CHAP 4

FEA for Elastoplastic Problems

Nam-Ho Kim

Introduction

Elastic material: a strain energy is differentiated by
strain to obtain stress

- History-independent, potential exists, reversible, no permanent
deformation

Elatoplastic material:
- Permanent deformation for a force larger than elastic limit
- No one-to-one relationship between stress and strain

- Constitutive relation is given in terms of the rates of stress and
strain (Hypo-elasticity)

- Stress can only be calculated by integrating the stress rate over
the past load history (History-dependent)

Important to separate elastic and plastic strain

- Only elastic strain generates stress
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Goals

Understand difference between elasticity and plasticity
Learn basic elastoplastic model

Learn different hardening models

Understand different moduli used in 1D elastoplasticity

Learn how to calculate plastic strain when total strain
increment is given

Learn state determination for elastoplastic material
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Plasticity

Elasticity - A material deforms under stress, but then
returns to its original shape when the stress is removed

Plasticity - deformation of a material undergoing non-
reversible changes of shape in response to applied forces

- Plasticity in metals is usually a consequence of dislocations

- Rough nonlinearity

Found in most metals, and in general is a good description
for a large class of materials

- Perfect plasticity - a property of materials o undergo
irreversible deformation without any increase in stresses
or loads

Hardening - need increasingly higher stresses to result in
further plastic deformation

\ O




Behavior of a Ductile Material

Terms Explanation
Proportional limit | The greatest stress for which the stress is still proportional to
the strain
Elastic limit The greatest stress without resulting in any permanent strain on

release of stress

Young's Modulus | Slope of the linear portion of the stress-strain curve

Yield stress The stress required to produce 0.2% plastic strain

Strain hardening | A region where more stress is required to deform the material
Ultimate stress The maximum stress the material can resist

Necking Cross section of the specimen reduces during deformation
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Elastoplasticity

* Most metals have both elastic and plastic properties
- Initially, the material shows elastic behavior
- Affer yielding, the material becomes plastic
- By removing loading, the material becomes elastic again
« We will assume small (infinitesimal) deformation case
- Elastic and plastic strain can be additively decomposed by

[8 =&, +8PJ

- Strain energy density exists in terms of elastic strain
1 2
Up = LE(s,)

- Stress is related to the elastic strain, not the plastic strain

* The plastic strain will be considered as an internal
variable, which evolves according to plastic deformation
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1D Elastoplasticity

* Idealized elastoplastic stress-strain behavior

- Initial elastic behavior with slope E (elastic modulus) until yield
stress oy (line 0-a)

- Afteryielding, the plastic phase with slope E; (tangent modulus)
(line a-b).

- Upon removing load, elastic unloading
with slope E (line b-c) b

O'A

- Loading in the opposite direction, e E;
the material will eventually yield
in that direction (point c)

- Work hardening - more force is
required to continuously deform
in the plastic region (line a-b or c-d)
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Work Hardening Models ,, b

Kinematic hardening <
- Elastic range remains constant

- Center of the elastic region moves
parallel o the work hardening line

- bc=de=2oa
- Use the center of elastic domain
as an evolution variable o‘/
e
Isotropic hardening

(o

a _7b
- Elastic range (yield stress) increases / / h

c

.-
>
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proportional to plastic strain

- The yield stress for the reversed loading ? i &

. . . h
is equal To the previous yield stress

- Use plastic strain as an evolution
variable

No difference in proportional loading (line o-a-b)




Elastoplastic Analysis

- Additive decomposition

- Only elastic strain contributes to stress (but we don't know how
much of the total strain corresponds to the elastic strain)

- Let's consider an increment of strainfAe = Ag, + Ae,

- Elastic strain increases stress by [Ac = EAg,

- Elastic strain disappears upon removing loads or changing direction

o . . o
A Strain hardening slope, E, A
nitial loading
Ao ——
Elastic Oy 5 ' E
slope, £ Reloadlng\ E
—s Ae, Ae,
Unloading
Ey —— € >
Ae €
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Elastoplastic Analysis cont.

- Additive decomposition (continue)

Plastic strain remains constant during unloading

The effect of load-history is stored in the plastic strain

The yield stress is determined by the magnitude of plastic strain

Decomposing elastic and plastic part of strain is an important
part of elastoplastic analysis

* For given stress o, strain cannot be determined.
- Complete history is required (path- or history-dependent)

- History is stored in evolution variable (plastic strain)




Plastic Modulus

* Strainincrement Ac = Ag, + Ag, o

Strain hardening slope, E,
- Stress increment Ac = EAe,
 Plastic modulus H = Ac po—
ASP oy - \\1—/
- Relation between moduli A
[AG = EAg, = HAap = E,A¢e .
EY I(_A€—)| &
Ac Ao  Ac N i_l_i_l
EE E H EL E H E;
EE EH E ’
H=— _ _ _
E-& & E+H E(l E+Hj A ede A

* Both kinematic and isotropic hardenings have the same
plastic modulus

Analysis Procedure

* Analysis is performed with a given incremental strain
- N-R iteration will provide Au = Ae

- But, we don't know Ag, or Ag,

* When the material is in the initial elastic range, regular
elastic analysis procedure can be used

* When the material is in the plastic range, we have to
determine incremental plastic strain

o

AG HAsp A
A8=A86+ASPZF+ASP= E +A8p
H ro—
= ASP(E_l_lj o, .
Ag A A
= Ae, = €e &
[ P 1+H/EJ
Ey S rw—

Only when the material is on the plastic curvell e
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1D Finite Element Formulation

Load increment
- applied load is divided by N increments: [1, t,, ..., t\]

- analysis procedure has been completed up to load increment t,
- a new solution at t,,; is sought using the Newton-Raphson method

- iteration k has been finished and the current iteration is k+1

Displacement increments

- From last increment +.; Ad* = "Id¥ —d g_lu
- From previous iteration: gt — n+igk+l _ n+lgk |
Uy U,
Pl [ ° :P2
X1 X
. L |
I I
15)
1D FE Formulation cont.
Interpolation
Au(x) = [N, NZJ{A”I } ~-N-Ad
Al su=N-35d
_d a2 LA g 5¢ =B -5d
Ag—dx(Au)—[ ) LHAUZ}_B Ad ) N
u=N-d
Weak form (1 element) ¢=B-d
- Internal force = external force
— L — — _ o
dTIo BTn+IGk+1AdX _ dTn+1F, vd e R?2 d :{;12}




1D FE Formulation cont.

Stress-strain relationship (Incremental)

8—668 — n+lgk L DePse

oe

n+16k+1 iy n+16k n

~

- Elastoplastic tangent modulus

P — E if elastic
~ |E, if plastic

Linearization of weak form

a7 [ [-BTD*"BA dx}sd - dTnIF g7 [ BTGk Adx

\ J \ J
!

Y
Tangent stiffness Residual

1D FE Formulation cont.

Tangent Stiffness

AD*®| 1 -1
k. —
TL L 1}

Residual

n+1Rk _ n+1|: _ J‘cl)‘ BT n+16kA dx = { n+1|:1 + n+1(5kA}

n+1|::2 _ n+l Gk A

State Determination: n+lgk — f(nclngp’Agk’“.)
Will talk about next slides

+ Incremental Finite Element Equation

- N-R iteration until the residual vanishes

kT ) Sdk _ n+1Rk




plastic strain

in cycling loadings
AG
oy

oy

AQ

Isotropic Hardening Model

Total plastic strain
— Initial yield stress

/a/;*

Oy

n+1

- Yield strength gradually increases proportional to the

- Yield strength is always positive for both tension or compression
v
[ oy =09 + Heg }
A

- Plastic strain is always positive and continuously accumulated even

(E,H,G?,,G",ag)

n _ 0 n
Gy—Gy+H8p

2. Elastic predictor (point c)

[ Ac™ = EAg " =c" + AGT"J

3. Check yield status
Trial yield function (c - e)

[f‘rr :‘G‘rr‘_cg]

£" — (1 - R)EAs

1. Computer current yield stress (pont d)

A

o
o-tr

State Determination (Isotropic Hardening)
How to determine stress

- Given: strain increment (Ae¢) and all variables in load step n

0-n+1

Ao-tr

0')7_7
0
RAot| 7Y
|

A€

R: Fraction of Ac™ to the yield stress
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" State Determination (Isotropic Hardening) cont.

- If fr <0, material is elastic
[Gn+1 _ GTr‘]

Either initial elastic region or unloading

+  Iff'" >0, material is plastic (yielding)
Either transition from elastic to plastic or continuous yielding

- Stress update (return to the yield surface)

O'A
[G’”l =o' - sgn(c™)EAe ]
; - P nitial loading
- Update plastic strain
E
n+1 n
=g, +A
[SP €p €p ] Unloading
Plastic strain increment is unknown Reloading

Ag = Ag, + Asp

For a given strain increment, how much is elastic and plastic? 1

A\

" State Determination (Isotropic Hardening) cont.

* Plastic consistency condition

- to defermine plastic strain increment
[fn+1 _ ‘Gn+1 _ Gn;|l+1 _ O]
- Stress must be on the yield surface after plastic deformation

— (G?, + HAsp) =0

= |o™ - sgn(c™EAs, |

:>‘Gtr‘—63—(E+H)A8p=O o?f c
—A\e
‘Gﬂ‘ ‘ — Gn fTr‘ o+l ‘ / j

AS = Y = Ao n d
P E+H E+H ol €
: e 7|/ T
Aspz(l—R)E+HA8 o" a b
tr
R = 1 — f— >
‘AGTF JAYS

%Note: Ag, is always positivell 22)




" State Determination (Isotropic Hardening) cont.

Update stress
"1 = 6™ —sgn(c™ )EASP X
(o)
_ 2 tr
ol = g™ — 59n(cs*'")(1 R)E |A8| o c
‘ 7 E+H /fAep
0-n+1 ‘
Ao oy g e
Elastic trial  Plastic compensation a5 oy E \Aeepz (1-R)Ae
(return mapping) | ] n
o] a ¢ b
Algorithm
1) Elastic trial AT

2) Plastic return mapping

- No iteration is required in linear hardening models

A\

Algorithmic Tangent Stiffness

+ Continuum tangent modulus E if elasti
- The slope of stress-strain curve D&P = { !f elaS.'ll:!C

Algorithmic tangent modulus & if plastic

- Differentiation of the state determination algorithm

tr OAsg
Delg — OAc _ 0o sgn(hﬂg)E_p

OAg OAsg OAsg
OAe, 1 o'f E

— — tr
oAe  E+H oAe sqn( G)E+H
Delg E if elastic
E, if plastic
D9 = Depr for 1D plasticity!!

