CHAP 4

FEA for Elastoplastic Problems

Nam-Ho Kim

1

Introduction

- Elastic material: a strain energy is differentiated by strain to obtain stress
 - History-independent, potential exists, reversible, no permanent deformation
- Elatoplastic material:
 - Permanent deformation for a force larger than elastic limit
 - No one-to-one relationship between stress and strain
 - Constitutive relation is given in terms of the rates of stress and strain (Hypo-elasticity)
 - Stress can only be calculated by integrating the stress rate over the past load history (History-dependent)
- Important to separate elastic and plastic strain
 - Only elastic strain generates stress

Table of Contents

- 4.2.1D Elastoplasticity
- 4.3. Multi-dimensional Elastoplasticity
- 4.4. Finite Rotation with Objective Integration
- 4.5. Finite Deformation Elastoplasticity with Hyperelasticity
- · 4.6. Mathematical Formulation from Finite Elasticity
- 4.7. MATLAB Code for Elastoplastic Material Model
- 4.8. Elastoplasticity Analysis Using Commercial Programs
- 4.9. Summary
- 4.10. Exercises

3

4.2

1D Elastoplasticity

Goals

- Understand difference between elasticity and plasticity
- · Learn basic elastoplastic model
- Learn different hardening models
- Understand different moduli used in 1D elastoplasticity
- Learn how to calculate plastic strain when total strain increment is given
- Learn state determination for elastoplastic material

5

Plasticity

- Elasticity A material deforms under stress, but then returns to its original shape when the stress is removed
- Plasticity deformation of a material undergoing nonreversible changes of shape in response to applied forces
 - Plasticity in metals is usually a consequence of dislocations
 - Rough nonlinearity
- Found in most metals, and in general is a good description for a large class of materials
- Perfect plasticity a property of materials to undergo irreversible deformation without any increase in stresses or loads
- Hardening need increasingly higher stresses to result in further plastic deformation

Behavior of a Ductile Material

Terms	Explanation
Proportional limit	The greatest stress for which the stress is still proportional to the strain
Elastic limit	The greatest stress without resulting in any permanent strain on release of stress
Young's Modulus Yield stress Strain hardening Ultimate stress	Slope of the linear portion of the stress-strain curve The stress required to produce 0.2% plastic strain A region where more stress is required to deform the material The maximum stress the material can resist
Necking	Cross section of the specimen reduces during deformation

Elastoplasticity

- Most metals have both elastic and plastic properties
 - Initially, the material shows elastic behavior
 - After yielding, the material becomes plastic
 - By removing loading, the material becomes elastic again
- · We will assume small (infinitesimal) deformation case
 - Elastic and plastic strain can be additively decomposed by

$$\varepsilon = \varepsilon_e + \varepsilon_p$$

- Strain energy density exists in terms of elastic strain

$$U_0 = \frac{1}{2}E(\varepsilon_e)^2$$

- Stress is related to the elastic strain, not the plastic strain
- The plastic strain will be considered as an internal variable, which evolves according to plastic deformation

1D Elastoplasticity

- · Idealized elastoplastic stress-strain behavior
 - Initial elastic behavior with slope E (elastic modulus) until yield stress σ_y (line o-a)
 - After yielding, the plastic phase with slope E_t (tangent modulus) (line a-b).
 - Upon removing load, elastic unloading with slope E (line b-c)
 - Loading in the opposite direction, the material will eventually yield in that direction (point c)
 - Work hardening more force is required to continuously deform in the plastic region (line a-b or c-d)

9

Work Hardening Models σ_{\uparrow}

- Kinematic hardening
 - Elastic range remains constant
 - Center of the elastic region moves parallel to the work hardening line
 - bc = de = 20a
 - Use the center of elastic domain as an evolution variable
- Isotropic hardening
 - Elastic range (yield stress) increases proportional to plastic strain
 - The yield stress for the reversed loading is equal to the previous yield stress
 - Use plastic strain as an evolution variable
- No difference in proportional loading (line o-a-b)

а

Elastoplastic Analysis

- Additive decomposition
 - Only elastic strain contributes to stress (but we don't know how much of the total strain corresponds to the elastic strain)
 - Let's consider an increment of strain: $\Delta \epsilon = \Delta \epsilon_{e} + \Delta \epsilon_{p}$
 - Elastic strain increases stress by $\Delta \sigma = \mathsf{E} \Delta \epsilon_e$
 - Elastic strain disappears upon removing loads or changing direction

Elastoplastic Analysis cont.

