CHAP 3

FEA for Nonlinear Elastic Problems

Nam-Ho Kim

Introduction

- Linear systems

- Infinitesimal deformation: no significant difference between the
deformed and undeformed shapes

- Stress and strain are defined in the undeformed shape
- The weak form is integrated over the undeformed shape

- Large deformation problem

- The difference between the deformed and undeformed shapes is
large enough that they cannot be treated the same

- The definitions of stress and strain should be modified from the
assumption of small deformation

- The relation between stress and strain becomes nonlinear as
deformation increases
« This chapter will focus on how to calculate the residual
and tangent stiffness for a nonlinear elasticity model
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Introduction

- Frame of Reference

- The weak form must be expressed based on a frame of reference

- Often initial (undeformed) geometry or current (deformed)
geometry are used for the frame of reference

- proper definitions of stress and strain must be used according to
the frame of reference

+ Total Lagrangian Formulation: initial (undeformed)

geometry as a reference

- Updated Lagrangian Formulation: current (deformed)
geometry

+ Two formulations are theoretically identical o express
the structural equilibrium, but numerically different
because different stress and strain definitions are used
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3.2
Stress and Strain Measures

Goals - Stress & Strain Measures

+ Definition of a nonlinear elastic problem

* Understand the deformation gradient?

* What are Lagrangian and Eulerian strains?

* What is polar decomposition and how to do it?

- How to express the deformation of an area and volume

* What are Piola-Kirchhoff and Cauchy stresses?




Mild vs. Rough Nonlinearity

* Mild Nonlinear Problems (Chap 3)

- Continuous, history-independent nonlinear relations between

stress and strain

- Nonlinear elasticity, Geometric nonlinearity, and deformation-

dependent loads

* Rough Nonlinear Problems (Chap 4 & 5)
- Equality and/or inequality constraints in constitutive relations
- History-dependent nonlinear relations between stress and strain

- Elastoplasticity and contact problems

-

What Is a Nonlinear Elastic Problem?

* Elastic (same for linear and nonlinear problems)

Stress-strain relation is elastic

Deformation disappears when the applied load is removed

Deformation is history-independent

Potential energy exists (function of deformation)

- Nonlinear

- Stress-strain relation is nonlinear
(D is not constant or do not exist)

- Deformation is large

+ Examples

- Rubber material

- Bending of a long slender member
(small strain, large displacement)
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Reference Frame of Stress and Strain

Force and displacement (vector) are independent of the
configuration frame in which they are defined (Reference
Frame Indifference)

Stress and strain (tensor) depend on the configuration

 Total Lagrangian or Material Stress/Strain: when the
reference frame is undeformed configuration

- Updated Lagrangian or Spatial Stress/Strain: when the
reference frame is deformed configuration

* Question: What is the reference frame in linear
problems?
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Deformation and Mapping

- Initial domain Qg is deformed to Q,
- We can think of this as a mapping from Qg to Q,

-+ X: material point in Q x: material point in Q,
* Material point P in Q is deformed to Q in Q,

X=Xy == [x = (X, 1) = X+ u(X, 1)

displacement @

®, D" ; One-to-one mapping
Continuously differentiable
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Deformation Gradient

Infinitesimal length dX in Q, deforms to dx in Q,
Remember that the mapping is continuously differentiable

dx = X dX = dx = FdX
X

Deformation gradient:

_ % ou 1=[5.1,
= o F=1+o0 =1+ Vo ; a
Vo = VX -
- gradient of mapping @ oX oX

Second-order tensor, Depend on both Oy and Q,

Due to one-to-one mapping:[ detF =J > 0. ] dX = Fldx

F includes both deformation and rigid-body rotation
11

Example - Uniform Extension

Uniform extension of a cube in all three directions

Continuity requirement: 2, >0  Why?

Deformation gradient: A, 0 0
0 0 1,

M =%, = A3 uniform expansion (dilatation) or contraction
Volume change
- Initial volume: dVjy = dX;dX,dX;

- Deformed volume:




Green-Lagrange Strain

Why different strains?

Length change: |dx|* = [|dX[* = dxTdx — dXTdX
= dXTFTFdX — dXTdX
= dXT(FTF - 1)dX

Ratio of length change

Right Cauchy-Green Deformation Tensor

[ c-FF | )
Green-Lagrange Strain Tensor \dx

T N\
[ E !(E}C -1) } The effect of rotation is eliminated

To match with infinitesimal strain

Green-Lagrange Strain cont.

Properties:
e T

E is symmetric: ET= E C1fay oy
- No deformation: F=1,E=0 TPy a_xJ +5—X.'

a N

g_1fou ou’  ou' du ]
== + +
2| oX  oX  aX oX bi :
isplacement gradient
- Higher-order term

When |Vou|<<1, Ez%(vou+VOuT):e

E = O for a rigid-body motion, bute = O




Example - Rigid-Body Rotation

- Rigid-body rotation

X, = X cosa — X, Sina

X2=X15in(x+X2COSOL /W
o \/

* Approach 1: using deformation gradient

cosa —-sina O 1 0O
F=|sinao cosa O FIF=|{0 1 O
0 o) 1 O 01

E-I(F'F-1)=0

Green-Lagrange strain removes rigid-body rotation from deformation

15
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Example - Rigid-Body Rotation cont.

- Approach 2: using displacement gradient

U1 =X1—X1 =X1(COSOL—1)—XZSinOL
U3 ZX3 _X3 :O

cosaa—1 —-sinaa O

Vou=| sina cosa-1 0
0 0 0
2(1-cosa) 0 0
0 0 0

16
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Example - Rigid-Body Rotation cont.
* What happens to engineering strain?
Ul =X1—X1 =X1(COSOL—1)—XZSinOL
U3 = X3 - X3 — O

coso —1 0 0 /\

e=| 0  cosa-1 0 % A /

0 0 0 V/

Engineering strain is unable to take care of rigid-body rotation

Eulerian (Almansi) Strain Tensor

* Length change: |dx|* - |dX|* = dx"dx — dXTdX

= dx"dx — dx"F TFldx
=dx"(1-F "F1)dx
=dx"(1-b1)dx

* Left Cauchy-6Green Deformation Tensor

b-: Finger tensor

* Eulerian (Almansi) Strain Tensor

[e _ %(1 _ bl)]

Reference is deformed (current) configuration




Eulerian Strain Tensor cont.

* Properties

- Symmetric
Lo : ou
- Approach engineering strain when < 1
- In terms of displacement gradient
_l(aqu@uT 8uT8u] 5
== _ v -0
2\ 0x 0x  Ox Ox X = oo
1

2

- Relation between E and e

E=F'eF

_ T T Spatial gradient
= —(qu +V,u —Vou qu)

Example - Lagrangian Strain

* Calculate F and E for deformation in the figure

* Mapping relation in Q,

4
X = SN (s, DX = > (s +1) v
I=1 4 Deformed element
9 4 : 2.0
Y=Y Ni(s, )Y =5(1+1) N
I=1 2 1.0
- Undeformed
element
* Mapping relation in Q,

» X

07 15

( 4
X(s,t) = D Ni(s,t)x; = 0.35(1 - 1)
I=1

4
y(s.1) = ZINI(SI*)YI =s+1
L I=




- Deformation gradient

- Green-Lagrange Strain

Example - Lagrangian Strain cont.

F - OX 0X 0s
@X 0s 0X
[0 —.35“4/3 o}
1 o0 0 2
L X(s,7
"0 —o.q xs N CTY
- _4 /3 0 Reference
domain (s, t)

Tension in X; dir.
Compression in X, dir.

e =%(FTF—1) :{0.389 0 }

0O -0.255
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Example - Lagrangian Strain cont.

- Almansi Strain

049 O
b=F-F" =
FF [O 1.78}
-052 O o
_ -1\ _ y C ion in x, dir.
e-g(1-bl)-| G 0| e
* Engineering Strain
-1 -07
Vou=F-1=
ou=F {1.33 —1}

Artificial shear deform.
Inconsistent normal deform.