- We will show that they are different for multi-dimension




Algorithm for Isotropic Hardening

« Given: Ag, E, H, 08, o", sg

1. Trial state o =" + EAc
oy = 69/ + Ha’F‘,

fr _ tr n

1. If f* <0 (elastic)

- Remain elastic: [G”+1 =o', 83” = & ] : exit
2. If f" >0 (plastic)
. . ffr
. Calculate plastic strain: [Ag, = ——
a alculate plastic strai € E+HJ

b. Update stress and plastic strain (store them for next increment)

[G”” =o' - Sgn(cw)EAsp] [82” = sg + Ag, ]

Ex) Elastoplastic Bar (Isotropic Hardening)

E = 2006Pq, H = 256Paq, %, = 250MPa
"o = 150MPaq, e, = 0.0001, A = 0.002

- Yield stress: "oy = %oy + H", = 252.5MPa
- Material is elastic at t,

Trial stress: Ao = EAc = 400MPa
s ="6+A"c =550MPa  Now material is plastic

Plastic consistency condition

"o Trial state
Ne, = — T _1322x10°3
P E+H . ﬁot_— F Final state
State update E
g =g - Sgn(TrG)EAsp = 285.6MPqa " /i l Y/
"*18p ="e, + Ag, =1.422 % 103 A/ >




Kinematic Hardening Model

* Yield strength remains constant, but the center of elastic
region moves parallel o the hardening curve

+ Effective stress is defined using the shifted stress

Use the center of elastic domain as an evolution variable

[a”*l = ol + sgn(n)HAsP ] Back stress

Ao

A0 O":i N
o” oY1 E
0|
O
"I E 0 0
Oy an+1 ZO'Y
a” 28p >€
>E
€ | &

State Determination (Kinematic Hardening)
- Given: Material properties and state at increment n:
(A¢,EH,09,0", 0", en)
« Elastic predictor

[Gfr —o" + EAS, afr‘ — OL", nTr‘ — G‘rr‘ _ afr]

Ao
. o' c
* Check yield status
Trial yield function o]
d
tr_ |t 0 €
[fr_‘nr‘_sy] .
n'’r E
- If " <0, material is elastic o" / [ b
[ c5n+1 L ] 4;0‘0;1:_] ‘ _/-"'g/‘
Either initial elastic region or unloading ' Be |7E

+ If f >0, material is plastic (yielding)

Either transition from elastic to plastic or continuous yielding




" State Determination (Kinematic Hardening) cont.

» Updating formulas for stress, back stress & plastic strain
o™l =o' — Sgn(n*r)EAsp a™l = o+ sgn(n")HAep 82*1 = &y + A,
* Plastic consistency condition
- To determine unknown plastic strain increment
- Stress must be on the yield surface during plastic loading

[fn+1 :‘nn+1 _08 -0 ]

= o™ - sgn(n")EAsp —a' - sgn(n")HAsp ‘ -~ 08 =0
—68 —-(E+H)Ae, =0

— GTr N OLTF

p
‘Tlhﬂ ‘ — o fir %Note: the same formula with
AS = y = . . h d . d |"
L p E+H E+H isotropic hardening modelll

Algorithm for Kinematic Hardening

. GiveniAa,E,H,GS,G“,a“,ag

1. Trial state o™ =" +EAe

off = "
T]1‘r' — GTP _ afr‘
fir — ‘nfr“_ 69/

2. If f* <0 (elastic)
- Remain elastic: [G"” =o', a"™=a" gt = 83]; exit
3. If f >0 (plastic)

. . f‘rr
. Calculate plastic strain: |Ag, = ———
a alculate plastic strai {sp E+HJ

b. Update stress and plastic strain (store them for next increment)
[6”*1 =o' —sgn(n™ )EAap] [a"*l = a" +sgn(n'™ )HAsp]

n+tl _ _n
[ap —8p+A8p]




Ex) Elastoplastic Bar (Kinematic Hardening)
» E =2006Pa, H = 256Paq, %, = 200MPa

* "o = 150MPq, "o. = 50MPq, As = -0.002

+ Since "M ="o-"a =100 < %y, elastic state at 1,

« Trial stress:

+ Since "f =

A" = EAe = -400MPa, "o ="6+ Ao = -250MPa
Mo ="a=50MPa, ™n="6-"Ta=-300MPa

— %6y > 0, material yields in compression

Tr1]

» Plastic strain tre 5
Ag, = EiH- 0.444 x 10

 State update ntlg _ trg Sgn(‘rrn)EAgp — ~161.1MPa
n+ly = tro — sgn(“‘n)HAap = 38.9MPa

Ex) Elastoplastic Bar (Kinematic Hardening)

U A

150 //
50

Initial
state

Final state

-161.1

-250 Trial state




Combined Hardening Model

* Baushinger effect

- conditions where the yield strength of a metal decreases when the
direction of strain is changed

- Common for most polycrystalline metals

- Related to the dislocation structure in the cold worked metal. As
deformation occurs, the dislocations will accumulate at barriers
and produce dislocation pile-ups and tangles.

* Numerical modeling of Baushinger effect

- Modeled as a combined kinematic and isotropic hardening

[G'\‘,” =oy+(1- B)HASPJ [a”*l =a" + Sgn(n)BHAgp}

O0<p<1

B = 0: isotropic hardening

B = 1: kinematic hardening

Combined Hardening Model cont.

« Trial state
o' =" + EAs
off = "
n‘rr‘ — G‘rr‘ _ a‘rr
Fir — ‘n‘rr‘ _ Gr\}

- Stress update
c$n+1 — ol = sgn(n*'")EAap
a™! =l + Sgn(n'”")BHAs|D

G(‘fl = G';, +(1- B)HASP

 Show that the plastic increment is the same




MATLAB Program combHard1D

oe

o°

1D Linear combined isotropic/kinematic hardening model

oe

function [stress, alpha, ep]=combHardlD (mp, deps, stressN, alphalN, epN)
Inputs:

mp = [E, beta, H, YO0];

deps = strain increment

stressN = stress at load step N

alphaN = back stress at load step N

epN = plastic strain at load step N

o° J° 0P o° o° o°

o

E=mp (l); beta=mp(2); H=mp(3); YO=mp(4); %material properties
ftol = YO*1E-6; $tolerance for yield
stresstr = stressN + E*deps; %trial stress
etatr = stresstr - alphaN; $trial shifted stress
fyld = abs(etatr) - (YO+ (l-beta) *H*epN) ; %trial yield function
if fyld < ftol Syield test
stress = stresstr; alpha = alphaN; ep = epN;%trial states are final
return;
else
dep = fyld/ (E+H); $plastic strain increment
end
stress = stresstr - sign(etatr) *E*dep; %updated stress
alpha = alphaN + sign(etatr)*beta*H*dep; %updated back stress
ep = epN + dep; %updated plastic strain
return;

Ex) Two bars in parallel
Bar 1: A = 0.75, E = 10000, E, = 1000, %, = 5, kinematic
Bar 2: A =125, E = 5000, E; = 500, % = 7.5, isotropic
MATLAB program

Example 4.5 Two elastoplastic bars in parallel

o° oe

Barl

E1=10000; Et1=1000; sYieldl=5; RigidI >15

E2=5000; Et2=500; sYield2=7.5;

mpl = [El, 1, EI1*Etl/(E1-Etl), sYieldl]; Bar2

mp2 = [E2, 0, E2*Et2/(E2-Et2), sYield2];

nSl = 0; nAl = 0; nepl = 0;

nS2 = 0; nA2 = 0; nep2 0;

Al = 0.75; L1 = 100;

A2 = 1.25; L2 = 100;

tol = 1.0E-5; u = 0; P = 15; iter = 0;

Res = P - nS1*Al - nS2*A2;

Depl = El; Dep2 = E2;

conv = Res”™2/(1+P"2);

fprintf ('\niter u S1 S2 Al A2'");

forintf (' epl ep2 Residual');

fprintf ('\n $3d %7.4f %7.3f $7.3f %7.3f %7.3f %8.6f %8.6f %$10.3e"', ...
iter,u,nS1,nS2,nAl,nA2,nepl,nep2,Res);

oe




Ex) Two bars in parallel cont.

while conv > tol && iter < 20
delu = Res / (Depl*Al/Ll1 + Dep2*A2/L2);

u = u + delu;
delE = delu / L1;

[Snewl, Anewl, epnewl]=combHardlD (mpl,delE,nS1,nAl,nepl);
[Snew2, Anew2, epnew2]=combHardlD (mp2,delE,nS2,nA2,nep2);
Res = P - Snewl*Al - Snew2*A2;

conv Res"2/ (1+P"2) ;

iter = iter + 1;

Depl = El; if epnewl > nepl; Depl = Etl;
Dep2 = E2; if epnew2 > nep2; Dep2 = Et2;
nS1 Snewl; nAl = Anewl; nepl = epnewl;

nS2 = Snew2; nA2 = Anew2;

nep?2

= epnewZ;

end
end

fprintf ('\n %$3d %7.4f %7.3f $7.3f %7.3f %$7.3f %8.6f %$8.6f %10.3e"',...
iter,u,nS1,nS2,nAl,nA2,nepl,nep2,Res);

end

Iteration u S4 S, €p1 €,2 Residual

0 0.0000 0.000 0.000 0.000000 0.000000  1.50E+1

1 0.1091 5.591 5.455 0.000532 0.000000  3.99E+0

2 0.1661 6.161 7.580 0.001045 0.000145 9.04E—1

3 0.2318 6.818 7.909 0.001636  0.000736  0.00E+0
\ 37
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Summary

* Plastic deformation depends on load-history and its
information is stored in plastic strain

- Stress only depends on elastic strain

+ TIsotropic hardening increases the elastic domain, while
kinematic hardening maintains the size of elastic domain
but moves the center of it

* Major issue in elastoplastic analysis is to decompose the
strain into elastic and plastic parts

« Algorithmic tangent stiffness is consistent with the state

determination algorithm

+ State determination is composed of (a) elastic trial and (b)
plastic return mapping




1D Elastoplastic Analysis Using ABAQUS

- Material Card
*MATERIAL NAME=ALLE
*ELASTIC
200.E3,.3
*PLASTIC
200.,0.

220.,.0009
220.,.0029

T Plastic strain

Yield stress

1D Elastoplastic Analysis Using ABAQUS

*HEADING 5,2
UniaxialPlasticity 6,2

*NODE , NSET=ALLN 4,1
1,0.,0.,0. 5,1
2,1.,0.,0. 8,1
3,1.,1.,0. 2,3
4,0.,1.,0. 3,3
5,0.,0.,1. 4,3
6,1.,0.,1. *STEP, INC=20
7,1.,1.,1. *STATIC, DIRECT
8,0.,1.,1. 1.,20.
*ELEMENT, TYPE=C3D8, ELSET=ALLE *BOUNDARY
1,1,2,3,4,5,6,7,8 7,3,,.004
*SOLID SECTION, ELSET=ALLE,MATERIAL=ALLE 5,3,,.004
*MATERIAL, NAME=ALLE 6,3,,.004
*ELASTIC 8,3,,.004
200.E3, .3 *EL PRINT, FREQ=1
*PLASTIC s,

200.,0. E,
220.,.0009 EP,
220.,.0029 *NODE PRINT
*BOUNDARY U, RF

1, PINNED *END STEP
2,2




« Stress Curve

41
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4.3

Multi-Dimensional
Elastoplastic Analysis

42
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Goals

Understand failure criteria, equivalent stress, and
effective strain

Understand how 1D tension test data can be used for
determining failure of 3D stress state

Understand deviatoric stress and strain

Understand the concept of elastic domain and yield
surface

Understand hardening models

Understand evolution of plastic variables along with that
of the yield surface

Multi-Dimensional Elastoplasticity

How can we generalize 1D stress state (oy) to 3D state (6
components)?

- Need scalar measures of stress and strain to compare with 1D test
- Equivalent stress & effective strain

- Key ingredients: yield criteria, hardening model, stress-strain
relation

We will assume small (infinitesimal) strains

- Rate independent elastoplasticity- independent of strain
rate

Von Mises yield criterion with associated hardening model
is the most popular




Failure Criteria

* Material yields due to relative sliding in lattice structures
S = TEES

- Sliding preserves volume = plastic deformation is related
to shear or deviatoric part

Tresca (1864, max. shear stress)
- Material fails when max. shear stress reaches that of tension test

- Tension test: yield at 6;=6y,0,=063=0

A Safe region
T = <T, =—2L oy Failure region
max 2 Y 2 7
- Yielding occurs when r,,, =1, Oy .
o, 01
-0,
' 45
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Failure Criteria cont.