- Additive decomposition (continue)
 - Plastic strain remains constant during unloading
 - The effect of load-history is stored in the plastic strain
 - The yield stress is determined by the magnitude of plastic strain
 - Decomposing elastic and plastic part of strain is an important part of elastoplastic analysis
- For given stress σ , strain cannot be determined.
 - Complete history is required (path- or history-dependent)
 - History is stored in evolution variable (plastic strain)

Plastic Modulus

- Strain increment $\Delta\epsilon = \Delta\epsilon_{\text{e}} + \Delta\epsilon_{\text{p}}$
- Stress increment $\Delta \sigma = \mathsf{E} \Delta \varepsilon_e$
- Plastic modulus $H = \frac{\Delta \sigma}{\Delta \epsilon_{p}}$
- · Relation between moduli

$$\Delta \sigma = \mathsf{E} \Delta \varepsilon_{\mathsf{e}} = \mathsf{H} \Delta \varepsilon_{\mathsf{p}} = \mathsf{E}_{\mathsf{t}} \Delta \varepsilon_{\mathsf{p}}$$

$$\frac{\Delta\sigma}{E_{t}} = \frac{\Delta\sigma}{E} + \frac{\Delta\sigma}{H} \quad \Rightarrow \quad \frac{1}{E_{t}} = \frac{1}{E} + \frac{1}{H}$$

$$H = \frac{EE_{t}}{E - E_{t}}$$
 $E_{t} = \frac{EH}{E + H} = E\left(1 - \frac{E}{E + H}\right)$

 Both kinematic and isotropic hardenings have the same plastic modulus

13

Analysis Procedure

- Analysis is performed with a given incremental strain
 - N-R iteration will provide $\Delta \mathbf{u} \Rightarrow \Delta \epsilon$
 - But, we don't know $\Delta\epsilon_e$ or $\Delta\epsilon_p$
- When the material is in the initial elastic range, regular elastic analysis procedure can be used
- When the material is in the plastic range, we have to determine incremental plastic strain

$$\Delta \epsilon = \Delta \epsilon_{e} + \Delta \epsilon_{p} = \frac{\Delta \sigma}{E} + \Delta \epsilon_{p} = \frac{H \Delta \epsilon_{p}}{E} + \Delta \epsilon_{p}$$

$$= \Delta \epsilon_{p} \left(\frac{H}{E} + 1\right)$$

$$\Rightarrow \Delta \epsilon_{p} = \frac{\Delta \epsilon}{1 + H / E}$$

 $\Delta \sigma$ σ_{γ} $\delta \varepsilon_{e}$ $\delta \varepsilon_{p}$ $\delta \varepsilon_{p}$ $\delta \varepsilon_{p}$ $\delta \varepsilon_{p}$ $\delta \varepsilon_{p}$ $\delta \varepsilon_{p}$

Only when the material is on the plastic curve!!

1D Finite Element Formulation

- · Load increment
 - applied load is divided by N increments: $[t_1, t_2, ..., t_N]$
 - analysis procedure has been completed up to load increment t_n
 - a new solution at t_{n+1} is sought using the Newton-Raphson method
 - iteration k has been finished and the current iteration is k+1
- · Displacement increments
 - From last increment t_n : $\Delta \mathbf{d}^k = {}^{n+1}\mathbf{d}^k {}^n\mathbf{d}$
 - From previous iteration: $\delta \textbf{d}^k = {}^{n+1} \textbf{d}^{k+1} {}^{n+1} \textbf{d}^k$

$$\mathbf{d} = \left\{ \begin{array}{c} \mathbf{u_1} \\ \mathbf{u_2} \end{array} \right\}$$

15

1D FE Formulation cont.