-1 0.32
%(Vou+vou) {0.32 _31}

Which strain is consistent with actual deformation?

22
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Example - Uniaxial Tension

* Uniaxial tension of incompressible material (A; = 1> 1)

* From incompressibility X = MX
Mok =1 = A, =g = A2 X2 = Moo
- Deformation gradient and deformation tensor X = k%
v 0 0 ] ¥ 0 0
F=lo »¥2 o | €=/0 21 0
0 0 AV 0 0 2"
* G-L Strain
22-1 0 0 |
E-i o ato1 o
0 o at-1
L i .
Example - Uniaxial Tension |
* Almansi Strain (b = C)
22 0 0] 1'1—x-2 0 0
b'= 0 2 O e=3 0 1-% O
O 0 A 0 0O 1-A
» Engineering Strain i
A-1 0 o |
E = O }\,_1/2 —1 O §-0.17
] 0 0 7\4—1/2 . 1_
) Differ‘ence -0;6.8 019 1 14 1.2
1 1 _ l




Polar Decomposition

+ Want to separate deformation from rigid-body rotation
- Similar to principal directions of strain

* Unique decomposition of deformation gradient
F-Qu-vQ)

- Q: orthogonal tensor (rigid-body rotation)

- U, Viright- and left-stretch tensor (symmetric)

* U and V have the same eigenvalues (principal stretches),

but different eigenvectors

25
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Polar Decomposition cont.

F=QuU

- Eigenvectors of U: E;, E,, E;
- Eigenvectors of V: e, e,, e;
- Eigenvalues of U and V:iiy, Ay, A5 -

\




Polar Decomposition cont.

- Relation between U and C

v=c u=+Jc
- U and C have the same eigenvectors.

- Eigenvalue of U is the square root of that of C
How to calculate U from C?

- Let eigenvectors of Cbe ® =[E;, E, E;]
+ Then[A = ® C®| where

22 0 0]
A=|0 7»5 0 De.formaﬁc.m tensor in
principal directions
0 0 25

Polar Decomposition cont.
Useful formulas

And(U = oVA @) 3
i=1
r 00 3
i=lo %, o U= E OF
i-1
O 0 Ay 3
Q=) ¢®E
i=1
3
* General Deformation b= ®e,
[dx = FdX +b = QUdX +b | 3
1. Stretch in principal directions V = leei ® e
2. Rigid-body rotation i;l
3. Rigid-body translation F o inei ®E




Generalized Lagrangian Strain

* G-L strain is a special case of general form of Lagrangian

strain tensors (Hill, 1968)
E - (U -1)

29
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Example - Polar Decomposition

» Simple shear problem , X, Xz
Xl — Xl + kXZ k = —— v
X3 - X3 Xll X,
: . 1 k
- Deformation gradient F = 0 1
1k 1 =
- Deformation tensor € =F'F = _ V3
k k%+1 % 7
3 3
- Find eigenvalues and eigenvectors of C X2 E
E
?\ul - 3, }\.2 = 1/3 ‘ \600 X
1
& = (% %) E, =(—§ %)

30
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Example - Polar Decomposition cont.

* InE;-E, coordinates C' = A = {3 0 }

0 1/3
* Principal Direction Matrix® =[E, E,]= Llfé?z —\1/62/2}

- Deformation tensor in principal directions

A=®".C-®
+ Stretch tensor
J3 0
H:[ 0 1/\/5}
J3/2 1)2
U=o-Ja-0 {1/2 5/2@}

31
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Example - Polar Decomposition cont.

* How U deforms a square?

BB T

- Rotational Tensor

L [V32 12 T
_E.U-! =
2-r {—1/2 @/J

J32] 1 12 | [115]%
Q'{ 1/2 }_{o}' Q'{5/2J§}_{ 1 }
- 300 clockwise rotation

5v3/6 1/2}
12 +/3/2

Xi, X4

V:F-QT{

32
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Example - Polar Decomposition cont.
A straight line X, = X, tan0 will deform to

Xl le_kle XZ :XZ
= X = (T no T k)XZ s
Consider a diagonal line: 6 = 45¢ S50
X, 1 - %1%
tano = —= = o =24.9°
X, 1+k
X2, X,

Consider a circle
2 2 .2
Xf+X5=r

(x1

xZ — 2kx,x, + (1 + k2)x5 = r?

2 2 2

Equation of ellipse

Deformation of a Volume

Infinitesimal volume by three vectors

- Undeformed:  dV, = dX! - (dX? x dX®) = e ,dX!dX2dX}
- Deformed: dV, = dx' - (dx? x dx®) = e;dx/dxdx?
dV, = e dxtdx?dx; A=Y
dXx?
OX 0X
e | —=id lj 1 gx? [—kd 3} < l
Jk(axr < xoe[sree] e OF
0%, OXj DX stz
= ' d od
- el e

= JdV \

T = detF = A0,

From Continuum Mechanics

e..deta

€ijk%rQjs%t = Cpst




Deformation of a Volume cont.

Volume change
[ dv, = JdV, ]

Volumetric Strain

dVv, —dV,
"% F% _ 3.1

 Incompressible condition: J = 1

Transformation of integral domain

j@fdg = HdeQ

Example - Uniaxial Deformation of a Beam

+ Initial dimension of Lyxhyxhy, deforms to Lxhxh

Deformation gradient

F=|0 1,

R

- Constant volume

J=1 = hzho\/% A:Ao%

Lq

h




Deformation of an Area
- Relationship between dS, and dS,
NdS, = dX! x dX? NdS, = e;dXjdX¢

ndS, = dx! x dx? n.ds, = e dxidx?

oX.
NS = e L 2% dxldx?

X, OX;
oX : - OX. §
Dy Kds, = ey KK g2
OX, X, K ox, Oxg OX;

Undeformed

Deformation of an Area cont..

Results from Continuum Mechanics

0X, OX, OX
ek |F| = ewss T){ii
j

~ oX 0X: o
et || = ‘%kﬁaxJ azk'
r S t
. n.dS,
Use the second relation: m
: - 0X; _
NSy = ey 255 X gyt — e [F[ dxtdx?
X, ¥ ox., 0xg 0%,
-T
ndS, = JFT -NdS, n|FT-N = n-t N
[FT-N]

ds, = J||F(x) TN(X)| dS,
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Stress Measures

- Stress and strain (tensor) depend on the configuration
* Cauchy (True) Stress: Force acts on the deformed config.

. A
- Stress vector at Q. {1’ = lim i

n

Q

AS,—0 AS, -

S
rd

—— Cauchy Stress, sym

- Cauchy stress refers to the current deformed configuration as a
reference for both area and force (true stress)

Undeformed configuration  Deformed configuration

Stress Measures cont.

+ The same force, but different area (undeformed area)

T- 1im 2F _p7N
AS;—>0 AS, First Piola-Kirchhoff Stress

Not symmetric

- P refers to the force in the deformed configuration and the area
in the undeformed configuration

* Make both force and area to refer to undeformed config.
df =ondS, =P'NdS, <——= ndS, = JF T -NdS,

df = o(TJF-TNdS,) = PTNdS,

[ P=-JFls } : Relation between ¢ and P




Stress Measures cont.

» Unsymmetric property of P makes it difficult to use

- Remember we used the symmeftric property of stress & strain
several times in linear problems

* Make P symmetric by multiplying with F-T

[5=P-F_T=JF_1-G-F_T} Gz%F-S-FT

—— Second Piola-Kirchhoff Stress, symmetric
- Just convenient mathematical quantities

* Further simplification is possible by handling J differently

’E=JG=F'S'FT}
Kirchhoff Stress, symmetric

41

Stress Measures cont.