- Distortion Energy Theory (von Mises)

- Material fails when distortion energy reaches that of tension test

[ U, < Uy(tension test) }

- We need preliminaries before deriving Uy

« Volumetric stress and mean strain

m
gm == %TP(S) = %SV = %(811 + 822 + 833)

- Deviatoric stress and strain

s=c-0,1=I, o T = (Bucdy + 88 ) / 2

e:8_8m1:Id6V:8 IdeV:I_%]'@l




Failure Criteria cont.

Example: Linear elastic material
c=[M®1+2uIl:e=D:¢

G = }\,(3gm )N+ 2u(e + €m 1) (@ = (3 + Zu)gm
= (31 +2u)e, 1+ ZJE s =2ue
volumetric ~ deviaforic Bulk modulus
Distortion energy density K= 3ten ; o

U=lo:e=1(c,1+5s):(e1+e)=30,6,+1s:e

_lg:e-_1lg:
[ Uj=3s:e 2:S°S }

Failure Criteria cont.

1D Case £ 0 O
Gy =0 GmZ%G s=0c|0 —% 0
_1
0 0 -1
—leg:g_-1252_1432
Ud‘m_ 1S S 72,39 T5.°

Material yields when

Cleie_ 1.2 _
Uy =755 =05 = Uy

Let's define an equivalent stress [ G, =43s's }
Then, material yields when 1

von Mises stress
Ce = Oy
Stress can increase from zero to oy, but cannot

increase beyond that




Equivalent Stress and Effective Strain

Equivalent stress is the scalar measure of 3D stress state
that can be compared with 1D stress from tension test

Effective strain is the scalar measure of 3D strain state
that makes conjugate with equivalent stress

_lg:p -1
Uy =3s:e=30.6e,

_legieg_12_1 Effective strain
Ud_4ps's_6 Cp =508 ff

H e
_ 15 -1 [3¢:g-1 [32,e: - [2e:
[ € =3:0 =3,V25 S =3, >2ue:2Zue =, /se:e }

Equivalent Stress and Effective Strain cont.

1D Case cont.

1-2v
2 0 0] 2
0 0 -1

2(1 +
[ee = %e e = ( 3 V) 8} Effective strain for 1D tension




Von Mises Criterion

* Material yields when o, = oy
G, =4/35:5 =437,

1

B
J,=35s's

2™ invariant of s

J, = [(GX—GY)2+(GY—GZ)2+(GZ—GX)2:|+’CZ +12, + 15,

xy yz

|— o

J; = 6[(01 ~0,0 + (0, — 03 +(03-01)* | Interms of principal stresses

- Yield criterion

[ o -05=37,-05=0 J

- 1D test data oy can be used for
multi-dimensional stress state

Yield surface
1 2

- Often called J, plasticity model

J, =§(Ty

. 51/
Von Mises Criterion cont.
+ J,: second invariant of s
=1[s:s—tr(s)’]=1s:s
Impossible
* Von Mises yield function g4 state
Elastic 2 /
37,-05=0 state Material

yields

wn

3e- 2 _
= ES- —Gy—o

= x/s:s—\/gcy =0
={ 1sll- By -0 | il - o

T radius

Yield function Yield surface is circular in
deviatoric stress space
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Example

* Pure shear stress 1 to yield

t 0
0 O|=s
OO0

Q
Il
O a O

Is|=vsis =@+ =

- Yield surface:

\/E’C:\/%Gy = [’CZ%GY }

- Failure in max. shear stress theory
Safe in distortion energy theory

- Von Mises is more accurate, but
Tresca is more conservative

Yy
X3 T _--
—
T 1
| 1
Tl K Tr
1
-
:Xl

Safe region

Example
- Uniaxial tensile test
c 00 % 0 0
=0 0 O s=| 0 —%G 0
0 0O O O —%G

o= (3 + 3o 4§ = B

- Yield surface

2 2 _ _
\/;G—\/;Gy—o = o0 =0y

Consistent with uniaxial
tension test

0>




Hardening Model

* For many materials, the yield surface increases
proportional to plastic deformation = strain hardening

- Isotropic hardening: Change in radius
+ Kinematic hardening: Change in center

Isotropic hardening Kinematic hardening

Initial yield surface Initial yield surface

Hardening Model cont.

- Isotropic hardening model (linear)

_ ~0 _Ac Plasti
{Gy = Oy + Hep] H re, lastic modulus

e, Effective plastic strain

o) Initial yield stress

- H = 0: elasto-perfectly-plastic material

+ Kinematic hardening model (linear)
- The center of yield surface : back stress o N\
- Shifted stress: 1 = s - a ¢ s o

Inl- oy =0) N

Radial
- o moves proportional fo e, [d _ \/%Hép H“_U direction
n




Hardening Model cont.

Combined Hardening
- Many materials show both isotropic and kinematic hardenings
- Introduce a parameter B € [0, 1] fo consider this effect

- Baushinger effect: The yield stress increases in one directional
loading. But it decreases in the opposite directional load.

- This is caused by dislocation pileups and tangles (back stress).
When strain direction is changed, this makes the dislocations easy

to move
]~ 209 + (1~ B)He, 1= O

L _ [28He. M
[‘* V¥ epunU

- Isotropic hardening: § = O

- Kinematic hardening: p = 1

Ex) Uniaxial Bar with Hardening

Calculate uniaxial stress s when e, =01, initial oy = 400
MPa and H = 200 MPa (a) isotropic, (b) kinematic and (c)
combined hardening with § = 0.5

00 2 0 0
0 o} -l 0 1o 0 s] =%
0 0 0 0 —%G

O O A

a) Isotropic hardening

|| - y2(s9 +He,) = 26 - [2(400 + 200 x 0.1) = 0

c = 420MPa
b) Kinematic hardening

s -l J%o¢ -0
= Is]~ o - 3§ = 3o~ 3He, ~ (B -0

c = 420 MPa 58|




Ex) Uniaxial Bar with Hardening

c) Combined hardening
|s—af —\/%[08 +(1 —B)Hep]
=[s]-Ja] - J&[o§ + 1~ P)He, |

- \/%G - \/%BHep — \/%69/ - \/%(1 — B)He,
=0

c = 63 + Hep = (400 + 200 x0.1) = 420MPa

All three models yield the same stress (proportional loading)

Rate-Independent Elastoplasticity

- Additive decomposition
e=¢c%+eP g=¢%+¢P From small deformation assumption
* Strain energy (linear elastic)
W(e®)=1e*:D:e® =1(c—¢P): D: (g ~-¢P)
- Stress (differentiating W w.r.t. strain)
oW

c=—=D:e4=D:(e-¢P)
og®
6=D:(¢-¢P)
D=AM®1+2uI Why we separate volumetric part

from deviatoric part?

D= (k+%u)1®1+2uldev




Rate-Independent Elastoplasticity cont.

Stress cont.
- Volumetric stress: 6, = $1r(6) = (A + Sp)tr(e) = (3% + 2p)é,,

- Deviatoric stress: S =2p(é - €P) Why isn't this
Yield function an elastic strain?
- We will use von Mises, pressure insensitive yield function
— _ |2
[ ftne,) = || Z(e,) <O
- «(e,): Radius of elastic domain -
n+l
- e, effective plastic strain On
Elastic domain (smooth, convex) o,
Ons1

E ={(ne,)|f(ne,) <0}

61

Rate-Independent Elastoplasticity cont.

Flow rule (determine evolution of plastic strain)

[ép = YI”(G,F,)] & = (o)

Plastic variables

- Plastic consistency parameter y:y> 0 (plastic), y =0 (elastic)
Flow potential g(o, &)
0o 0o

- Plastic strain increases in the normal direction to the flow
potential

rl

o9
oo

93
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Rate-Independent Elastoplasticity cont.

Associative flow rule

- Flow potential = yield function

[ép = ym} Unit deviatoric tensor

on normal to the yield surface

ol _ofmim_ o _n )

on  on on Jninm :HnH i

N determines the direction of plastic strain rate
and Y determines the magnitude

Rate-Independent Elastoplasticity cont.

Evolution of plastic variables (hardening model)
Back stress a

of(n,
[a - HOL(ep)v% = H,(e,)iN }

N

Plastic modulus for
kinematic hardening

Effective plastic strain

P [2gP : gP :\PH pH
e ;€ ‘e S11€
- Note: plastic deformation only occurs in deviatoric components

oo o= =

&= (o)
[ép = %y] = & = 1h(c,)




Rate-Independent Elastoplasticity cont.

Kuhn-Tucker conditions

- The plastic consistency parameter must satisfy

[yzo if =0 fso]

1. Within elastic domain: f<0 7v=0 =7vf=0
2. On the yield surface

a. Elastic unloading f <0 7=0 =if=0

b. Neutral loading f=0 7=0 =7f=0

c. Plastic loading (process attempt to violate f < 0)

f=0 y>0 =7if=0

[ = Equivalent to if=0 ]

Classical Elastoplasticity

Elastoplasticity boils down to how to calculate plasticity
consistency parameter

* Classical plasticity uses the rate form of evolution
relations to calculate it

- Plastic consistency condition

- 7 is only non-zero when continues plastic deformation

v >0 f(c,&)zo

: _of . of ;.
f(c,&)—%-cha—&-&—O

A ipie-epy+ I oon
ac-D-(s 8)+a§ th=0
of of of

IDZé——Ibin'-F—'Yh:O Solve for plastic
0o oG o0& consistency parameter




Classical Elastoplasticity cont.

Plastic consistency parameter

g <8_f 'D: 8> A Assume the denominator is positive
. _ do <x>— x ifx>0
! if-b-r—é—f-h |0 ifx<0
\_ o g, )
7>0 = of :D:e>0
0o
of
—:D:
cosf = g? Z_Zmr,mal
o ¢ e
6 < 90° : plastic loading D: ¢ trial stress rate

6 = 90° : neutral loading
8 > 90° : elastic unloading

Classical Elastoplasticity cont.

Elastoplastic tangent stiffness (when 7 > O)

6=D:(¢-¢P)
(1014
G:D:é—D:yr:D:é—D:raf."_ =
ac‘D""_ag'h
. f .
. _<:>-r®20-fb>
of . . 0
acS-D-r'—a&-h
. f .
Dep:D_<D°r®g_c'D>

of . D:r-— of . h Elastoplastic tangent operator
0G 0§

In general, it is not symmetric, but for associative flow rule, it is




Nonlinear Hardening Models

* Nonlinear kinematic hardening model

e
o= H(ep)e'p H(ep) =H, exp[p} Saturated hardening
ew
P

* Nonlinear isotropic hardening model

k(e,) = oY +(oy —o9)| 1 -exp(-e, / ]) |

69
4

Example: Linear hardening model

* Linear combined hardening model, associative flow rule

+ B params: 2 elastic (A, u) and 3 plastic (B, H, 6,°) variables
K(ep) = 08 +(1- B)Hep a = %BHép

* Plastic consistency parameter
f(s.ae,) =|s—a|- \/2[69/ +(1-p)He,1=0

f= o, a—fa+a—fe—NsNaf(1 B)He—O

os oo 8ep

$=2u(e-¢P)=2ue-2N

70
4




Example: Linear hardening model cont.