Interpolation

$$\Delta \mathbf{u}(\mathbf{x}) = [\mathbf{N}_1 \ \mathbf{N}_2] \begin{Bmatrix} \Delta \mathbf{u}_1 \\ \Delta \mathbf{u}_2 \end{Bmatrix} = \mathbf{N} \cdot \Delta \mathbf{d}$$

$$\Delta \varepsilon = \frac{\mathbf{d}}{\mathbf{d} \mathbf{x}} (\Delta \mathbf{u}) = \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} \end{bmatrix} \begin{Bmatrix} \Delta \mathbf{u}_1 \\ \Delta \mathbf{u}_2 \end{Bmatrix} = \mathbf{B} \cdot \Delta \mathbf{d}$$

$$\overline{\mathbf{u}} = \mathbf{N} \cdot \overline{\mathbf{d}}$$

$$\overline{\varepsilon} = \mathbf{B} \cdot \overline{\mathbf{d}}$$

- · Weak form (1 element)
 - Internal force = external force

$$\overline{\boldsymbol{d}}^{\mathsf{T}} \! \int_{0}^{L} \boldsymbol{B}^{\mathsf{T} \, n+1} \sigma^{k+1} \! \boldsymbol{A} \, d\boldsymbol{x} = \overline{\boldsymbol{d}}^{\mathsf{T} \, n+1} \! \boldsymbol{F}, \quad \forall \overline{\boldsymbol{d}} \in \boldsymbol{R}^{2} \qquad \quad \overline{\boldsymbol{d}} = \left\{ \begin{matrix} \overline{\boldsymbol{u}}_{\! 1} \\ \overline{\boldsymbol{u}}_{\! 2} \end{matrix} \right\}$$

1D FE Formulation cont.

Stress-strain relationship (Incremental)

$$^{n+1}\sigma^{k+1} \, \approx \, ^{n+1}\sigma^k \, + \frac{\partial \sigma}{\partial \epsilon} \delta \epsilon \, = \, ^{n+1}\sigma^k \, + \, D^{ep}\delta \epsilon$$

- Elastoplastic tangent modulus

$$D^{ep} = \begin{cases} E & \text{if elastic} \\ E_t & \text{if plastic} \end{cases}$$

· Linearization of weak form

$$\overline{\mathbf{d}}^{\mathsf{T}} \left[\int_0^L \mathbf{B}^{\mathsf{T}} \mathsf{D}^{ep} \mathbf{B} A \, dx \right] \delta \mathbf{d} = \overline{\mathbf{d}}^{\mathsf{T}} \, {}^{\mathsf{n}+1} \mathbf{F} - \overline{\mathbf{d}}^{\mathsf{T}} \int_0^L \mathbf{B}^{\mathsf{T}} \, {}^{\mathsf{n}+1} \sigma^{\mathsf{k}} A \, dx$$
Tangent stiffness Residual

17

1D FE Formulation cont.

Tangent Stiffness

$$\mathbf{k}_{\mathsf{T}} = rac{\mathsf{A} \mathsf{D}^\mathsf{ep}}{\mathsf{L}} egin{bmatrix} 1 & -1 \ -1 & 1 \end{bmatrix}$$

Residual

$${}^{n+1}\!\boldsymbol{\mathsf{R}}^{k} \, = \, {}^{n+1}\!\boldsymbol{\mathsf{F}} - \int_{0}^{L} \boldsymbol{\mathsf{B}}^{\mathsf{T} \, n+1} \sigma^{k} \boldsymbol{\mathsf{A}} \, d\boldsymbol{\mathsf{x}} = \left\{ \begin{array}{l} {}^{n+1}\!\boldsymbol{\mathsf{F}}_{\!1} \, + \, {}^{n+1} \sigma^{k} \boldsymbol{\mathsf{A}} \, \\ {}^{n+1}\!\boldsymbol{\mathsf{F}}_{\!2} \, - \, {}^{n+1} \sigma^{k} \boldsymbol{\mathsf{A}} \, \end{array} \right\}$$

• State Determination: $^{n+1}\sigma^k = f(^n\sigma, ^n\epsilon_p, \Delta\epsilon^k, ...)$

Will talk about next slides

- Incremental Finite Element Equation
 - N-R iteration until the residual vanishes

$$\mathbf{k}_{\mathsf{T}} \cdot \delta \mathbf{d}^{\mathsf{k}} = {}^{\mathsf{n}+1} \mathbf{R}^{\mathsf{k}}$$

Isotropic Hardening Model

- Yield strength gradually increases proportional to the plastic strain
 - Yield strength is always positive for both tension or compression