- Example
[, orgdo, =[[[ o:8Tdog = [[] ©:gda,

Integration can be done in Q,
- Observation
- For linear problems (small deformation): ¢ ~E ~ e
- For linear problems (small deformation): c~t1~P~ S
- Sand E are conjugate in energy

- Sand E are invariant in rigid-body motion




Example - Uniaxial Tension

° CGUChy (Tr‘ue) stress: O11 = E , Opp = 033 = 01p = Op3 =013 - O

A
Deformation gradient:

L
w00 ?
F1=|0 2! 0| J=1
0 0 3 h
ho
First P-K stress
_(gFie) FL_FA_F L
R1 =(JF G)II_AM_AAO_AO h
h
Second P-K stress F
2
Sy={F! o -FT) = F1_FA _FA_F No clear physical

KE B Z% B AS ) Aoy meaning

Summary

Nonlinear elastic problems use different measures of
stress and strain due to changes in the reference frame

Lagrangian strain is independent of rigid-body rotation,
but engineering strain is not

Any deformation can be uniquely decomposed into rigid-
body rotation and stretch

The determinant of deformation gradient is related to the
volume change, while the deformation gradient and
surface normal are related to the area change

Four different stress measures are defined based on the
reference frame.

All stress and strain measures are identical when the
deformation is infinitesimal




3.3
Nonlinear Elastic Analysis

45
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Goals

* Understanding the principle of minimum potential energy

- Understand the concept of variation
* Understanding St. Venant-Kirchhoff material

+ How to obtain the governing equation for nonlinear elastic
problem

* What is the total Lagrangian formulation?
* What is the updated Lagrangian formulation?
* Understanding the linearization process

46
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" Numerical Methods for Nonlinear Elastic Problem \

We will obtain the variational equation using the principle
of minimum potential energy

- Only possible for elastic materials (potential exists)
The N-R method will be used (need Jacobian matrix)

+ Total Lagrangian (material) formulation uses the
undeformed configuration as a reference, while the
updated Lagrangian (spatial) uses the current
configuration as a reference

The total and updated Lagrangian formulations are
mathematically equivalent but have different aspects in
computation

Total Lagrangian Formulation

Using incremental force method and N-R method
- Total No. of load steps (N), current load step (n)

n+1f — "f L Af"
Assume that the solution has converged up to 1,

Want to find the equilibrium state at t,,;

Last converged configuration

Undeformed configuration (known) . .
— Current configuration

(known) gy (unknown)

______

~
N
n+1Q \\

n+1p

Iteration




Total Lagrangian Formulation cont.

* In TL, the undeformed configuration is the reference

- 2 P-K stress (S) and G-L strain (E) are the natural choice

* Inelastic material, strain energy density W exists, such
that
oW

ostrain

stress =

* We need to express W in terms of E

49
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Strain Energy Density and Stress Measures

+ By differentiating strain energy density with respect to
proper strains, we can obtain stresses

* When W(E) is given

_dW(E)
oE

* When W(F) is given

aw_aw-aE:F.%:F.szPT First P-K stress

oF OE oF €
» It is difficult Yo have W(g) because ¢ depends on rigid-

body rotation. Instead, we will use invariants in Section
35

S

Second P-K stress

50
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St. Venant-Kirchhoff Material

Strain enerqgy density for St. Venant-Kirchhoff material
[W(E) =;E:D:E } Contraction operator: a:b =aby

Fourth-order constitutive tensor (isotropic material)
D-1101+21]

- Lame's constants:

2 = vE _E
Taevd-2v) " 2u+v)

- Identity tensor (2" order): 1=[3;]
- Identity tensor (4™ order): Ly = %(Sikéij, + 818 k)

I:a=a, Vv2nd-ordersym.a

- Tensor product: a® a = qg;q, (4th-order)

51

St. Venant-Kirchhoff Material cont.

Stress calculation

- differentiate strain energy density

_WE) _.g_
[_ F —D-E—Mr(E)l+2uE}

- Limited to small strain but large rotation

E-L{FF-1)-1(U'Q"Qu-1)=1(L*-1)

- Rigid-body rotation is removed and only the stretch tensor
contributes to the strain

- Can show 5:%:2%
oE oC

L

Deformation tensor




Example

y A
- E=30000and v=03 20 Deformed element
* G-L strain: E_ 0.389 0 ‘\
0 -0.255 10 Undeformed
element
* Lame's constants: 07 15 >X
vE E
A= =17,308 = =11,538
I+v)i-2v) R TC PN S
- 2nd P-K Stress:
10 389 0
S = Atr(E)1 + 2uE = A(.389 - .255){0 J+ ZL{ 0 _.255}
11296 0
| 0 -3565
loeer [-1872 0
1 { 0 21,516} s
Example - Simple Shear Problem
- Deformation map Xa: X
1 k 1 110 k
ST S
0 1 2 2|k k % x,
* Material properties
vE E
) = = 40MPa p= = 40MP
Qi 2y TOMPa =207y = 10MPa
20 T S
- 2nd P-K stress ICauchy\,/'
101 Z
k2 2k
S = KTF‘(E)I + ZME = ZO{Zk 312 :IMPG :‘g; . 2nd P-K
2 4 3 L Z
o = ZFSFT - zo[g@: :lfs @%;k }MPG L7
—O.IZ 0.I2

0.0
Shear parameter k&




Boundary Conditions

Boundary Conditions

u=g, onT" Essential (displacement) boundary
t=P'N, onT*® Natural (traction) boundary
|—> You can't use S

Solution space (set)

V= {u[ueH(QFPF, ul, =g}

Kinematically admissible space
z ={ulu e [H(Q)P, u]., =0}

Variational Formulation

We want to minimize the potential energy (equilibrium)
[T"*: stored internal energy
[1ex": potential energy of applied loads
I1(u) = I (u) + I18%" (u)
_ _ Téb 4O _ T
=[], WEYdO - [[| uTfodO- [ uTt dr

Want to find u € V that minimizes the potential energy
- Perturb uin the direction of @ € Z proportional to 1
u=u+1

- If u minimizes the potential, I1(u) must be smaller than I1(u,) for all
possible @




Variational Formulation cont.

* Variation of Potential Energy (Directional Derivative)

_ . d .
[1(u,u) = an(u + 1U) We will use “over-bar"” for variation

=0
- I depends on u only, but T depends on both u and @

- Minimum potential energy happens when its variation becomes
zero for every possible G

- One-dimensional example

A

IT(u)

At minimum, all directional
derivatives are zero

u<—u—>u

Example - Linear Spring

‘ k |—>u )

Potential energy: Ti(u) = 1k- wW—f-u

Perturbation: T(u+ 1) =1k (u+0)° —f-(u+ )
Differentiation: %[H(u + rLT)] =k-(u+tu)-u-f-u
Evaluate at original state:

d _ _ _
a[H(u+ru)]T:O =k-u-u-f-u=0

Variation is similar to differentiation |




Variational Formulation cont.

Variational Equation

M) = [, P95 Edo- ][ @™ do-[,a™ dr=0

forallG €Z
- From the definition of stress

[ [ s:Eda—|[| a"foda+[ a"t er

Variational equation in TL formulation

- Note: load term is similar to linear problems

- Nonlinearity in the strain energy term

Need to write LHS in terms of uand @G

Variational Formulation cont.

How to express strain variation

E(u,d) - %E(u + 100)

=0
_1(v g Tl oT Ty g
. E(Vou +Vou' +Vou' Vou+Vou' Viou )

- %((1 +Vou Vol +Vou' (1+ VOU))
_ %(FTVOE + VOGTF)

[E (u,u) = sym(VoETF)]

Note: E(u) is nonlinear, but E(u,u) is linear




Variational Formulation cont.