- Plastic consistency parameter cont.

f:ZpJN:é—ZuyN1N—%BHYN:N—§(1—B)HY:O

N:N-=
_2uN:¢ N:ée
ZM-I-%H

- No iteration is required

Y

- Elastoplastic tangent stiffness

6=D:¢-D:éP=D:¢-yD:N D=(+2u)1®1+2uT,,

D:N=2uN
. : 2uN: ¢ 4,2 .
=D:¢-2uN =|D- N®N |:
° ek 2u+%H l: 2u+%H }8
| T )

Dep

1
2=N:¢

71

Ex) Plastic Deformation of a Bar

E 0 v oy H B

- At t,: purely elastic, o4, = 300 Mpa
« At 1.0 Agyy = 0.1, determine stress and plastic variables

- ATt [300 0 O] 200 0 0
c=| 0 O O|MPg, s=| O -100 O |[MPa
| O O O_ ] 0 0 —100_
« Strain increments
0.1 0 0 | [ 0.08 0 0 |
Ae=| 0O -0.02 O |, Ae=| O -0.04 0]
i 0 0] —0.02_ i 0 0 —0.04_




Ex) Plastic Deformation of a Bar

* Purely elasticat t,:"a=0,",=0.Mm ="s-"a = "s

- Trial states:

360 0 O
ffn=Ts="sy2ure=| O -180 O |MPa
0 0 -180

|0 = V360 +1802 1807 = 180V6MPa

, 2 0 0
- m_1lg 10
_‘rr_ B
| %_00—1_

* Yield function
f(*n,e,) = | n| - \2x("e,) = 1806 - 300,/2 = 806 > 0

Plastic statel 73)

Ex) Plastic Deformation of a Bar

- Plastic consistency parameter

_ 2uN: Ae

= = 0.0948
2u+2H

Y

- Update stress and plastic variables

'385.2
“ls=Ns+D:Ac-2uyN=| O
0
‘154 0
o N 2pHN=| 0 077 O |MPa besiibrium
0o o0 077

n+le

_ 2., _
> = "e, + /2y = 0.0774

74
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Numerical Integration

Plastic evolution is given in the rate form

We will use backward Euler method to integrate it

y=fty) Tl )

= +At-f(T . + ] A-stable
[ i1 = Vn f( i Yn+1) Stable for all At

Assumptions
- We assume that all variables are known at load step n: ¢", &"

- Af the current time n+l1, Auor Ag is given

We will use 2-step procedure
1. Predictor: elastic trial

2. Corrector: plastic return mapping (projection onto the yield
surface)

Numerical Integration cont.

1. Elastic predictor

s’ =s" + 2nAe a™ =" e;“" = ey
T L )
' . .
dev. inc. strain No plasticity

-  Shiftfed stress: n*'" =s™ —q

- Yield function: f(n*”,eg) = Hn*'"
2. Plastic corrector
1. Iff <0 (within the elastic domain)

[sn+1 — gir 0Ln+1 = alr eFr)1+1 _ egr ]

- ()

- Exit




Numerical Integration cont.

2. Plastic corrector cont.
2. If f>O0 (return mapping to yield surface)

gl gt _ ZM‘ unknown Ae, = AN
n+l _ otr _

s =s" - 2uAyN

0Ln+1 L HaAYN

1,]n+1 — Sn+1 _ an+1 — nfr‘ _ (Zu + HQ)AYN

/.nn+1

* Trial direction is parallel to final direction

So far, unknowns are Ay andN = !

1,]n+1 _ n'rr' + ¢nn+1 — n'rr' ” rln+1

Known from trial state
So, everything boils down to Ay 77]

Numerical Integration cont.

2. Plastic corrector cont.
- Now the plastic consistency parameter is only unknown!!

- How to compute: stress must stay on the yield surface

[f(nm’ en*ly = OJ

- While projecting the trial stress,
the yield surface also varies

- But, both happen in the same
direction N

f(n",e) = 0

- JZ(e) =0

"~ G+ HOMN] = [

f(nml’e;ﬂ) =0

f(nn+1leg+1 _ Hnn+1

n+1
In

- (2“ + H(x )Ay




Numerical Integration cont.

2. Plastic corrector cont.

- Plastic consistency condition

(]~ (2 + Hateg ) ar - Jstepy =0

- Nonlinear (scalar) equation w.r.t. Ay 63” = 6;' + \EAY
- Use Newton-Raphson method (start withAy =0, ef*™! = e )

- (ZH +H (e"*l))Ay - \/EK(e"”)

df dH o dk
dy 3 de
Ay = Ay —

df / dy

n+1 n+1+\/7Ay

- Stop whenf ~0

Numerical Integration cont.
When N-R iteration is converged, update stress
sl = s" + 2uAe — 2uAyYN
o™l = o + H,AYN
n+tl _ _on 2
e, =e,+ \/;Ay

o™l = 6" +D: Ae — 2uAYN
\ ;

D : Ae Tangent operator




Difference from the Rate Form

Rate form (linear hardening)

_ 2uN : ¢ fmyre,) =0
2u+%H

Y

Incremental form

Two formulations are equivalent when
1. The material is in the plastic state at tn

2. Aeis parallel to "

When time increment is very small, these two
requirements are satisfied

81

Consistent Tangent Operator

Consistent tangent operator - fangent operator that is
consistent with numerical integration algorithm

DeP = o6 D9 — OAc
o€ T OAg
Continuum tangent operator Consistent tangent operator

Differentiate stress update equation

Ac =D : As — 2uAYN

o

1) (2)




Consistent Tangent Operator cont
of

Ter 1 n+l n+ly _ nony _ g
:C( )a f(n"",eg) =f(n",e)) =0 TAe 0
preiieresl Ll R GTRL RGO IVENERCADI R
a”n‘l‘r‘ H . a(,n'rr' . 1,]1‘r‘)1/2 _ 1 anr
oAe OAe 2 \n*" H
6”1{”‘ H T]Tr ) @n'"' a,nfr‘ a(sfr‘ —a")
ore [ ase N TP TP
of ne1n 0Ny OH, 0e o 0e
ane = 2N =R " e, aTZAY‘/%aePO
> OAy
- oA
2uN - (2p+H(e D+ 2H,, Ay+ i, )aTZZO \E(mg
8Ay ZHAN %—2u+H (e"+1)+\/;HaeAy+2
OAg 83
Consistent Tangent Operator cont
« Term (2):
tr
oN _ oN : o' o _ i(s" +2pAe —a") =2ul,,,
aAS an-l-r 8A8 8A8 6A8
N _ o[ o |1 _n*"®n*r
a,r]'l‘r‘ an‘l'r‘ aHnTr‘ ‘
oN 1 2u
2 ) ol _
E}Ag anl" I:I N®N:| “Idev HTITI“HI:IdeV N®Nﬂ
- Consistent tangent operator
D% = %A% _ b 2N ® (2uAN) - 2usy 2L [T, ~NON]
one "]
dg _ N _ 4,2 4Py
DY =D - 4u*AN®N - H H [I,,-N®N]
Not existing in D 84




Example

* Linear combined hardening

H,(et!)=2pH  H,, =0

a.e,

k(el™) = of + (1 - B)Hel ™ = «(el) +/2(1 - B)HAY
. ConsisTency condition
2;4 + ZBH)Ay \/%(K(eg) + \/%(1 - B)HAy) =0

" | - x(ep)

2u+%H

No iteration is required

Variational Equation
* Variational equation
a("g; "y, u) = ((u), Vuez

a(ng; n+1ula) _ ”'Q S(E) . n+l

- The only nonlinearity is from stress (material nonlinearity)

- Small strain, small rotation

« Linearization

[a*("ﬁ, Ik suk @) = 4(@) — a("E; "Ik, T), VU e Z,]

[a*("g, ""u;5u,T) = [[ (@) : DY : g(3u) dg.]
- Update displacement

n+1uk+1 n+1 k n 6U




Implementation of Elastoplasticity

We will explain for a 3D solid element at a Gauss point

Voigt notation

{0}:[011 O22 O33 O12 Op23 G13]T
{Ae} = [Agy; Ag,, Aggy 2Agy, 2Ag,4 2A813]T

%3
X3
2
X2
, (a) Finite Element

n n n
633 O12 0323
n n n
033 Up  Op3

(-1,-1,1)

(1,-1,1)

T
n
013 }

T
n n
afy en}

="

(-1 |7

J-1,1-1)

t/

(1,1,-1)

(b) Reference Element

Implementation of Elastoplasticity cont.

Displacement

& ={€, n, G is the natural coordinates at an integration point

8
Au =Y N (E)Ad;
I=1

Strain

8

Ag = D BrAu

I=1

Update

n+tly = "y + Au

{"e} = {"e} + {Ae}

'N;; 0 O
0 N, O
0 0 N
Nz Npg O
0O Nz N
[ Nes O Ny |




Return Mapping Algorithm

Elastic predictor

Unit tensor ~ 1=[1 11 0 0 0]

Trial stress o =o"+C - As

Trace of stress tr(c) = GH + 5?2 + G§5

Shifted stress N =o¢'" —1tr(c) —a"

Norm H n'"

Yield function f=|n"

~ JZ[ o9 + (1 - p)Hep |

= JOIT 2 + ()% + (5 )2 +2[(ni5 )2 + (is)? + (ni5)°]

Return Mapping Algorithm cont.
Check yield status

- If f <0, then the material is elastic
"l = 5" Dalg -D

- Exit

Consistency parameter Ay = f/(2u+2H)

Unit deviatoric fensor N =" /|
Update stress o™ = 6™ 2uAN
Update back stress a™! = o + ZBHAN

Update plastic strain el =&l + /27y

Calculate consistent tangent matrix




Implementation of Elastoplasticity cont.

. . 2 _1 _1

- Consistent tangent matrix 37378
. c, = ey ol

o 2 - + pdev _| 3 3 3

2u+3H " 0 0 0

0 0 0

0 0 0

DU =D - (¢ - ¢,)NNT

-G Idev

* Internal force and tangent stiffness matrix

4 NG

= 2,2, (Bro"|T ko

I=1K=1

fo

o O O

O O v=

4 4 N6
z;g BITDOIQBJND@K

- Solve for incremental displacement

[Kr JAu} = (£} - {f""}

* The algorithm repeats until the residual reduces to zero

* Once the solution converges, save stress and plastic
variables and move to next load step

o O O O

O N

O O O O O

N =

\ 93
a N
Program combHard.m

% Linear combined isotropic/kinematic hardening model
function [stress, alpha, ep]=combHard (mp,D,deps,stressN,alphalN, epN)
% Inputs:
% mp = [lambda, mu, beta, H, YO0];
% D = elastic stiffness matrix
% stressN = [sll, s22, s33, tl2, t23, tl3];
% alphaN = [all, a22, a33, al2, a23, al3]l;
Iden = [1 1 1 00 01"';
two3 = 2/3; stwo3=sqgrt (two3); %constants
mu=mp (2); beta=mp(3); H=mp(4); YO=mp(5); %material properties
ftol = YO*1E-6; $tolerance for yield
stresstr = stressN + D*deps; $trial stress
Il = sum(stresstr(l:3)); $trace(stresstr)
str = stresstr - Il*Iden/3; %$deviatoric stress
eta = str - alphalN; $shifted stress
etat = sqgrt(eta(l)”2 + eta(2)"2 + eta(3)"2 ...
+ 2* (eta(4) "2 + eta(5)"2 + eta(6)"2));%norm of eta
fyld = etat - stwo3* (YO+ (l-beta) *H*epN) ; %trial yield function
if fyld < ftol Syleld test
stress = stresstr; alpha = alphaN; ep = epN;%trial states are final
return;
else
gamma = fyld/ (2*mu + two3*H); %$plastic consistency param
ep = epN + gamma*stwo3; $updated eff. plastic strain
end
N = eta/etat; $unit vector normal to f
stress = stresstr - 2*mu*gamma*N; %updated stress
alpha = alphaN + two3*beta*H*gamma*N; $updated back stress 92
\ ~




