, P.E., Murray, W. and Wright, M.H., Practical Optimization, Academic
Press, New York, p. 92, 1981.

[8] Spendley, W., Hext, G. R., and Himsworth, F. R., “Sequential Application of
Simplex Designs in Optimisation and Evolutionary Operation,” Technometrics,
4 (4), pp. 441–461, 1962.

[9] Nelder, J. A. and Mead, R., “A Simplex Method for Function Minimization,”
Computer J., 7, pp. 308–313, 1965.

[10] Chen, D. H., Saleem, Z., and Grace, D. W., “A New Simplex Procedure for
Function Minimization,” Int. J. of Modelling & Simulation, 6, 3, pp. 81–85, 1986.

[11] Cauchy, A., “Methode Generale pour la Resolution des Systemes D’equations
Simultanees,” Comp. Rend. l’Academie des Sciences Paris, 5, pp. 536–538, 1847.

[12] Hestenes, M.R. and Stiefel, E., “Methods of Conjugate Gradients for Solving
Linear Systems,” J. Res. Nat. Bureau Stand., 49, pp. 409–436, 1952.

[13] Fletcher, R. and Reeves, C.M., “Function Minimization by Conjugate Gradients,”
Computer J., 7, pp. 149–154, 1964.

[14] Gill, P.E. and Murray, W.,“Conjugate-Gradient Methods for Large Scale Nonlin-
ear Optimization,” Technical Report 79-15; Systems Optimization Lab., Dept. of
Operations Res., Stanford Univ., pp. 10–12, 1979.

[15] Powell, M.J.D., “Restart Procedures for the Conjugate Gradient Method,” Math.
Prog., 12, pp. 241–254, 1975.

[16] Polak, E., Computational Methods in Optimization: A Unified Approach, Aca-
demic Press, 1971.

[17] Axelsson, O. and Munksgaard, N., “A Class of Preconditioned Conjugate Gra-
dient Methods for the Solution of a Mixed Finite Element Discretization of the
Biharmonic Operator,” Int. J. Num. Meth. Engng., 14, pp. 1001–1019, 1979.

[18] Johnson, O.G., Micchelli, C.A. and Paul, G., “Polynomial Preconditioners for
Conjugate Gradient Calculations,” SIAM J. Num. Anal., 20 (2), pp. 362–376,
1983.

[19] Broyden, C.G., “The Convergence of a Class of Double–Rank Minimization Al-
gorithms 2. The New Algorithm,” J. Inst. Math. Appl., 6, pp. 222–231, 1970.

[20] Oren, S.S. and Luenberger, D., “Self–scaling Variable Metric Algorithms, Part
I,” Manage. Sci., 20 (5), pp. 845–862, 1974.

[21] Davidon, W.C., Variable Metric Method for Minimization. Atomic Energy Com-
mission Research and Development Report, ANL–5990 (Rev.), November 1959.

155

Chapter 4: Unconstrained Optimization

[22] Fletcher, R. and Powell, M.J.D., “A Rapidly Convergent Descent Method for
Minimization,” Computer J., 6, pp. 163–168, 1963.

[23] Fletcher, R., “A New Approach to Variable Metric Algorithms,” Computer J., 13
(3), pp. 317–322, 1970.

[24] Goldfarb, D., “A Family of Variable-metric Methods Derived by Variational
Means,” Math. Comput., 24, pp. 23–26, 1970.

[25] Shanno, D.F., “Conditioning of Quasi–Newton Methods for Function Minimiza-
tion,” Math. Comput., 24, pp. 647–656, 1970.

[26] Dennis, J.E., Jr. and More, J.J., “Quasi-Newton Methods, Motivation and The-
ory,” SIAM Rev., 19 (1), pp. 46–89, 1977.

[27] Powell, M.J.D., “Some Global Convergence Properties of a Variable Metric Algo-
rithm for Minimization Without Exact Line Searches,” In: Nonlinear Program-
ming (R.W.Cottle and C.E. Lemke, eds.), American Mathematical Society, Prov-
idence, RI, pp. 53–72, 1976.