Variational Equation

” S:EdQ = ” qubdQ+I u't dr foralla € Z

J | J

a(u,u) E(L_l)

Energy form Load form

{ a(u,u) =/(u), VueZ ]

Linear in terms of strain if St. Venant-Kirchhoff material
is used

Also linear in terms of @

Nonlinear in terms of u because displacement-strain

relation is nonlinear
61

Linearization (Increment)

Linearization process is similar to variation and/or
differentiation

- First-order Taylor series expansion

- Essential part of Newton-Raphson method

Let f(x**1) = f(xk + Auk), where we know x* and want to
calculate Auk

F(xkt) = f(xk) + 2

The first-order derivative is indeed linearization of f(x)

df(x). Ak +HO.T.
dx

o=0

{ L[f] = —f(X + ®wAU) = % . Au} Linearization

of = f

=—u Variation

-0 O0X

%f(x +1U)




Linearization of Residual
We are still in continuum domain (not discretized yet)
Residual R(u) = a(u,u) - ¢(u)

We want to linearize R(u) in the direction of Au

- First, assume that u is perturbed in the direction of Au using a
variable t. Then linearization becomes

T
_ {@} Au
-0 ou

- R(u) is nonlinear w.r.t. u, but L[R(u)] is linear w.r.t. Au

OR(u + TAu)

LIR(W)] = —

- Iteration k did not converged, and we want to make the residual at
iteration k+1 zero

.
R(uk*!) ~ {%“:k)} AUk +R(U*) =0

Newton-Raphson Iteration by Linearization
This is N-R method (see Chapter 2)

k T
|:8Ra(:: ):| Auk = —R(Uk) of

f(xK)

{C i ) P —— :

Update state  u*! = u* + AU
xk+1 =X + uk+1

OR(u*)
We know how to calculate R(uk), but how about 2 ?

a%[R(u)] = a%[G(U, u) —%Z‘/)]

- Only linearization of energy form will be required

- We will address displacement-dependent load later




Linearization cont.

Linearization of energy form
Lla(u,u)] = L[jJOQS : E_dQ] = HOQ[AS :E +S: AE]dQ

- Note that the domain is fixed (undeformed reference)

- Need to express in terms of displacement increment Au
Stress increment (St. Venant-Kirchhoff material)

AS:§:AE=D:AE
oE

Strain increment (Green-Lagrange strain)
AE = 1(AFTF + FTAF)

OX o(X+u)) OAu
F ( oX j ( oX j ax ot

Linearization cont.

Strain increment  AE = 1(AFTF + FTAF)
= 1(VoAu'F + FTV,Au)

B T
= sym(VoAu'F) Il Linear w.r.t. Au

Inc. strain variation g _ Alsym(V,d"F)]

= sym(V,u ' AF)

= sym(Vol 'VoAU) 1l Linear w.r.t. Au
Linearized energy form
[ Lla(u,)] = HOQ[E :D: AE +S: AE]dQ = a” (u; Au,u) }

- Implicitly depends on u, but bilinear w.r.t. Au and
- First term: tangent stiffness

- Second term: initial stiffness




Linearization cont.

N-R Iteration with Incremental Force
- Let 1, be the current load step and (k+1) be the current iteration

- Then, the N-R iteration can be done by

[ a ("uk;Auk,u) = (@) - a("uk,u), Vuez J

- Update the total displacement

n, k+1 _ n,k
In discrete form
{d}T["KE{Ad¥} = {d}T{"R¥}

What are ["K&1 and {"R} ?

Example - Uniaxial Bar
du du

inematics ——=u,, ——=0 7
K m dX uz dX uz F=100N
2 @ @_’
’ X 2idX 2 2 i ” Ly=1m >

Strain variation

= du dudu _
Ell = dX + d)( dX = U2(1+U2)
Strain energy density and stress
0 1
W(En):%E‘(Eu)z Sy :%:E‘Eu :E£U2+§(U2)2j
11
Energy and load forms
a(u,@) = [ Sy AdX = SyALy(1 + )G, (@) = GF

Variational equation R=,(S;AL(1+w)-F)=0, Vi,




Example - Uniaxial Bar
Linearization
ASy; = EAE; = E(1+ )AL, AE = AU,
a (U Au,T) = I;O(E1 B ARy + 5y ‘A[::u)Adx
= EALy(1 + b, )’ BAY, + SyALgTA
N-R iteration
[EQ+ W) + SftJALoAE =F - Sfi(1+u)AL,

Example - Uniaxial Bar

(a) with initial stiffness

Iteration u Strain Stress  conv

0 0.0000 0.0000 0.0000 9.999E-01
1 0.5000 0.6250 125.00 7.655E—01
2 0.3478 0.4083 81.664 1.014E-02
3 0.3252 0.3781 75.616 4.236E—06
(b) without initial stiffness

Iteration u Strain Stress  conv

0 0.0000 0.0000 0.0000 9.999E-01

1 0.5000 0.6250 125.00 7.655E—-01
2 0.3056 0.3252 70.448 6.442E-03
3 0.3291 0.3833 76.651 3.524E-04
4 0.3238 0.3762 75.242 1.568E—-05
5 0.3250 0.3770 75.541 7.314E-07




Updated Lagrangian Formulation

The current configuration is the reference frame
- Remember it is unknown until we solve the problem

- How are we going to integrate if we don't know integral domain?

* What stress and strain should be used?

- For stress, we can use Cauchy stress (o)

- For strain, engineering strain is a pair of Cauchy stress
- But, it must be defined in the current configuration

1 ( ou' au

=2 = 2 | = sym(V
g 5| o +8x] sym(V,u)
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Variational Equation in UL

* Instead of deriving a new variational equation, we will
convert from TL equation

1 . _T —
GZEF'S'FT E_;[au F+FT6U}

= S=JF!.c.FT

oX' ou'  ou oX

2" | ax oX | aXox

~—
m

Similarly
_T —_

AE =F".Ac-F ler| v ﬁ‘ijF
1(8AUT X 8Au} e (x  ox

Ag = =
¢ 2| Ox OX




Variational Equation in UL cont.

Energy Form
a(u,@) = [[ S:EdQ=[[ (JF'oFT):(FTeF)dQ

6mkgnlckl €man = Omn&mn

Fi ‘o Frimnby

mi“mn'nj ~

”Q S:EdﬂzﬂQ cs:EJdﬂzﬂQ c:edQ

- We just showed that material and spatial forms are
mathematically equivalent

Although they are equivalent, we use different notation:

L G(U, a) - '”Qx c 1 €dQ J Is this linear or nonlinear?

Variational Equation

[ a(u, U) = E(G), YU € Z J What happens to load form?
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Linearization of UL

* Linearization of a,(u,u) will be challenging because we

don't know the current configuration (it is function of u)

Similar to the energy form, we can convert the linearized
energy form of TL

- Remember a (u;Au,u) = HOQ[E :D:AE+S:AE]d°0

« Initial stiffness term

_T T
SIAEJ(FIGFT)I;(&" OAu  O0Au auJ

X X X X
1| du . OAu OAuU,. Ou,

:JFiIZIGkIF'_l _[ m m m mj
oX axj oX an

I 2

1( ou. OAuU OAU.. OU,
_ Jo, —| Lm m m “Ym B
Gk'Z(@xk ox,  Ox, ax,}\”k'(m"“)




Linearization of UL cont.

+ Initial stiffness term
[S : AE = Jo : n(Au, G)J n(Au,u) = sym(V,u'V, Au)

» Tangent stiffness term
(E:D:AE)=(F" -&-
:F|<i8kIFD FomAEpgFan

ijmn’ pm

=Jg |:[J Raf; DqunF;oqun} IASpq
4th-order spatial

constitutive tensor

F):D:(F'-Ae-F)

[E:D:AE=J§:c:As]

where IJkl F F kaﬁ D

Jiris n-rsmn
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Spatial Constitutive Tensor

+ For St. Venant-Kirchhoff material
D=2(1®1)+2uI D, =258, + (8¢ +

rsmn rs-mn rn sm)

- It is possible to show

1
Cijkl = 3[7“b|jbkl + ubyby +bybye) |-
+ Observation

- D (material) is constant, but ¢ (spatial) is not
- S=D:E, o=#c:¢
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Linearization of UL cont.