Program combHardTan.m

function [Dtan]=combHardTan (mp,D,deps, stressN,alphalN, epN)

% Inputs:

% mp = [lambda, mu, beta, H, Y0];

% D = elastic stiffness matrix

% stressN = [sll, s22, s33, tl2, t23, tl13];
% alphaN = [all, a22, a33, al2, az23, al3];
Iden = [1 1 1 0 0 01"';

two3 = 2/3; stwo3=sqgrt (two3);

mu=mp (2) ; beta=mp(3); H=mp (4); YO0=mp (5);

%constants
%material properties

ftol YO*1E-6; %$tolerance for yield
stresstr = stressN + D*deps; $trial stress
I1 = sum(stresstr(1:3)); $trace (stresstr)
str = stresstr - Il*Iden/3; $deviatoric stress
eta = str - alphalN; $shifted stress
etat = sgrt(eta(l)”2 + eta(2)"2 + eta(3)"2
+ 2*(eta(4)"2 + eta(5)"2 + eta(6)”2));%norm of eta
fyld = etat - stwo3* (YO+ (l-beta) *H*epN) ; %trial yield function
if fyld < ftol Syileld test
Dtan = D; return; %elastic
end
gamma = fyld/ (2*mu + two3*H); %plastic consistency param
N = eta/etat; %unit vector normal to f
varl = 4*mu”2/ (2*mu+two3*H) ;
var2 = 4*mu”2*gamma/etat; %coefficients
Dtan = D - (varl-var2)*N*N' + var2*Iden*Iden'/3;%tangent stiffness
Dtan(l,1) = Dtan(l,1) - var2; $contr. from 4th-order I
Dtan(2,2) = Dtan(2,2) - var2;
Dtan(3,3) = Dtan(3,3) - var2;
Dtan(4,4) = Dtan(4,4) - .5*var2;
Dtan(5,5) = Dtan(5,5) - .5*var2;
Dtan(6,6) = Dtan(6,6) - .5*var2;
93
W)
N

Program PLAST3D.m

function PLAST3D(MID, PROP, ETAN, UPDATE, LTAN, NE, NDOF, XYZ, LE)
%*****~k~k~k**********~k~k~k**********~k~k~k**********~k~k*************************
MAIN PROGRAM COMPUTING GLOBAL STIFFNESS MATRIX RESIDUAL FORCE FOR
PLASTIC MATERIAL MODELS

R R R R R R R R R SRS E SR SR SR EEE SRS EEEEEEEEEEEESESEEEEEEEEEESESEEEEEEE DI

o0 o0 oo oe

oo

%$LOOP OVER ELEMENTS, THIS IS MAIN LOOP TO COMPUTE K AND F
for IE=1:NE
DSP=DISPTD (IDOF) ;
DSPD=DISPDD (IDOF) ;

% LOOP OVER INTEGRATION POINTS
for LX=1:2, for LY=1:2, for Lz=1:2

o

% Previous converged history variables
NALPHA=6;

STRESSN=SIGMA (1:6, INTN) ;

ALPHAN=XQ (1:NALPHA, INTN) ;

EPN=XQ (NALPHA+1, INTN) ;

% Computer stress, back stress & effective plastic strain
if MID == 1
% Infinitesimal plasticity
[STRESS, ALPHA, EP]=combHard (PROP,ETAN,DDEPS, STRESSN,ALPHAN, EPN) ;

o oo

Tangent stiffness

if LTAN

if MID == 1
DTAN=combHardTan (PROP, ETAN, DDEPS, STRESSN, ALPHAN, EPN) ;
EKF = BM'*DTAN*BM;




Summary

1D tension test data are used for 2D or 3D stress state
using failure theories

- All failure criteria are independent of coordinate system (must
defined using invariants)

+ Yielding of a ductile material is related to shear stress or
deviatoric stress

Kinematic hardening shift the center of elastic domain,
while isotropic hardening increase the radius of it

For rate-independent J, plasticity, elastic predictor and
plastic correct algorithm is used

* Return mapping occurs in the radial direction of deviatoric
stress

During return mapping, the yield surface also changes

4.4

Elastoplasticity with Finite
Rotation




Goals

Understand the concept of objective rate and frame-
indifference (why do we need objectivity?)

- Learn how to make a non-objective rate to objective one

* Learn different objective stress rates

* Learn how to maintain objectivity at finite rotation
Understand midpoint configuration

Understand how to linearize the energy form in the
updated Lagrangian formulation

Understand how to implement update Lagrangian frame

Elastoplasticity with Finite Rotation

We studied elastoplasticity with infinitesimal deformation

- Infinitesimal deformation means both strain and rotation are small

Vu = sym(Vu) + skew(Vu)

strain rotation

We can relax this limitation by allowing finite rotation

However, the engineering strain changes in rigid-body
rotation (We showed in Chapter 3)

How can we use engineering strain &=
for a finite rotation problem?

0 cosaa—-1 O
0 0 0

coso —1 0 O]

+ Instead of using X, we can use x" as a reference
(Body-fixed coordinate, not Eulerian but Lagrangian)

« Can the frame of reference move?




Objective Tensor

We want to take care of the issues related to the moving
reference frame x" (rotation and translation) using
objectivity

Objective tensor: any tensor that is not affected by
superimposed rigid body ftranslations and rotations of the
spatial frame

Rotation of a body is equivalent to rotation of coordinate
frame in opposite direction

Consider two frames in the figure
(rotation + translation)

[ % = Q(1)- x + ¢(t) ]

x and X are different by rigid-body motion,
by relative motion between observers

Objective Tensor cont.

Frame indifference (objectivity)

- Quantities that depend only on Q and not on the other aspects of
the motion of the reference frame (e.g., translation, velocity and
acceleration, angular velocity and angular acceleration)

Objective scalar Fof

Objective vector [ V-Q-v ]

Objective tensor [ T-QT.Q" ]

* In order to use a moving reference, we must use
objective quantities




Example

Deformation gradient
= OX 0O (33
F="x= ax QM) x+c(t) = QM) —= = Q1) -F

- F transforms like a vector

Right C-G deformation tensor
C=F'F=(QF)'(QF)=F'Q"QF =F'F=C
- Material tensors are not affected by rigid-body motion

Left C-G deformation tensor
b=FF' = (QF)F'Q™) = QFFTQ" = QbQ" Objective

tensor

Objectivity only applies to a spatial tensor, not
material tensor

Deformation gradient transforms like a vector because it
has one spatial component and one material component 101)

Velocity Gradient

In two different frames
Velocity gradient is related to incremental

L = Q [ = Q: displacement gradient in finite time step
0X 0X LAt ~ (%:l
Time differentiate of X = Q- x
X=Q v+Q x
V=Q v+ QQ"X Velocity is not objective

Spatial differentiation of v

Velocity gradient is not objective




Rate of Deformation and Spin Tensor

Rate of Deformation
d = sym(L) d =sym(L)
d=syml)=1(Q'L-Q+QL"Q+Q Q" +Q-Q")
QQA-1 = QQA+Q-Q"=0
d=Q-i{(L+LN)Q"=Q-d-Q" Objective

This is incremental stain
Spin tensor

w=iL-L") w=iL-L")
“C-M=1QLQ-QL"Q"+Q'QA"-Q Q")
W=Q-W-Q +i(Q-Q"-Q-QT)

Depends on the spin of rotating frame
Not Objective

s

Cauchy Stress Is an Objective Tensor

Proof from the relation between stresses

1
= —FSFT

o J’F F

G = —; FSFT = —Jl_ QFSF'QT = Q(—; FSFT ]QT = QoQ"

S=5
Proof from coordinate transformation of stress tensor

[TEY TOD TEI]  =[o],[b! b? b’]=[c],[Q]

[6kyy = [QIT[6], ,[Q] y

b
- Coordinate transformation is opposite to rotation

[61y; = [Qll6],,[QI"




Objective Rate

- If T is anobjective tensor, will its rate be objective, too?

- This is important because in plasticity the constitutive relation is
given in ferms of stress rate

Differentiate an objective tensor T=Q-T-Q"
T-QTQ+QT-Q+Q T-Q"

- Not objective due to Q and Q"

Remove non-objective fermsusing L=-QL- Q"+Q-Q"
Q-L-Q-QL Q' =-Q"-L"-L"-Q7
T-((Q-QTQ" + QTR +QT(Q'L" -L'Q")

“LQTQ" - QALTQ" +QTQT + QTQ'LT - QTL'QT
“LT-QALTR" +QTQ + TLT - QTL'Q"

Objective Rate cont.

Objective rate
T-LT-QTQ"+QTQ" + TL" - QTL'Q"

r

T LT-TL = Q(T-LT-TLNQ" ]

L

Thus,: T-LT-TL ]is an objective rate (Truesdell rate)

+ Co-rotational rate (Jaumann rate)

[ T—W-T+T-W]
- Convected rate

[ T+LT - T+T-L }
These objective rates are different, but perform equally

When T is stress, they are objective stress rate




Finite Rotation and Objective Rate

Since constitutive relation should be independent of the
reference frame, it has to be given in terms of
objective rate

Cauchy stress is an objective tensor, but Cauchy stress
rate is not objective rate

Instead of rate, we will use increment (from previous
converged load step to the current iteration)

Consider a unit vector e; in spatial Cartesian coordinates
under rigid body rotation from material vector E;

T
1{ OAu OAu

e = E = = —m—— — —— = AQ - T

JQJ WZ{@x@xJQQ

W: spin tensor
Ae; = AQ- EJ =W -Q- Ej =W e, Q: rotation tensor

Finite Rotation and Objective Rate cont.

Cauchy stress in Cartesian coordinates
Incremental Cauchy stress

ij i

= (Acy) + Wyoy; — oy W))e ® e,
/[ 1 1 Effect of rigid body rotation

Jaumann or co-rotational Cauchy stress increment
Objective rate in the rotating frame

Only accurate for small, rigid body rotations

Constitutive relation

[AGJ — Dal9 . Ag] [AGJ = Ac — Wo + GW}




Finite Rotation and Objective Rate cont.

* For finite rotation, the spin tensor W is not constant
throughout the increment

- Preserving objectivity for large rotational increments
using midpoint configuration

- Instead of n+l, calculate strain increment and spin at n+3

, OAU OAU;
Ag.. = oAy aAuJ W = 1 n:lll/ - n+J1/
I axn+% axn+% 2 axj 2 Ox 2

How to calculate these?

* Midpoint configuration

x" 2—1(x”+l+x) x" +1Au=x"" -1y

- We want to rotation stress into the midpoint configuration

oAU OAu ox" ox"+1/2 1, oA

5Xn+1/2 B ox" .axn+1/2 ' ox" 2 oxh

Finite Rotation and Objective Rate cont.