[28] Shanno, D.F., “Conjugate Gradient Methods with Inexact Searches,” Math.
Oper. Res., 3 (2), pp. 244–256, 1978.

[29] Kamat, M.P., Watson, L.T. and Junkins, J.L., “A Robust Efficient Hybrid
Method for Finding Multiple Equilibrium Solutions,” Proceedings of the Third
Intl. Conf. on Numerical Methods in Engineering, Paris, France, pp. 799–807,
March 1983.

[30] Kwok, H.H., Kamat, M.P. and Watson, L.T., “Location of Stable and Unstable
Equilibrium Configurations using a Model Trust Region, Quasi-Newton Method
and Tunnelling,” Computers and Structures, 21 (6), pp. 909–916, 1985.

[31] Matthies, H. and Strang, G., “The Solution of Nonlinear Finite Element Equa-
tions,” Int. J. Num. Meth. Enging., 14, pp. 1613–1626, 1979.

[32] Schubert, L.K., “Modification of a Quasi-Newton Method for Nonlinear Equations
with a Sparse Jacobian,” Math. Comput., 24, pp. 27–30, 1970.

[33] Broyden, C.G., “A Class of Methods for Solving Nonlinear Simultaneous Equa-
tions,” Math. Comput., 19, pp. 577–593, 1965.

[34] Toint, Ph.L., “On Sparse and Symmetric Matrix Updating Subject to a Linear
Equation,” Math. Comput., 31, pp. 954–961, 1977.

[35] Shanno, D.F., “On Variable-Metric Methods for Sparse Hessians,” Math. Com-
put., 34, pp. 499–514, 1980.

[36] Curtis, A.R., Powell, M.J.D. and Reid, J.K., “On the Estimation of Sparse Jaco-
bian Matrices,” J. Inst. Math. Appl., 13, pp. 117–119, 1974.

[37] Powell, M.J.D. and Toint, Ph.L., “On the Estimation of Sparse Hessian Matrices,”
SIAM J. Num. Anal., 16 (6), pp. 1060–1074, 1979.

156

Section 4.6: References

[38] Kamat, M.P., Watson, L.T. and VandenBrink, D.J., “An Assessment of Quasi-
Newton Sparse Update Techniques for Nonlinear Structural Analysis,” Comput.
Meth. Appl. Mech. Enging., 26, pp. 363–375, 1981.

[39] Kamat, M.P. and VandenBrink, D.J., “A New Strategy for Stress Analysis Using
the Finite Element Method,” Computers and Structures 16 (5), pp. 651–656,
1983.

[40] Gill, P.E. and Murray, W., “Newton-type Methods for Linearly Constrained Opti-
mization,” In: Numerical Methods for Constrained Optimization (Gill & Murray,
eds.), pp. 29–66. Academic Press, New York 1974.

[41] Griewank, A.O., Analysis and Modifications of Newton’s Method at Singularities.
Ph.D. Thesis, Australian National University, 1980.

[42] Decker, D.W. and Kelley, C.T., “Newton’s Method at Singular Points, I and II,”
SIAM J. Num. Anal., 17, pp. 66–70; 465–471, 1980.

[43] Hansen, E., “Global Optimization Using Interval Analysis– The Multi Dimen-
sional Case,” Numer. Math., 34, pp. 247–270, 1980.

[44] Kao, J.-J., Brill, E. D., Jr., and Pfeffer, J. T., “Generation of Alternative Optima
for Nonlinear Programming Problems,” Eng. Opt., 15, pp. 233–251, 1990.

[45] Ge, R., “Finding More and More Solutions of a System of Nonlinear Equations,”
Appl. Math. Computation, 36, pp. 15-30, 1990.

[46] Laarhoven, P. J. M. van., and Aarts, E., Simulated Annealing: Theory and Ap-
plications, D. Reidel Publishing, Dordrecht, The Netherlands, 1987.

[47] Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley Publishing Co. Inc., Reading, Massachusetts, 1989.