From equivalence, the energy form is linearized in TL and

converted to UL
Lla(u,u)] = ”Q [E:c:Ae+0:1]TdQ

[ a (u;Au,u) = ”Q [E:c:Ae+o0: n]dQ}
N-R Iteration
| o ("dad,@) - (@) - a("H,b), VaeZ |
Observations

- Two formulations are theoretically identical with different

expression
- Numerical implementation will be different

- Different constitutive relation

Example - Uniaxial Bar

%

Kinematics - 100
ﬂ _ U, d_lj . 62 @ @_’
dx 1+u,’ dx 1+u, i Ltm .
Deformation gradient: F; = j—;‘( =1l+u, JT=1+uy
Cauchy stressic;; = %FHSHF11 = E(u, + %u%)(l +U,)
Strain variation: ¢,(@) = R{"E; Rl = e

1+u,
Energy & load forms: a(u,t) = j; oy (0)AdX = o,AL,  /(T) = GF

Residual: R=1,(c,A-F) =0, VG,




Example - Uniaxial Bar
1

- Spatial constitutive relation: ¢, = 7

FiFiRifiE = 1+ w,)°E

* Linearization: joL £11(@)Cyp1811 (AU)AdX = EA(L + u, Y TrAu,

L _ oA —
G Au,0)Adx = 1, Au
_[0 11 ( ) T+u, 22

x A A _
a (u;Au,u) = _[O(sll(u)qman(Au)+c511n(Au,u))Adx

=EA(l + b, )’BAL, + &AUZAUZ

l+u,
Iteration u Strain Stress  conv
0 0.0000 0.0000 0.000 9.999E-01
1 0.5000 0.3333 187.500 7.655E—01
2 0.3478 0.2581 110.068 1.014E-02
3 0.3252 0.2454 100.206 4.236E—06

Section 3.5
Hyperelastic Material Model




Goals

Understand the definition of hyperelastic material

Understand strain energy density function and how to use
it to obtain stress

Understand the role of invariants in hyperelasticity
Understand how to impose incompressibility

Understand mixed formulation and perturbed Lagrangian
formulation

Understand linearization process when strain energy
density is written in ferms of invariants

81

What Is Hyperelasticity?

Hyperelastic material - stress-strain relationship derives
from a strain energy density function

- Stress is a function of total strain (independent of history)

- Depending on strain energy density, different names are used,
such as Mooney-Rivlin, Ogden, Yeoh, or polynomial model

Generally comes with incompressibility (J = 1)

- The volume preserves during large deformation

- Mixed formulation - completely incompressible hyperelasticity
- Penalty formulation - nearly incompressible hyperelasticity
Example: rubber, biological tissues

- nonlinear elastic, isotropic, incompressible and generally
independent of strain rate

Hypoelastic material: relation is given in terms of stress
and strain rates 82)




Strain Energy Density

- We are interested in isotropic materials

- Material frame indifference: no matter what coordinate system is
chosen, the response of the material is identical

- The components of a deformation tensor depends on coord. system

- Three invariants of C are independent of coord. system

« Invariants of C

I1 = Tr‘(C) = Cll + CZZ + C33 = 7\412 + }LS + }\«g NO defor'ma'ﬁon
I1 =3
I, = 1[ (trCY —tr(€?) | = 1213 + 2505 + W§\% % = ?
3=

I, = detC = AfA3)5

- Inorder to be material frame indifferent, material properties
must be expressed using invariants

- For incompressibility, I5 =1

Strain Energy Density cont.
- Strain Energy Density Function

- Must be zerowhenC=1,ie A=A, =23=1
W(I1:I2:I3) = Z Amnk(]:l - 3)m(-T-2 - 3)"(]:3 - 1)k
m+n+k=1

- For incompressible material

W(,,L,) = i Ann (X -3)"(L, -3)"

m+n=1
- Ex: Neo-Hookean model
W(L) = Ap(T; - 3) Ao =
- Mooney-Rivlin model

WL, L) = Ap(T; - 3) + Ay (T, - 3)

OV A=




Strain Energy Density cont.
Strain Energy Density Function

- Yeoh model
W(T;) = Ap(; - 3) + Ay (L - 3)* + Ay (I, - 3)°
- Ogden model Initial shear modulus
N N
i a; o (0% 1
Wi(h g hg) = 2 5L (A + g 425 -3) w==Yau
i=1 & 217

- When N = 1and g, = 1, Neo-Hookean material
- WhenN=2,04=2,and a, = —2, Mooney-Rivlin material

Example - Neo-Hookean Model

Uniaxial tension with incompressibility
M=A  hy=A;=1/1
Energy density
W = Ao(T, ~3) = Ag(F +33 +13 -3) = Ao (12 +2 -3)
Nominal stress
Pz%zz%(”‘@ :“(“8_(138)2]

50

Linear elastic

0

-50

Nominal stress
) ;

o

o

Neo-Hookean

-2 1
5—%.8 -0.4 0 0.4 0.8
Nominal strain




Example - St. Venant Kirchhoff Material

* Show that St. Venant-Kirchhoff material has the following
strain energy density

WGE) = Z[1r®) ] +utr(E?)

_OW(E) _ a‘rr'(E) otr(E?)
S=—"¢ ~M® THToE
* First term
. otr(E) _
tr(E)=1:E -1
‘i (E)a“'(E) M(1:E) = 2(1®1):E

- Second term

oEE;
8Ekl = 6Ik8J|EJI + EI

1105k = Ex + Ex = 2B
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\

a

Example - St. Venant Kirchhoff Material cont.

« Therefore

5 _tp (E)afr'éE) Mafra(EEZ)

=M1®1):E +2uE
=[M1®1)+2uI |:E
\ J
|
D
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Nearly Incompressible Hyperelasticity

Incompressible material
- Cannot calculate stress from strain. Why?
Nearly incompressible material
- Many material show nearly incompressible behavior
- We can use the bulk modulus to model it
Using I, and I, enough for incompressibility?
- No, I; and I, actually vary under hydrostatic deformation

- We will use reduced invariants: J;, J,, and J5

[Jl _ILY3 I,-LL¥3 I,-7- Ig/ﬂ

Will J; and J, be constant under dilatation?

Locking
What is locking

- Elements do not want to deform even if forces are applied
- Locking is one of the most common modes of failure in NL analysis
- It is very difficult fo find and solutions show strange behaviors

Types of locking
- Shear locking: shell or beam elements under transverse loading
- Volumetric locking: large elastic and plastic deformation

Why does locking occur?
- Incompressible sphere under hydrostatic pressure

No unique pressure

for given displ.

Pressure

Volumetric strain




How to solve locking problems?

* Mixed formulation (incompressibility)

Can't interpolate pressure from displacements

Pressure should be considered as an independent variable

Becomes the Lagrange multiplier method

The stiffness matrix becomes positive semi-definite

Displacement

@
Pressure

4x1 formulation
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Penalty Method

Instead of incompressibility, the material is assumed to be nearly
incompressible

This is closer to actual observation

Use a large bulk modulus (penalty parameter) so that a small volume
change causes a large pressure change

Large penalty term makes the stiffness matrix ill-conditioned
Tll-conditioned matrix often yields excessive deformation
Temporarily reduce the penalty term in the stiffness calculation

Stress calculation use the penalty term as it is

© Unique pressure - -
2 for given displ. 1 .
0 10
a [K]=
1
Volumeftric strain L 1




Example - Hydrostatic Tension (Dilatation)

X; = aX a 0 O @t 0 O
X, = aX, F=/0 o O C=|{0 a® O
X3 = aXy 0 0 « 0 0 of
Invariants
L =30 I,=30" I;=0af I, and I, are not constant

Reduced invariants

J, =LLY3 =3
I, =LL;*3 =3
J'3 _ I%/Z — o3

J; and J, are constant

Strain Energy Density

Using reduced invariants

WL T,.35) = W0, ) + W) |

- Wy(J4, J,): Distortional strain energy density
- W(J3): Dilatational strain energy density

The second terms is related o nearly incompressible
behavior

K
W,(J3) = E(J3 ~1)°
- K: bulk modulus = A + %u for linear elastic material

Abaqus: WH(J3) — %(J} _ 1)2




Mooney-Rivlin Material

* Most popular model

- (not because accuracy, but because convenience)

W(Jl,Jz,J3) — WD(JI'J2)+ WH(J3)

— Ao(T, = 3) + Ay (T, —3) +§(J3 )2

 Hydrostatic pressure

\

P=33, ~ ol

oW aw,

—K(J, -1)

- Initial shear modulus ~ 2(A + Ap)
- Initial Young's modulus ~ 6(Ao + Ay) (3D) or 8(A;p + Apy) (2D)
- Bulk modulus = K

- Penalty method with K as a penalty parameter

- Numerical instability for large K (volumetric locking)

Mooney-Rivlin Material cont.