* Rotational matrix fo the midpoint configuration

Rii—R, _ Rii+R
R oo B R o wiy g, = wia Bt
dr W(Au) = ATW(U)
R, =1

% R=(1-1w)yl@+iw)=1+( —%W)‘IW]

- Rotation of stress and back stress

" =R-o"-RT

. This takes care of rigid body rotation
a"=R-a"-R

 Now, refturn mapping with these stresses

- Exactly same as small deformation plasticity




Program rotatedStress.m

o©

o©

Rotate stress and back stress to the rotation-free configuration

o\

function [stress, alpha] = rotatedStress(L, S, A)
$L = [dui/dx]j] velocity gradient

o

¢}

str=[S(1) S(4) S(6);5(4) S(2) S(5);S(6) S(5) S(3)];

alp=[A(1) A(4) A(6);A(4) A(2) A(5);A(6) A(5) A(3)];
factor=0.5;

R = L*inv (eye(3) + factor*L);

W .5* (R-R") ;

R eye(3) + inv(eye(3) - factor*Ww) *wW;

str = R*str*R';

alp = R*alp*R';

stress=[str(l,1l) str(2,2) str(3,3) str(l,2) str(2,3) str(l,3)]
alpha =[alp(l,1) alp(2,2) alp(3,3) alp(l,2) alp(2,3) alp(l,3)]
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Variational Principle for Finite Rotation

 Total Lagrangian is inconvenient
- We don't know how 2n P-K stress evolves in plasticity

- plastic variables is directly related to the Cauchy stress

* Thus, we will use the updated Lagrangian formulation

+ Assume the problem has been solved up to n load step, and

we are looking for the solution at load step n+1

- Since load form is straightforward, we will ignore it

- Energy form
gy El(&,niunﬂll_l) - .”-Q vn+la . Gn+1 dQJ

- Since the Cauchy stress is symmetric, it is OK to use v, ,u
- Both Q,.; and o"*! are unknown

- Nonlinear in terms of u




Variational Principle for Finite Rotation cont.

- Energy form cont.

- Since the current configuration is unknown (depends on displace-
ment) , let's transform it to the undeformed configuration Q,

a(gn;uml 0) = JIQ Vn+la o1 dO :[J‘J'Q (VoﬁF_l) . 0-"+1J dQ]

- Integral domain can be changed by  [[ ~do=[[ JdQ J=det(F)

- This is only for convenience in linearization. Eventually, we will
come back to the deformed configuration and integrate at there

- The integrand is identical to T:F where T=JF's isthe
first P-K stress

- Nonlinearity comes from (a) constitutive relation (hypoelasticity),
(b) spatial gradient (deformation gradient), and (c) Jacobian of
deformation gradient (domain change)

Linearization

Increment of deformation gradient

AF

oo X 0

i[a(x + mAu)} _ 0Au
»=0 oX

FF1=1 = AF!=-F'VAuF!=—F1v_ Au

Increment of Jacobian
AJ = A‘F‘ = J div(Au) ‘an‘ = %eijkersfFierstf

€ijk&ijr = 20k




Linearization cont.

* Linearization of energy form

A, (VouF 1)+ 0T do
= ,” [(VOUAFI) toJ + (VouF 1) AcT + (VouF 1) cAJ] do
= H [ ~VouF IV, jAu: G+ V uF ! Ac + VyuF ! : cdlv(Au)] Jdo
= ”QM [ ViV AUt o +V, 40 Ao + V, U & odiv(Au) |dQ
= Jf,, Vniali [ A0 + odiv(au) - o(V, 80)T Jd0
|
AB:C=A:CB" ABC =A

Use Jaumann objective rate

kCiJ'BkJ'

Linearization cont.

- Linearization of energy form cont.

Lla(g":u™!,@)] = [[ | V,.48:] Ac + odiv(Au) - o(V,;Au)" |dO

=[], Vaul [ A? + Wo — oW + odiv(Au) - o(V,, ;A0)" |dQ
n+1

- Express inside of [ ]Jin terms of v, ,Au

- Constitutive relation: Ac? = D99 : Ae = D9 : (V, ,Au)
- Spin term

- %Tuim)(’mj = 3 Omj iy — mkgn)aAuk
6130 — GkJES,,)[VnHAul(,

~GimWhj = %(Gilsjk - Giksjl)[vnuA”Ll

oAy

Gij W: = 60 [Vn.1Auly
ony,

—G; - IISJk[VnHAuLI

m ax




Linearization cont.

Linearization of energy form cont.

Lla(u,u)] = ”Q IV,HIE : |:A0'J + Wo - oW + odiv(Au) - G(Vn+1Au)T }dQ

\ J
Y

7 (038 — 0By — 0B — Oydy) + oydyg

- Initial stiffness term (we need to separate this term)

o :sym(V,,U'V,,Au) = ¢ : n(Au,U)

1 (00, 0AUy | Gy OAuy _ OO oAy,
rs 2 \ox, oxg * X, OX, ) = oX; GJ|8ik %,
- Define
*
_ 1
[ By = 530 — 5 (S + oS + Sy + ok 5y)

Rotational effect of Cauchy stress tensor

Linearization cont.

Linearization of energy form cont.

Llag™u™ @] = [, [ Vol : (D9 =D"): ¥, jAu+0 : n(Au,T) |dO

=a (&",u"; Au,0)

N-R iteration

[ a ("e, Ut Ay, 0) = /(U) - a("EWT), VueZ

L J\ )
! !

History-dependent Bijlinear
(implicit)




Implementation

We will explain using a 3D solid element at a Gauss point
using updated Lagrangian form

* The return mapping and consistent tangent operator will
be the same with infinitesimal plasticity

Voigt Notation
{0} =[oy 0, 033 01 0,3 03]
{Ae} = [Aey; Ae,, Agsy 2Ag, 2Ag,3 2Ag3]"
* Inputs ad ={ad; Ad, Ady)'
c :{0?1 022 O33 Oz Og3 5?3}T

T
n _ n n n n n n n
g = {0‘11 Oz O33 O1p O3 043 ep}

Implementation cont.

* In the updated Lagrangian, the derivative is evaluated at
the current configuration (unknown yet)

- Let the current load step is n+1 (unknown) and k+1 N-R
iteration

- Then, we use the configuration at the previous iteration
(n+1, k) as a reference

- This is not 'true’ updated Lagrangian, but when the N-R
iteration converges, k is almost identical to k+1

- Caution: we only update stresses at the converged load
step, not individual iteration

All derivatives and integration in updated Lagrangian must
be evaluated at (n+1, k) configuration

Displacement increment Au is from (n+1,0) to (n+1,k)
120




Implementation cont.

- Stress-displacement matrix (Two approaches)

1.  Mapping between current (n+1, k) and reference configurations

04 % 0% 0 0]
oE o o 8%y oE
To| P X% O 9 |_g1/ 9
on on On 0X, on
X 0% Xy 0 0
L o¢  oC  oc | | 0x; | | oG ]
2. Mapping between undeformed and reference configurations
EARNER
0x oX
1 1 Vn+1l.l = F_IVOU
0 0
~ |=F1! =
0X, 0%,
0 i
0X3 | | 0X; |

Use this for B matrix 121

Implementation cont.
1. Obtain midpoint configuration (between k and k+1)

oxn {1 16Au }1 oAu OAu  ox"

8Xn+1/2 B +§axn axn+1/2 - ox . axn+1/2

[ Ae = sym(V, 1Au) W = skew(V,  :Au) ]

2. Rotation matrix: R=1+(1-iw)'w
3. Rotate stresses: s"=-R.o"-RT a"=R-a"-RT
4. Return mapping with s gn

- This part is identical fo the classical return mapping

- Calculate stresses: offl, al*l

- Calculate consistent tangent operator Dl




Implementation cont.

Internal force

. 4 N6 This summation is similar to
7= (B of | T o assembly (must be added to the
IT:1 K=1 r corresponding DOFs)
Tangent stiffness matrix P S
O33 033 ~Os3 0 —O23 —O13
o - 0 *%ﬁ’u*"zz) *%"13 ’%GB

12 O12

4 4 N6
ZZZ BIT(DaIg —D*)BJ|J|]<03|< 0 -0y —Ops ~Loyg ~1(op; + 033) ~loy,
I=1J=1K=1

1 1 1
—o3 0 -—oy5 —2%23 —3%12 *5(511“’33)

Initial stiffness matrix Ny, O 0
1
4 4 N6 N 0 0
=3 > > [BE =BY| T [} o No; 0 0
I-1J-1K=1 0 Ny, O
[Bf]=| O N, O
c 0O 0 Nz O
[Z]=/0 o O 0 0 N
00 0 0 N
9x9 I 0 0 NI,3_

Implementation cont.

- Solve for incremental displacement

[Kr +Ks}8d,,;} = {f'} - {f""}

* Update displacements

vl =gl od,,g
Adk+1 - A<:|k+1 + 5dlK+1

* When N-R iteration converges

- Stress and history dependent variables are stored (updated) to
the global array

- Move on to the next load step




Program PLAST3D.m

function PLAST3D(MID, PROP, ETAN, UPDATE, LTAN, NE, NDOF, XYZ, LE)
%***********************************************************************
MAIN PROGRAM COMPUTING GLOBAL STIFFNESS MATRIX RESIDUAL FORCE FOR
PLASTIC MATERIAL MODELS

RS S S SRS R SRS RS EEEEEEREEEEE SR SRR R EEEEEEEEEEEEEEEEEESEEEEEE DS

o0 o0 oo

o

% Computer stress, back stress & effective plastic strain
elseif MID == 2
% Plasticity with finite rotation
FAC=FAC*det (F) ;
[STRESSN, ALPHAN] = rotatedStress (DEPS, STRESSN, ALPHAN) ;

[STRESS, ALPHA, EP]=combHard (PROP,ETAN,DDEPS, STRESSN, ALPHAN,EPN) ;

% Tangent stiffness
if LTAN
elseif MID ==
DTAN=combHardTan (PROP, ETAN, DDEPS, STRESSN, ALPHAN, EPN) ;
CTAN=[-STRESS (1) STRESS (1) STRESS(l) -STRESS(4) 0 -STRESS(6);
STRESS (2) -STRESS(2) STRESS(2) -STRESS(4) -STRESS(5) 0;
STRESS (3) STRESS (3) -STRESS(3) 0 -STRESS(5) -STRESS(6)
-STRESS (4) -STRESS(4) 0 -0.5* (STRESS(1)+STRESS(2)) -0.5*STRESS(6) -0.5*STRESS (
0 -STRESS(5) -STRESS(5) -0.5*STRESS(6) -0.5* (STRESS (2)+STRESS(3)) -0.5*STRESS (
-STRESS (6) 0 -STRESS(6) -0.5*STRESS(5) -0.5*STRESS(4) -0.5* (STRESS(1)+STRESS (3
SIG=[STRESS (1) STRESS (4) STRESS(6);

5);
4) ;
)) 1

)
STRESS (4) STRESS(2) STRESS(5);
STRESS (6) STRESS(5) STRESS(3)];
SHEAD=zeros (9) ;
SHEAD (1:3,1:3)=SIG;
)

SHEAD (4:6,4:6)=S1G;
SHEAD(7:9,7:9)=SIG;
EKF = BM'* (DTAN+CTAN) *BM + BG'*SHEAD*BG;

Ex) Simple Shear Deformation

* Plane-strain square with the velocity gradient at each load

step o 0 0024 0 E = 246Pa v =02,

=1-002 0 O

_ 0 _
ox o o o H = 1.06Pa, ) = 200v3MPa

Young = 24000; nu=0.2; mu=Young/2/ (l+nu); lambda=nu*Young/ ((l+nu)* (1-2*nu));
beta = 0; H = 1000; sY = 200*sqgrt (3);

mp = [lambda mu beta H sY];

Iden=[1 1 1 0 0 0]"';

D=2*mu*eye (6) + lambda*Iden*Iden';