 $\sigma_y^n = \sigma_y^0 + H\epsilon_p^n$ Initial yield stress

- Plastic strain is always positive and continuously accumulated even in cycling loadings

19

State Determination (Isotropic Hardening)

- · How to determine stress
 - Given: strain increment ($\Delta\epsilon$) and all variables in load step n (E,H, $\sigma_y^0,\sigma^n,\epsilon_p^n$)
- 1. Computer current yield stress (pont d)

$$\sigma_y^n = \sigma_y^0 + H\epsilon_p^n$$

2. Elastic predictor (point c)

$$\Delta \sigma^{\text{tr}} = \textbf{E} \Delta \epsilon$$
 $\sigma^{\text{tr}} = \sigma^{\text{n}} + \Delta \sigma^{\text{tr}}$

3. Check yield status

Trial yield function (c - e)

$$f^{tr} = |\sigma^{tr}| - \sigma_y^n$$

$$f^{tr} = (1 - R)E\Delta\epsilon$$

R: Fraction of $\Delta \sigma^{tr}$ to the yield stress

State Determination (Isotropic Hardening) cont.

If $f^{tr} \leq 0$, material is elastic

$$\sigma^{n+1} = \sigma^{tr}$$

Either initial elastic region or unloading

If $f^{\dagger r} > 0$, material is plastic (yielding)

Either transition from elastic to plastic or continuous yielding

- Stress update (return to the yield surface)

$$\sigma^{n+1} = \sigma^{tr} - sgn(\sigma^{tr})E\Delta\epsilon_{p}$$

- Update plastic strain

$$\left[\epsilon_{\mathbf{p}}^{\mathsf{n}+1} = \epsilon_{\mathbf{p}}^{\mathsf{n}} + \Delta \epsilon_{\mathbf{p}} \right]$$

Plastic strain increment is unknown

$$\Delta \epsilon = \Delta \epsilon_{e} + \Delta \epsilon_{p}$$

For a given strain increment, how much is elastic and plastic?

21

State Determination (Isotropic Hardening) cont.

- Plastic consistency condition
 - to determine plastic strain increment

$$f^{n+1} = \left| \sigma^{n+1} \right| - \sigma_y^{n+1} = 0$$

- Stress must be on the yield surface after plastic deformation

$$\Rightarrow \left| \sigma^{tr} - sgn(\sigma^{tr}) E \Delta \varepsilon_{p} \right| - (\sigma_{y}^{n} + H \Delta \varepsilon_{p}) = 0$$

$$\Rightarrow \left| \sigma^{tr} \right| - \sigma_{y}^{n} - (E + H) \Delta \varepsilon_{p} = 0$$

$$\Delta \varepsilon_{p} = \frac{\left|\sigma^{tr}\right| - \sigma_{y}^{n}}{E + H} = \frac{f^{tr}}{E + H}$$

$$\Delta \epsilon_{p} = (1 - R) \frac{c}{E + H} \Delta \epsilon$$

$$R = 1 - \frac{f^{tr}}{\Delta \sigma^{tr}}$$

 $\Delta \varepsilon_{ep} = (1-R)\Delta \varepsilon$ $\Delta \varepsilon_{p} = (1 - R) \frac{E}{F + H} \Delta \varepsilon$ $R = 1 - \frac{f^{tr}}{\left|\Delta\sigma^{tr}\right|}$

%Note: $\Delta \epsilon_p$ is always positive!!

State Determination (Isotropic Hardening) cont.

Update stress

- Algorithm
 - 1) Elastic trial
 - 2) Plastic return mapping
 - No iteration is required in linear hardening models