Second P-K stress

oW oW aJ, oW aJ, oW ads
= = + +
0E 83, cE  &J, o€

0T, OE

[5 = Aodie + Agdag +K(J3 - 1)J5¢ ]

- Use chain rule of differentiation

Jig = (151/3)I1,E - %Il(I§4/3)I3,E
Joe =T 2/3)I2,E ~2T,(I3 5/3)I3,E

J3g = %(I3_ e L3

Le =21
I = 4(1+ trE)1 - 4E
Lg=(2+41rE)1 - 4E + 2 €n€;rsErmrEns ]

oa

J, =LI"3
J, = LI
J3 = I%/Z

I].,E = 21




Example
* Show TILg=21 Lg=2I1-C), IL=2LC"
* Let L =tr(c), I,=1tr(cc), I =1ltr(cce)
* Then L=I, L :§I1 -L, L :I3+5I13—11I2
 Derivatives

oL, oL, oL,

ac O o "G o~ G

1 I ij

oL, oL, 0L, )

e W 2 =15, -C;, ==L

oc, N oec; oc;
and

0 0

Y _2Y

oC oE

Mixed Formulation

- Using bulk modulus often causes instability

- Selectively reduced integration (Full integration for deviatoric
part, reduced integration for dilatation part)

* Mixed formulation: Independent treatment of pressure
Wh(J3.p) = p(J5 - 1)
- Pressure p is additional unknown (pure incompressible material)

- Advantage: No numerical instability
- Disadvantage: system matrix is not positive definite

* Perturbed Lagrangian formulation
1
W,(J5.p) = P 1) - 5 p°

- Second ferm make the material nearly incompressible and the
system matrix positive definite




Variational Equation (Perturbed Lagrangian)

Stress calculation
W31 T2,33) = Aol ~3)+ AT~ 3+ pT ~D) + o p°
S = Aodie T Aodoe +PI3E
Variation of strain energy density
W = WeE +W,p
=S+ (T -1-D)p
Introduce a vector of unknowns: r = (u,p)

a(r,r) = HQ [ S:E+pH |dO

H=J; - —E Volumetric strain

Example - Simple Shear

Calculate 2nd P-K stress for the simple shear deformation

- material properties (A, Ay, K) Xy, X,
1 10 1 10
F=|0 1 0 C=FF=|1 2 0
0 0 1 0 0 1 450
I -4 I,-4 I,-1 X X4
11,5221
6 -2 0
Le=-2L1-C)=|-2 4 0
O 0 6
4 20

Leg=2IC'=|-2 2 O
0O 0 2




Example - Simple Shear cont.

5 4 0

J. = IiI_1/3 -4 4 2
P Jg=leg-3Le=3/4 10
O 0 -1
T, =LI;?3 =4 2:_7 -
J,e=L.-8L.. =215 -2 0

J— _1/2 - ZIE 21E 3 3/E

J; =15 =1 3_ 0 0 1

S =Agdie + Apdoe +K(J5 - 1DJ5e

5 —DAp —TAy 4A + DAy 0
=3 4A 0 + DAy  —Ap —2Ay 0
0 0 —Ap + Aot

Note: Sy, S,,and S35 are not zero
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Stress Calculation Algorithm

- Given: {E} = {Ey1, Bz, B33, Epp, Bz, Eqs}T, {p}, (Aro, Aor)
{1}={1 11 0 0 0}7 {€c}=2(E}+{1}
L=G+G+G
I, = CC, + C,Cs + C,C; — C,C, — CsCs — C.C
I3 = (GG, = C4Cy)Cs + (G4, — GG5)Cs +(C4C5 — GGy )G

{Tieg}=2(1 1 1 0}
Le}=2G+6G G+G G+G € G G}
{Le}=2{GG -G GG -G GG -G

CsCo —C3Cs CCy — GG GyCs - GGy}

{Tie} = L3 {Te) - %I1I3_4/3{I3,E}
{J6} = 13_2/3{12,5} - §I2I3_5/3{I3,E}

{T3e} = %13_1/2{13,5}/
For penalty method, use
{S} = Ap{J1e} + Ay {To e} + p{T3e} K(J; - 1) instead of p




Linearization (Penalty Method)
 Stress increment
AS =Weg : AE=D: AE
* Material stiffness

0S

D= € Aodige + Aordz e +K(J3 D3 e +KT3e ® T3

* Linearized energy form

a”(u;Au,T) = ”Q [E:D:AE+S: AE | dO

103
Linearization cont.
- Second-order derivatives of reduced invariants
4 s 4 7 1_ s
Jige = Lieels® - §I3 (Le®Lg+Le®Lg)+ §I1I3 Le®Le - §I1I3 T3ee
2 2.5 10 -8 2.5
Joee = Lgels® - §I3 Le®Le+Le®Lg)+ 3I2I3313,E ®Lg - §IZI33I3,EE

1._-3 1_1
J3pe = 7 L L ® L + 5L e
4 2
II,EE =0
1 o et gl
L = 440 @ C1-T,CUIC




oe

[
°

MATLAB Function Mooney

Calculates S and D for a given deformation gradient

2nd PK stress and material stiffness for Mooney-Rivlin material

function [Stress D] = Mooney(F, A10, A0l, K, ltan)

Q

%
%
%

%

o\°

o©

Inputs:

F = Deformation gradient [3x3]

Al10, AO0l, K = Material constants

ltan = 0 Calculate stress alone;

1 Calculate stress and material stiffness

Outputs:

Stress = 2nd PK stress [S11, S22, S33, S12, S23, S13];
D = Material stiffness [06x6]

Summary

Hyperelastic material: strain energy density exists with
incompressible constraint

In order to be material frame indifferent, material
properties must be expressed using invariants

Numerical instability (volumetric locking) can occur when
large bulk modulus is used for incompressibility

Mixed formulation is used for purely incompressibility
(additional pressure variable, non-PD tangent stiffness)

Perturbed Lagrangian formulation for nearly
incompressibility (reduced integration for pressure term)




Section 3.6

Finite Element Formulation for
Nonlinear Elasticity

Voigt Notation

We will use the Voigt notation because the tensor
notation is not convenient for implementation

- 2nd-order tensor = vector

- 4th-order tensor = matrix

Stress and strain vectors (Voigt notation)

{5}:{511 S22 S12}T
{E}={E; E» 2B}

- Since stress and strain are symmetric, we don't need 21 component




4-Node Quadrilateral Element in TL

- We will use plane-strain, 4-node quadrilateral element to
discuss implementation of nonlinear elastic FEA

+ We will use TL formulation
UL formulation will be discussed in Chapter 4

t
(-1,1) 1,1)
— S

(-1,-1) (1,-1)

X,

Finite Element at Reference Element
undeformed domain

Interpolation and Isoparametric Mapping

- Displacement interpolation
Nodal displacement vector (ur, vr)

Ne
u=> N(s)y
I=1 |

- Isoparametric mapping

Interpolation function

- The same interpolation function is used for geometry mapping
Nodal coordinate (X:, Y1)

N,
Z (s)X;
N =2(1-s)1-1)
N, = 1(1+s)1-1) Interpolation (shape) function
N, = i(l Ls)1+1) « Same for all elements
T4

* Mapping depend t
N, = %(1 _s)(1+1) apping depends of geometry




Displacement and Deformation Gradients
Displacement gradient

_U Z 5NI(S)

I=1

Ne
U= IZZINI,j(S)UIi

T
vo'-':{‘-'1,1 o Uy Uz,z}

N (s) 5
oxX

- How to calculate

Deformation gradient

{F}={R;y R, Fy Fzz}T ={1+ b1 Wy Uy 1+ Uz,z}T

- Both displacement and deformation gradients are not symmetric
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Green-Lagrange Strain