D(4,4) = mu; D(5,5) = mu; D(6,6) = mu;

L = zeros(3,3);

stressN=[0 0 0O O O 01",

deps=[0 0 0 0 0 O1"';

alphaN = [0 0 O 0 O 0]"';

epN=0;

stressRN=stressN; alphaRN=alphalN;epRN=epN;

for i=1:15
deps(4) = 0.004; L(1,2) = 0.024; L(2,1) = -0.02;
[stressRN, alphaRN] = rotatedStress (L, stressRN, alphaRN);

[stressR, alphaR, epR]=combHard (mp,D,deps, stressRN,alphaRN, epRN) ;
[stress, alpha, epl=combHard (mp,D,deps,stressN,alphalN,epN) ;

X (i) = i*deps(4); Y1(i) = stress(4); Y2(i) = stressR(4);

stressN = stress; alphaN = alpha; epN = ep;

stressRN = stressR; alphaRN = alphaR; epRN = epR;

X = [0 X]; Y1=[0 Y1]; Y2=[0 Y2]; plot(X,Y1,X,Y2);




Ex) Simple Shear Deformation

250 T T T T T

e D=0==

200 - —

—_
W
(el
T
|

—_
S
[e)
1

Shear stress (MPa)

W
el

Small strain | |
Finite
-~~~ rotation

==

C/ | | | L 1
0 0.01 0.02 0.03 0.04 0.05 0.06
Shear strain

stress=[0 O 0 2129 0 0"
stressR =[43.4 -434 0 208.2 0 O]

Summary

Finite rotation elastoplasticity is formulated using
updated Lagrangian (reference frame moves with body)

Finite rotation elastoplasticity is fundamentally identical
to the classical plasticity. Only rigid-body rotation is taken
into account using objective stress rate and integration

We must use an objective stress rate to define the
constitutive relation because the material response should
be independent of coordinate system

Objectivity only applies for spatial vectors and tensors

* In the finite rotation, the midpoint configuration is used
to reduce errors involved in non-uniform rotation and spin

Linearization is performed after transforming to the
undeformed configuration




4.5

Finite Deformation
Elastoplasticity with
Hyperelasticity
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Goals

 Understand the difference between hypoelasticity and
hyperelasticity

* Learn the concept of multiplicative decomposition and
intermediate configuration

* Understand the principle of maximum dissipation

* Understand the plastic evolution in strain space and stress
space

* Learn J, plasticity in principal stress space

130
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Finite Deformation Plasticity

So far, we used small strain elastoplasticity theory

Finite rotation has been taken care of using the deformed
configuration with an objective rate

However, still, the strain should be small enough so that
the elastic and plastic strains are decomposed additively

This is fundamental limitation of hypoelasticity
How can we handle large strain problem?
On the other hand, hyperelasticity can handle large strain

However, it is not easy to describe plastic evolution in 2nd
P-K stress. It is given in the current configuration (Cauchy
stress)

How can we handle it? Transformation between references
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Intermediate Configuration

Let's take one step back and discuss different references

Lee (1967) proposed that the deformation gradient can
be multiplicatively decomposed

[ FOO-ROORMO |

- Remember deformation gradient maps between deformed and
undeformed configurations

FdX = F,(F,dX) = F,dx,

- Instead of moving directly from Qg to Q,, the deformation moves
to an intermediate configuration (©,) first and then goes to Q,

- The intermediate configuration is an imaginary one and can be
arbitrary

Additive decomposition: & =g, +¢,




Intermediate Configuration cont.

* F,(X): deformation through the intermediate configuration
(related to the internal plastic variables)

+ F,1(X): local, stress-free, unloaded process

+ Decomposition of F(X) into the infermediate configuration
followed by elastic deformation

Undeformed
Configuration

Current
Configuration

Elastic
Deformation

Intermediate Configuration 133)

Kirchhoff Stress - Matter of Convenience

« Kirchhoff stress

- This is different from 15t and 2nd P-K stress
- It is defined using Cauchy stress with Jacobian effect (J = |F|)
- When deformationis small J~1 = t=o0
- We assume the constitutive relation is given in terms of t
+ Why do we use different stress measure?
- By including J into stress, we don't have to linearize it
- We can integrate the energy form in Q,

- But, still all integrands are defined in Q,




Elastic Domain and Free Energy

* Elastic domain
| E={co|fGa<0] |

- q: stress-like internal variables (hardening properties)

- Isotropy: the yield function is independent of orientation of t and
q (objectivity)

* Free energy function (similar to strain energy density)
[ v=vie.® |

- Elastic left C-G deformation tensor: b, =F,F]

c e . oy
- strain-like internal variables vector: 9= "

- Free energy only depends on F,, and due to isotropy, b,

Dissipation Function

+ Dissipation function (ignoring thermal part)

[ Dsr:d—%w(be,é)zo J

- Rate of stress work - rate of free energy change
- Rate of deformation d = sym(L), where velocity gradient L =FF!
- Dissipation is energy loss due to plastic deformation (irreversible)

- Rate of elastic left C-G tensor

- We can't differentiate b, because its reference is Q,

- Transform to Qg using F = FF, relation
b, = FF." = (FFR)FTFT) = F(R'RTFT = FC'FT

b, = FC,'FT + FC,'FT +F & (C,1)FT




Rate of Elastic Left C-G Tensor

Rate of elastic left C-G tensor cont.
b, = FC,'FT + FC,'FT + F4(C,1|FT
OV e qm_ OV ;1=
. SR TFT = SFRIRTET — LEFT - Lb,
C,: plastic right C-6

.
b,L deformation tensor

dt
undeformed configuration, and after taking a time derivative,

pushing forward to the current configuration (plastic deformation)

- Lie derivative: F4(c')FT =Lb, pullingb, back to the

Thus, we have
[ b, =Lb, +b,LT +L,b, ]

\ Y J \ J

Elastic Plastic

Dissipation Function cont.

Dissipation function conft.

d
D=1:d-—
td-Zu(b, )
:d—aW:Be—é—W-'
obe 0§

: v T '
=1:d- :(Lb, +b,L' +L b, )+q-
T ab(,,( e +bLT +L,b,)+q-&

. oy . . oy : 1 ;
_r.d—Zabebe.L+(28bebej.[—%(vae)be lrqé

oy , oy , _ -
:(r—zab be].d+(28b bej.[—%(vae)bel]+q~E;20

e e

For a symmetric matrices, A:BC = AC:B
For a symmetric S and general L, S:L = Sisym(L)




Principle of Maximum Dissipation

Principle of Maximum Dissipation

- For all admissible stresses and internal variables, the inequality
must satisfy

_ oy : oy : 1 -
D_(T-zab be)d+[2£be].[—%(vae)be |+q-€=0

e

- If we consider the material is elastic, then no plastic variable will

change Lpb,=£=0
- Inorder to satisfy the inequality for any d (especially d; = - d,)

0
=22 b, Constitutive relation
ob,

- Total form: constitutive relation is given in terms of stress, not

stress increment

- oy 1 _
- Inaddition, we have == =21; b,?

e

Principle of Maximum Dissipation cont.

* Reduced dissipation function

(Z%bej [ -1(Lb )bt |+q-£20

= [1:[—%(vae)bel]+q-%20} Plastic

dissipation

Principle of Maximum Dissipation
- Plastic deformation occurs in the direction that maximizes D
- In classical associative plasticity
D=0:¢,+q:§20
of . of

e ll 0= = & =7
P" bo p




Principle of Maximum Dissipation cont.

Principle of Maximum Dissipation cont.

- For given rates {L,b,, £}, state variables {t, g} maximize the
dissipation function D

D=(r—):[~4(Lbb,' |+(q-9)-£20, v{<',q"|<E

- For classical variational inequality, the dissipation inequality
satisfies if and only if the coefficients are in the normal
direction of the elastic domain (defined by yield function)

Geometric interpretation o
- All " should reside inside of E 0 o

- Thus, the angle 6 should be greater
than or equal to 90°

- Inorder to satisfy for all v, —1(L,b,)b;’
should be normal to yield surface
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Principle of Maximum Dissipation cont.

Evolution equations for multiplicative decomposition

[taritn ] [e R

q
720, f(r,q) <0, 7f(z,q)=0.

Plastic evolution is still in a rate form

Stress is hyperelastic (total form)

Plastic evolution is given in terms of strain (b, and &)

We need to integrate these equations




Time Integration
« Given: {F" b} &"}and Au

- Relative deformation gradient

n+1

0X
f(x) = Fra 1+V,Au
Fn+1 - f.F"
. : : n+1
§- au _ ou 0x _Lf

ox" ox"tl oxn
* First-order evolution equations
b, =[Lb, +b,L7 ] -2 2y 2109,

o

T

6

Initial conditions

.. 0f(t,q)
Il {f.b, &}, , ={1b.&")
720, f(r,q)<0, 7if(r,q)=0 Strain-based evolution
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Time Integration cont.

- Constitutive law

=2 Mp - _9y(b,,&)
8b o0&
- The constitutive relation is hyperelastic

- Once b, is found, stress can be calculated by differentiating the
free energy function. Same for the internal variables

» Elastic predictor (no plastic flow)

- Similar to classical plasticity, we will use elastic predictor and
plastic corrector algorithm

- For given incremental displacement, eliminate plastic flow and push
the elastic, left C-G tensor forward to the current configuration

f‘rr - f = Fe‘rr — fl:en FPTr _ Fpn




Time Integration cont.

* Elastic predictor cont.
bTr‘ — FTr‘ .F‘rr'T — f . Fn _FnT -fT _ fbnfT

[ fi"=f b"=fb)f" &= &,"]

* Check for yield status

r =2 oy bir q-rr' _ _5\V(bgr,§fr)

g{;ﬁ' e ag‘fr’

- If 1< f, trial state is final state and stop

b2+1 _ b;‘r §n+1 _ &Tr

,cn+1 _ T‘rr‘ qn+1 _ q‘rr'

Time Integration cont.

* Plastic corrector (in the fixed current configuration)

- The solution of y=Ay isy =yexp(At)
b, = Lb, +b,LT - ZyS—fbe

L Lt
Y Y
Elastic  Plastic

4 . )
b1 = by exp{—ZAy aisa) 'q)}
T

an+1 _ &'rr' + Ay 8f(‘te,q)
2q

\_ Ay>0, f(r,q) <0, Ayf(r,q)=0 /

- First-order accuracy and unconditional stability

- return-mapping algorithms for the left Cauchy-6reen tensor

Ay = yAt




Spectral Decomposition

Objective: want to get a similar return mapping algorithm
with classical plasticity

Return-mapping algorithm for principal Kirchhoff stress

For isotropic material, the principal direction of t is
parallel to that of b,

Spectral decomposition

3 3
b, = A2 A ®f =Y, A O
i=1 i

br*! — b expl -]

% : principal strefch b, and b, have the
v, : principal Kirchhoff stress same eigenvectors!!
n' : spatial eigenvector Do you remember that

Ji o // ™ in classical plasticity?
N': material eigenvector n/sm P Y147

Return Mapping in Principal Stress Space

Principal stress vector 7, = [TpllTpZITpS]T
Logarithmic elastic principal strain vector

e=[e; e, e]" =[logh; logh, logn;]"
Good for large elastic strain

Free energy for J, plasticity

[ v(e&) = 1rle +e;, +e3F° +ule +e,° +e5°]+ K(&) ]

Constitutive relation in principal space
[ - oy ct-e ] [ ce:(k+§u)f®f+2pldev ]

ngz

1=11,1,17 1, =1-11o1)

- Linear relation between principal Kirchhoff stress and logarithmic
elastic principal strain
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a A

Return Mapping in Principal Stress Space cont.