[48] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller,
E., “Equation of State Calculations by Fast Computing Machines,” J. Chem.
Physics, 21 (6), pp. 1087–1092, 1953.

[49] Kirkpatrick, S., Gelatt, C. D., Jr., and Vecchi, M. P., “Optimization by Simulated
Annealing,” Science, 220 (4598), pp. 671–680, 1983.

[50] Cerny, V., “Thermodynamical Approach to the Traveling Salesman Problem: An
Efficient Simulation Algorithm,” J. Opt. Theory Appl., 45, pp. 41–52, 1985.

[51] Rutenbar, R. A., “Simulated Annealing Algorithms: An Overview,” IEEE Cir-
cuits and Devices, January, pp. 19–26, 1989.

[52] Johnson, D. S., Aragon, C. R., McGeoch, L. A., and Schevon, C., “Optimization
by Simulated Annealing: An Experimental Evaluation. Part I. Graph Partition-
ing,” Operations Research, 37, 1990, pp. 865–893.

[53] Aarts, E., and Korst, J., Simulated Annealing and Boltzmann Machines, A
Stochastic Approach to Combinatorial Optimization and Neural Computing,
John Wiley & Sons, 1989.

157

Chapter 4: Unconstrained Optimization

[54] Nahar, S., Sahni, S., and Shragowithz, E. V., in the Proceedings of 22nd Design
Automation Conf., Las Vegas, June 1985, pp. 748-752.

[55] Elperin, T, “Monte Carlo Structural Optimization in Discrete Variables with
Annealing ALgorithm,” Int. J. Num. Meth. Eng., 26, 1988, pp. 815–821.

[56] Kincaid, R. K., and Padula, S. L., “Minimizing Distortion and Internal Forces
in Truss Structures by Simulated Annealing,” Proceedings of the AIAA/ASME
/ASCE/AHS/ASC 31st Structures, Structural Dynamics, and Materials Confer-
ence, Long Beach, CA., 1990, Part 1, pp. 327–333.

[57] Balling, R. J., and May, S. A., “Large-Scale Discrete Structural Optimization:
Simulated Annealing, Branch-and-Bound, and Other Techniques,” presented at
the AIAA/ASME/ASCE/AHS/ASC 32nd Structures, Structural Dynamics, and
Materials Conference, Long Beach, CA., 1990,

[58] Chen, G.-S., Bruno, R. J., and Salama, M.,“Optimal Placement of Active/Passive
Members in Structures Using Simulated Annealing,” AIAA J., 29 (8), August
1991, pp. 1327–1334.

[59] Holland, J. H., Adaptation of Natural and Artificial Systems, The University of
Michigan Press, Ann Arbor, MI, 1975.

[60] De Jong, K. A., Analysis of the Behavior of a Class of Genetic Adaptive Systems
(Doctoral Dissertation, The University of Michigan; University Microfilms No.
76-9381), Dissertation Abstracts International, 36 (10), 5140B, 1975.

[61] Booker, L., “Improving Search in Genetic Algorithms,” in Genetic Algorithms
and Simulated Annealing, Ed. L. Davis, Morgan Kaufmann Publishers, Inc., Los
Altos, CA. 1987, pp. 61–73.

[62] Goldberg, D. E., and Samtani, M. P., “Engineering Optimization via Genetic
Algorithm,” Proceedings of the Ninth Conference on Electronic Computation,
ASCE, February 1986, pp. 471–482.

[63] Hajela, P., “Genetic Search—An Approach to the Nonconvex Optimization Prob-
lem,” AIAA J., 28 (7), July 1990, pp. 1205–1210.

[64] Rao, S. S., Pan, T.-S., and Venkayya, V. B., “Optimal Placement of Actuators in
Actively Controlled Structures Using Genetic Algorithms,” AIAA J., 29 (6), pp.
942–943, June 1991.

[65] Szu, H., and Hartley, R.L., “Nonconvex Optimization by Fast Simulated Anneal-
ing,” Proceedings of the IEEE, 75 (11), pp. 1538–1540, 1987.

158