Green-Lagrange strain

1
E g+ 5 (Ut g + Uy g)
_ _ 1
{E}=1Ep (=9 b+ E(U1,2U2,1 + ol 5)
2&y; ot tUot o

- Due to nonlinearity, {E} = [B]}{d}
- For St. Venant-Kirchhoff material, {S} =[DXE}

A+2u A 0
[D] = A r+2u O
0 0 u




Variation of 6-R Strain

Although E(u) is nonlinear, E(u,u) is linear

E(u,T) = sym(vVo,d"F) [ (€} - (B, Xd) }

F11N1,1 FZINI,I F11N2,1 FZINZ,I F11N4,1 F21N4,1

[BN]: FiZNl,Z I::.22I\ll,2 FiZNZ,Z F22N2,2 FiZN4,2 F22N4,2
FllNl,Z FZINI,Z FIINZ,Z F21N2,2 FIIN4,2 l:21N4,2

_+FIZNI,1 +F22Nl,1 +F12Nz,1 +F'T22N2,1 +F12N4,1 +F22N4,1_

—> Function of u
Different from linear strain-displacement matrix

Variational Equation
Energy form
a(u,u) = jjgos :EdO
= {d}"[], B\T'{S}dO
= {d}T{F"™)}
Load form

(@ =[], TP+ [ aTtdr
0 0

Ne
> T, Ne@fP dar [ Nt |
{J}T{Fex‘r}

Residual
{d}T{F"(d)} = {d}T{F*"}, v{d}eZ,




Linearization - Tangent Stiffness

+ Incremental strain [{AE}:[BN]{Ad}]

- Linearization

JJ, E:D:aEdQ = {d)T| [], [BI'IDIBy]dO |{ad)
[l 5:AEde = (@] ][, (B, I"[=]Bs1d2 [{ad)

'Sy S, 0 O
[Z]Z S12 522 0 0

0 0 s S,
L0 0 Sp S5

Ny, 0 N,y 0 Ny 0 Ny 0

l\11,2 0 NZ,Z 0 N3,2 0 N4,2 0
0 I\ll,l 0 N2,1 0 N3,1 0 N4,1
[0 Ny 0 N 00 Ny, 00 Ny 115

[BG] =

Linearization - Tangent Stiffness

 Tangent stiffness

[ k1= [, [[BITIDIB ] + (B T 1(Bs 1 ]dxg J

- Discrete incremental equation (N-R iteration)

[ {d}T[K: {Ad} = (d}T(F>" -F"}, v{d} <2z, 1

- [K+] changes according o stress and strain

- Solved iteratively until the residual term vanishes
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Summary

- For elastic material, the variational equation can be

obtained from the principle of minimum potential energy

- St. Venant-Kirchhoff material has linear relationship
between 2"d P-K stress and 6-L strain

 In TL, nonlinearity comes from nonlinear strain-
displacement relation

» In UL, nonlinearity comes from constitutive relation and
unknown current domain (Jacobian of deformation
gradient)

+ TL and UL are mathematically equivalent, but have
different reference frames

» TL and UL have different interpretation of constitutive
relation.

Section 3.7

MATLAB Code for
Hyperelastic Material Model




HYPER3D.m

» Building the tangent stiffness matrix, [K], and the residual
force vector, {R}, for hyperelastic material

* Input variables for HYPER3D.m

Variable Array size Meaning

MID Integer Material Identification No. (3) (Not used)
PROP (3,1) Material properties (A10, A01, K)
UPDATE Logical variable If true, save stress values

LTAN Logical variable If true, calculate the global stiffness matrix
NE Integer Total number of elements

NDOF Integer Dimension of problem (3)

XYZ (3,NNODE) Coordinates of all nodes

LE (8,NE) Element connectivity

function HYPER3D(MID, PROP, UPDATE, LTAN, NE, NDOF, XYZ, LE)
%‘k‘k***‘k‘k‘k‘k********‘k‘k‘k‘k****‘k***‘k‘k‘k‘k*********‘k‘k‘k*********‘k‘k‘k‘k*********‘k‘k‘k*
% MAIN PROGRAM COMPUTING GLOBAL STIFFNESS MATRIX AND RESIDUAL FORCE FOR
% HYPERELASTIC MATERIAL MODELS

LR EEEEEEEEEE S EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRR RS S E S

global DISPTD FORCE GKF SIGMA

oe

% Integration points and weights
XG=[-0.57735026918963D0, 0.57735026918963D0];
WGT=[1.00000000000000D0O, 1.00000000000000D0];

o°

% Index for history variables (each integration pt)
INTN=0;

o

%LOOP OVER ELEMENTS, THIS IS MAIN LOOP TO COMPUTE K AND F
for IE=1:NE

% Nodal coordinates and incremental displacements
ELXY=XYZ (LE (IE, :), :);
% Local to global mapping
IDOF=zeros (1,24);
for I=1:8

II=(I-1)*NDOF+1;

IDOF (ITI:II+2)=(LE(IE,I)-1)*NDOF+1: (LE(IE,I)-1)*NDOF+3;
end
DSP=DISPTD (IDOF) ;

DSP=reshape (DSP, NDOF, 8) ;

oe

$LOOP OVER INTEGRATION POINTS

for LX=1:2, for LY=1:2, for LZ=1:2
E1=XG (LX) ; E2=XG(LY); E3=XG(LZ);
INTN = INTN + 1;

oo

% Determinant and shape function derivatives

[~, SHPD, DET] = SHAPEL([El E2 E3], ELXY);

FAC=WGT (LX) *WGT (LY) *WGT (LZ) *DET; 120
W)




% Deformation gradient
F=DSP*SHPD' + eye(3);

Computer stress and tangent stiffness
STRESS DTAN] = Mooney (F, PROP(1l), PROP(2), PROP(3), LTAN);

— d° o°

oo

% Store stress into the global array
if UPDATE

SIGMA (:, INTN)=STRESS;

continue;
end
% Add residual force and tangent stiffness matrix
BM=zeros (6,24); BG=zeros(9,24);
for I=1:8

COL=(I-1)*3+1:(I-1)*3+3;

BM(:,COL)=[SHPD(1,I)*F(1,1) SHPD(1,I)*F(2,1) SHPD(1,I)*F(3,1);
SHPD (2, I)*F(1,2) SHPD(2,I)*F(2,2) SHPD(2,I)*F(3,2);
SHPD (3, I)*F(1,3) SHPD(3,I)*F(2,3) SHPD(3,I)*F(3,3);
SHPD (1, I)*F(Ll,2)+SHPD(2,I)*F(1,1)
SHPD (1, I)*F(2,2)+SHPD(2,I)*F(2,1) SHPD(L,I)*F(3,2)+SHPD(2,I)*F(3,1);

SHPD (2, I) *F (1, 3)+SHPD (3, I)*F(1,2)
SHPD (2, I)*F(2,3)+SHPD (3, I)*F(2,2) SHPD(2,I)*F(3,3)+SHPD(3,I)*F(3,2);
SHPD (1, I)*F(1,3)+SHPD(3,I)*F(1,1)

SHPD(1,I)*F(2,3)+SHPD(3,I)*F(2,1) SHPD(1l,I)*F(3,3)+SHPD(3,I)*F(3,1)];
BG(:,COL)=[SHPD(1,I) O 0;
SHPD(2,I) O 0;
SHPD(3,I) O 0;
0 SHPD(1,I) O0;
0 SHPD (2,I) O0;
0 SHPD (3,I) 0;
0 0 SHPD (1, 1) ;
0 0 SHPD(2,1);
0 0 SHPD (3,1I)1]1;
end 121
Y
. N
% Residual forces
FORCE (IDOF) = FORCE (IDOF) - FAC*BM'*STRESS;

o

o

Tangent stiffness

if LTAN

SIG=[STRESS (1) STRESS(4) STRESS (6);
STRESS (4) STRESS(2) STRESS (5);
STRESS (6) STRESS (5) STRESS(3)1];

SHEAD=zeros (9) ;

SHEAD (1:3,1:3)=SIG;

SHEAD(4:6,4:6)=S1IG;