- Take log on return mapping for b, and pre-multiply with c¢

3 3 3
b, => A" ®n' = log(b,) = > 2log(x)n' ®n' => 2e;n' @ n'
i1 = i1

bot = b exp{—ZAyM}
ok

= log(b;‘*l) = |09(b;r) + |Og exp[_ZAY afg:‘l)}
T
- f of _ S a_?*i A
X f(T,Q)—f(rp,q) - a_r_l;arpin R
of(z,,
= 2e"! =2e™m -2Ay (7,.9)
ot
P
— Ce . en+1 = Ce' . ehﬂ _ A,Yce . af(’cp’ q)
ot

P

A\

a

Return Mapping in Principal Stress Space cont.

* Plastic evolution in principal stress space

/ a',f\(’tp U q) \ tr . ptr

_ Ltr e
T, =T, Ayc

P

éf(rp,q)

n+l _gn A
S &+v6q

\AyZO, f(z,.q) <0, Ayf(rp,q):o/

- Fundamentally the same with classical plasticity: Classical
plasticity [o(6x1) and €(6x6)], but here [1,(3x1) and c*(3x3)]

- During the plastic evolution, the principal direction remains
constant (fixed current configuration)

- Only principal stresses change




Return Mapping Algorithm

Deviatoric principal stress
s=1,-1(t, =1, 1
Yield function
f(n.e,) =n| _\/%K(ep) <0
Return mapping

,tfr'

P

= 2 _2uAN

a'! = a + AyH N

n+l _ _tr \/Z
e, =e, + 3Ay

n=s-a

ey = Jo V2| &0 dt

a‘rr —o"
fr _ on
% =%
n+1 tr
L
n+1 tr
R I L

Identical to the classical plasticity
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Return Mapping Algorithm cont.

- Plastic consistency parameter

f(nn+lleg+1) _ Hnn+1

_ anr‘

- Solve for Ay using N-R iteration, or directly for linear hardening

- Derivative

aAy
* Recovery

~ JZx(erh)

~(2u+H Ay [2x(el ) = 0

:—(2u+H -

1
2 —
3 ae A'Y+§Klep) = —Z

- Once return mapping converged, recover stress and strain

3

,tn+ Z n+1 gi ®ﬂ _ Z,En+1

i=1

3
bl = exp(2eM!)m’ e
i

n+1

m=n ®n

- AYN




Ex) Incompressible Elastic Cube

+ Deformation gradient

o 0 0 @2 0 0
F=/0 B 0|, b=FFT =0 p? O
0O 0 B 0 0 p*

- Incompressibility: det(F)=1 p=1/+o
- Eigenvalues and eigenvectors:

m=a?, nl=[1 0 O

A, = al, n?=[0 1 07

Ay = al, n¥=[0 0 1T

* Logarithmic stretches:

e ={2logo -loga —lo_qoc}T 153

Ex) Incompressible Elastic Cube

- Stress-strain relation (principal space)

A+2u A A 2loga 4uloga
= A A+2u A —loga =4 —2uloga
A A A+2u || ~loga —2uloga

« Kirchhoff stress

3
T = Zrlpni ®n' = 2uloga
i=1

O o N
I
—
o O
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Consistent Tangent Operator

Relation b/w material and spatial fangent operators

0S5 —
D= o = E:D:AE=[F"g(@)F]: D: [FTe(Au)F] = &(@): c : g(Au)

0S
Cijkl = Fir'F:]stmF Drsmn = FirF:jstmﬁn aE_rs
mn

- F,Fj transform stress to material frame t = FSFT
- FynF): differentiate w.r.t. E and then transform to spatial frame

OT..
But, ¢, =—2 W owoy
ijkl 88 =F E F

Let 1-%° i

i=1 "p!

We want ¢ =at/ce , but we have

ot 2
—P — 99 = ¢t 4 2AN®N - w0

[1,,, -N®N]
ce T

Consistent Tangent Operator cont.

How to obtain c=0t/ée using c¢9 = o, o ?

Remember ér,/de contains all plasticity

Since intfermediate frame is reference, we have to use F,
Start from stress expression

n+tl _ 3 ntl i
T —Zi:ﬁpi m

i=1| j=
1 I
1) @ (3)




Consistent Tangent Operator cont.

consistent tangent operator in principal stress

[
= ¢ Same as classical return mapping (3x3)
e’ oe! 2
(2) = 2F J FT
— These are elastic
_ 5’“. 2i
3) —8 = 2F, iC. =2¢ |

Using (1), (2), and (3),

3

o e
¢ =35 comi omi+ 3 21,8

Incremental Variational Principle

Energy form (nonlinear)

a("& u,u) = “Q c:eg(u)dQ = HQ c:g(u)JdQ
=[], = s@do

Linearization

[a*("g, "o, u; A @) = [[, [&(@): ¢ e(Au) + 7 : n(Au,T) ] dQJ

N-R iteration

[a*(ngl "+1Uk+1;Auk+1,ﬁ) _ g(a) _ a(ng; n+1ukla)l Vd e Z]




MATLAB Code MULPLAST

function [stress, b, alpha, ep]=mulPlast (mp,D,L,b,alpha,ep)

$mp = [lambda, mu, beta, H, YO0];
%D = elasticity matrix b/w prin stress & log prin stretch (3x3)
$L = [dui/dxj] velocity gradient

o
o

= elastic left C-G deformation vector (6x1)
alpha = principal back stress (3x1)
ep = effective plastic strain

o0 oo

o

EPS=1E-12;

Iden = [1 1 1]'; two3 = 2/3; stwo3=sqgrt (two3);
mu=mp (2); beta=mp(3); H=mp(4); YO=mp(5);

ftol = YO*1E-6;

R = inv(eye(3)-L);

bm R*bm*R"';

bm=[b (1) b(4) b(6);b(4) b(2) b(5);b(6) b(5) b(3)];

$constants

%material properties
$tolerance for yield

%inc. deformation gradient

$trial elastic left C-G

[bm(1,1) bm(2,2) bm(3,3) bm(l,2) bm(2,3) bm(1l,3)]"';

b=
[~,P]l=eig (bm) ;
eigen=sort (real ([P(1,1) P(2,2) P(3,3)1))";

o

o\

Duplicated eigenvalues

TMP=-1;

for I=1:2

if abs(eigen(l)-eigen(3)) < EPS
eigen (I)=eigen(I)+TMP*EPS;

$eigenvalues
%principal stretch

TMP=-TMP;
end
end
if abs(eigen(l)-eigen(2)) < EPS; eigen(2) = eigen(2) + EPS; end;

if abs(eigen(2)-eigen(3)) < EPS; eigen(2)

oo

eigen(2) + EPS; end;

% EIGENVECTOR MATRIX N*N' = M(6,*)
M=zeros (6, 3) ; %eigenvector matrices
\ 159
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for K=1:3
KB=1+mod (K, 3) ;
KC=1+mod (KB, 3) ;
EA=eigen (K) ;
EB=eigen (KB) ;
EC=eigen (KC) ;
D1=EB-EA;
D2=EC-EA;
DA =1 / (D1 * D2);
M(1,K)=((b(1)-EB)* (b (1l)-EC)+b(4)*b(4)+b(6)*b(6))*DA;
M(2,K)=((b(2)-EB)* (b (2)-EC)+b (4)*b (4)+b(5)*b(5)) *DA;
M(3,K)=((b(3)-EB) * (b(3)-EC)+b (5)*b (5) +b (6) *b (6) ) *DA;
M(4,K)=(b(4)*(b(1l)-EB+b(2)-EC)+b(5)*b(6)) *DA;
M(5,K)=(b(5)* (b (2)-EB+b (3)-EC)+b (4) *b (6) ) *DA;
M(6,K)=(b(6)*(b(3)-EB+b (1) -EC)+b (4) *b(5)) *DA;
end
eigen=sort(real ([P(1,1) P(2,2) P(3,3)1))"'; %principal stretch
deps = 0.5*log(eigen); %$logarithmic
sigtr = D*deps; %$trial principal stress
eta = sigtr - alpha - sum(sigtr)*Iden/3; $shifted stress
etat = norm(eta); $norm of eta
fyld = etat - stwo3* (YO+ (l-beta) *H*ep) ; %trial yield function
if fyld < ftol Syleld test
sig = sigtr; %trial states are final
stress = M*sig; $stress (6x1)
else
gamma = fyld/ (2*mu + two3*H); %plastic consistency param
ep = ep + gamma*stwo3; Supdated eff. plastic strain
N = eta/etat; %unit vector normal to £
deps = deps - gamma*N; Supdated elastic strain
sig = sigtr - 2*mu*gamma*N; %updated stress
alpha = alpha + two3*beta*H*gamma*N; %updated back stress
stress = M*sig; $stress (6x1)
b = M*exp (2*deps) ; Supdated elastic left C-G
end 160
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Ex) Shear Deformation of a Square

Young = 24000; nu=0.2; mu=Young/2/ (l+nu); lambda=nu*Young/ ((l+nu)* (1-2*nu));
beta = 0; H = 1000; sY = 200*sqgrt(3);
mp = [lambda mu beta H sY];

Iden=[1 1100 0]'; 230 ' ' ' ' '
D=2*mu*eye (6) + lambda*Iden*Iden';
D(4,4) = mu; D(5,5) = mu; D(6,6) = mu; ,\200‘ TS T T o
Iden=[1 1 1]'; £
DM=2*mu*eye (3) + lambda*Iden*Iden'; E'ISO" i
L = zeros(3,3); %
stressN=[0 0 0 0 O 0]"'; g
deps=[0 0 0 0 0 0]"'; g 100r 7
alphaN = [0 0 0 0 0 0]'; 7 ——— Small strain
epN=0; soF /| e Finite rotation |
stressRN=stressN; alphaRN=alphaN;epRN=epN; — = — . Large strain
bMN=[1 1 1 0 0 0]'; , . , ,
alphaMN = [0 0 0]"'; 08 0.0l 0.02 0.03 004 005 0.06
epMNfO ; Shear strain
for i=1:15

deps (4) = 0.004; L(1,2) = 0.024; L(2,1) = -0.02;

[stressRN, alphaRN] = rotatedStress (L, stressRN, alphaRN);

[stressR, alphaR, epR]=combHard (mp,D,deps, stressRN,alphaRN, epRN) ;
[stress, alpha, ep]=combHard (mp,D,deps,stressN,alphal, epN) ;
[stressM, bM, alphaM, epM]=mulPlast (mp,DM,L,bMN,alphaMN,epMN) ;
X(i)=i*deps(4);Y1l(i)=stress(4);Y2(i)=stressR(4);Y3(i)=stressM(4);
stressN = stress; alphaN = alpha; epN = ep;
stressRN = stressR; alphaRN = alphaR; epRN = epR;
bMN=bM; alphaMN = alphaM; epMN = epM;

end

X = [0 X]; YI=[0 Y1]; Y2=[0 Y2]; Y3 = [0 Y3]; plot(X,Y1,X,Y2,X,Y3);
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Summary

In multiplicative decomposition, the effect of plasticity is
modeled by intermediate configuration

The total form stress-strain relation is given by
hyperelasticity between intermediate and current config.

We studied principle of max dissipation to derive
constitutive relation and plastic evolution

Similar to classical plasticity, the return mapping
algorithm is used in principal Kirchhoff stress and
principal logarithmic elastic strain

It is assumed that the principal direction is fixed during
plastic return mapping