SHEAD (7:9,7:9)=SIG;

o
5

EKF = BM'*DTAN*BM + BG'*SHEAD*BG;
GKF (IDOF, IDOF)=GKF (IDOF, IDOF) +FAC*EKF;
end
end; end; end;
end
end




Example Extension of a Unit Cube

* Face 4 is extended with a stretch ratio A = 6.0
* BC:u;=0at Face 6, u, =0 at Face 3, and u; = O at Face 1
* Mooney-Rivlin: A;; = 80MPa, Ay = 20MPq, and K =107

% Nodal coordinates
Xyz=[0 O 0;1 0 0;1 1 0;0 1 0;0 0 1;1 0 1;1 1 1;0 1 17;

oe

<:> mel <:>

% Element connectivity 1

1
LE=[1 2 3 456 7 8]; | :
3 OF
g I Face 4
% No external force |
EXTFORCE=[] ; Face 6 ~~"[~ >
% /} ————— —— X]
% Prescribed displacements [Node, DOF, Value] Re <:> ‘
SDISPT=[1 1 0;4 1 0;5 1 0;8 1 0; % ul=0 for Face 6 I/
120;220;520;620; % u2=0 for Face 3 ® /
1 3 0;2 3 0;3 3 0;4 3 0; % u3=0 for Face 1 X, Face 3
21 5;315;6105;715]; % ul=5 for Face 4
% Load increments [Start End Increment InitialFactor FinalFactor]
TIMS=[0.0 1.0 0.05 0.0 1.07]"
% Material properties
MID=-1;
PROP=[80 20 1E71];

\ 123
e A
Example Extension of a Unit Cube

Time Time step Iter Residual
0.05000 5.000e-02 2 1.17493e+05
Not converged. Bisecting load increment 2
Time Time step Iter Residual
0.02500 2.500e-02 2 2.96114e+04
3 2.55611e+02 6000
4 1.84747e-02
5 1.51867e-10 5000
Time Time step Iter Residual » 4000
0.05000 2.500e-02 2 2.48106e+04 o
3 1.69171e+02 wsmm
4 7.67766e-03
5 2.39898e-10 2000
Time Time step Iter Residual 1000
0.10000 5.000e-02 2 8.45251e+04
3 1.88898e+03 o ]
4 8.72537e-01 1 2 3 4 5
Stretch ratio
5 1.86783e-07
Time Time step Iter Residual
1.00000 5.000e-02 2 8.55549e+03
3 8.98726e+00
4 9.88176e-06
5 1.66042e-09 12@




Hyperelastic Material Analysis Using ABAQUS
- *ELEMENT,TYPE=C3D8RH,ELSET=ONE

- 8-node linear brick, reduced integration with hourglass control,

hybrid with constant pressure

- *MATERIAL NAME=MOONEY
*HYPERELASTIC, MOONEY-RIVLIN

80., 20.,

- Mooney-Rivlin material with A;y = 80 and Ay = 20

« *STATICDIRECT

- Fixed time step (no automatic time step control)

"

Hx

2/

Hyperelastic Material Analysis Using ABAQUS

*HEADING
- Incompressible hyperelasticity (Mooney-
Rivlin) Uniaxial tension
*NODE NSET=ALL

8,0.1.1

*NSET NSET=FACE1

1234

*NSET NSET=FACE3

1256

*NSET NSET=FACE4

236,77

*NSET /NSET=FACE6

4185

*ELEMENT,TYPE=C3D8RH ,ELSET=ONE

112345678

*SOLID SECTION, ELSET=ONE,
MATERIAL= MOONEY

*MATERIAL,NAME=MOONEY
*HYPERELASTIC, MOONEY-RIVLIN
80., 20.,

*STEP NLGEOM,INC=20
UNIAXIAL TENSION
*STATIC,DIRECT

1.,20.
*BOUNDARY,OP=NEW
FACE1,3

FACE3,2

FACE6,1

FACE4,1,15.

*EL PRINT F=1

S,

E.

*NODE PRINT,F=1

U,RF

*OUTPUT FIELD,FREQ-=1
*ELEMENT OUTPUT

SE

*OUTPUT FIELD,FREQ=1
*NODE OUTPUT

URF

*END STEP




Hyperelastic Material Analysis Using ABAQUS

Analytical solution procedure
- Gradually increase the principal stretch & from 1 to 6
Deformation gradient

A0 0
F=l0 1/J» 0
0O 0 1/Va

Calculate J g and T, ¢
Calculate 2nd P-K stress

S =Adie +Andag

Calculate Cauchy stress

1
-—F.S-F'
c J‘F F

Remove the hydrostatic component of stress

O11 = 011 — G2

A\

Hyperelastic Material Analysis Using ABAQUS

Comparison with analytical stress vs. numerical stress

6000

5000
4000+
7 3000f

2000

1000

— Analaytical
* ABAQUS

).

1 2 3 4 5 6
Stretch

A\




Section 3.9

Fitting Hyperelastic Material
Parameters from Test Data

Elastomer Test Procedures

Elastomer tests

- simple tension, simple compression, equi-biaxial fension, simple
shear, pure shear, and volumetric compression

70

—O— uni-axial
—A— bi-axial
—g— pure shear

D
o

Nominal stress
w N (€]
o o o

N
o

-
o

0 1 2 3 4 5 6 7
Nominal strain




Elastomer Tests
* Data type: Nominal stress vs. principal stretch

Simple tension test

Pure shear test §

F

o
Tu
o

/

Equal biaxial test

Volumetric compression test

131
4

Data Preparation

* Need enough number of independent experimental data
- No rank deficiency for curve fitting algorithm

« All tests measure principal stress and principle stretch

Experiment Type |Stretch Stress

Uniaxial tension

Stretch ratio A = L/L,

Nominal stress TE = F/A,

Equi-biaxial
tension

Stretch ratio A = L/L; in y-
direction

Nominal stress TE = F/A,
in y-direction

Pure shear test

Stretch ratio A = L/L,

Nominal stress TE = F/A,

Volumetric test

Compression ratio A = L/L,

Pressure TE = F/A,




Data Preparation cont.
+ Uni-axial fest &, =%, &, =25 =1/V2

T = % = 2(1-173) (A + Agy)

T(A. Aoy 2) ={{x}T{b}[=| 2L - 2.72) 2(1- m)]{Alo

1

- Equi-biaxial test A =k, =%, A3 =1/2°
10U

T =525 =200 270 Ay + 27 A)

» Pure shear test A =%, A, =1 2A3=1/%

oU

T= = - 2(h — 173) (A + Agy)

ol

Data Preparation cont.

* Data Preparation

Type 1 1 1 ... 4 4 .. 4
Mo A Ap Az oo A Mg e Aot
TETETETS LOTETE L Ty

* For Mooney-Rivlin material model, nominal stress is a

linear function of material parameters (A;g, Ag1)




Curve Fitting for Mooney-Rivlin Material

* Need to determine A,y and Ay by minimizing error
between test data and model
NDT

ninize (% - Tlho A
* For Mooney-Rivlin, T(A;p, Aps, Ay) is linear function
- Least-squares can be used {b} = {Alo }
Aot
( T1E . T, i x(\ )T il
T T

x(X4 )T

{TF} =+ o {T) =+ {b} = [XKb}

| TNoT (ot ) | xOugp)T |

135
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Curve Fitting cont.
* Minimize error(square)

{e}T{e} ={TF-T}{T"-T)
= {TE - Xb}"{TE - Xb}
= {TEYT{TE} - 2{b} T [X]T{T®} + {b} T [X]"[X]{b}

* Minimization - Linear regression equation

[X]"[XIb} = [X]"{T*}

136
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Stability of Constitutive Model

- Stable material: the slope in the stress-strain curve is
always positive (Drucker stability)

- Stability requirement (Mooney-Rivlin material)

de:D:de >0

+ Stability check is normally performed at several specified
deformations (principal directions)

do,de; + do,de, >0

o o fan )

« Inorder to be P.D.

Dy +0s, >0
D;1D,, —DypDyy > 0

137
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