23

Algorithmic Tangent Stiffness

- Continuum tangent modulus
 - The slope of stress-strain curve $D^{ep} = \begin{cases} E & \text{if elastic} \\ E, & \text{if plastic} \end{cases}$
- Algorithmic tangent modulus
 - Differentiation of the state determination algorithm

$$\begin{split} \mathsf{D}^{\mathsf{alg}} &= \frac{\partial \Delta \sigma}{\partial \Delta \epsilon} = \frac{\partial^{\,\mathsf{tr}} \sigma}{\partial \Delta \epsilon} - \mathsf{sgn}(^{\,\mathsf{tr}} \sigma) \mathsf{E} \frac{\partial \Delta \epsilon_{\mathsf{p}}}{\partial \Delta \epsilon} \\ &\frac{\partial \Delta \epsilon_{\mathsf{p}}}{\partial \Delta \epsilon} = \frac{1}{\mathsf{E} + \mathsf{H}} \frac{\partial^{\,\mathsf{tr}} f}{\partial \Delta \epsilon} = \mathsf{sgn}(^{\,\mathsf{tr}} \sigma) \frac{\mathsf{E}}{\mathsf{E} + \mathsf{H}} \\ &\mathsf{D}^{\mathsf{alg}} = \begin{cases} \mathsf{E} & \mathsf{if} \; \mathsf{elastic} \\ \mathsf{E}_{\mathsf{t}} & \mathsf{if} \; \mathsf{plastic} \end{cases} \end{split}$$

- Dalg = Dep for 1D plasticity!!
 - We will show that they are different for multi-dimension

Algorithm for Isotropic Hardening

- Given: $\Delta \varepsilon$, E, H, σ_y^0 , σ^n , ε_p^n
- 1. Trial state $\sigma^{tr} = \sigma^{n} + E\Delta\epsilon$ $\sigma_y^n = \sigma_y^0 + H\epsilon_n^n$ $f^{tr} = |\sigma^{tr}| - \sigma_{v}^{n}$
- 1. If $f^{tr} \leq 0$ (elastic)
 - Remain elastic: $\sigma^{n+1} = \sigma^{tr}$, $\varepsilon_p^{n+1} = \varepsilon_p^n$; exit
- 2. If f^{tr} > 0 (plastic)
 - a. Calculate plastic strain: $\Delta \varepsilon_p = \frac{f^{tr}}{F + H}$
 - b. Update stress and plastic strain (store them for next increment)

$$\sigma^{n+1} = \sigma^{tr} - sgn(\sigma^{tr})E\Delta\varepsilon_{p} \qquad \left(\varepsilon_{p}^{n+1} = \varepsilon_{p}^{n} + \Delta\varepsilon_{p}\right)$$

$$\epsilon_{p}^{\text{n}+1} = \epsilon_{p}^{\text{n}} + \Delta \epsilon_{p}$$

25

Ex) Elastoplastic Bar (Isotropic Hardening)

- E = 200*G*Pa, H = 25*G*Pa, $^{0}\sigma_{y}$ = 250*M*Pa
- ${}^{n}\sigma$ = 150MPa, ${}^{n}\epsilon_{p}$ = 0.0001, $\Delta\epsilon$ = 0.002
- Yield stress: ${}^{n}\sigma_{y} = {}^{0}\sigma_{y} + H^{n}\varepsilon_{p} = 252.5MPa$
 - Material is elastic at t_n
- Trial stress: $\Delta^{tr}\sigma = E\Delta\epsilon = 400MPa$ $^{tr}\sigma={}^{n}\sigma+\Delta^{tr}\sigma=550\text{MPa}$ Now material is plastic

Plastic consistency condition

$$\Delta \epsilon_p = \frac{\text{tr}f}{\text{E} + \text{H}} = 1.322 \times 10^{-3}$$

State update

$$^{\text{n+1}}\sigma = ^{\text{tr}}\sigma - \text{sgn(}^{\text{tr}}\sigma)\text{E}\Delta\epsilon_{\text{p}} = 285.6\text{MPa}$$

$$^{\text{n+1}}\epsilon_{\text{p}} = ^{\text{n}}\epsilon_{\text{p}} + \Delta\epsilon_{\text{p}} = 1.422 \times 10^{-3}$$

Kinematic Hardening Model

- Yield strength remains constant, but the center of elastic region moves parallel to the hardening curve
- · Effective stress is defined using the shifted stress

$$\eta = \sigma - \alpha$$

· Use the center of elastic domain as an evolution variable

$$\alpha^{n+1} = \alpha^n + sgn(\eta)H\Delta\varepsilon_p$$

Back stress

27

State Determination (Kinematic Hardening)

Given: Material properties and state at increment n:

$$(\Delta \epsilon, E, H, \sigma_y^0, \sigma^n, \alpha^n, \epsilon_p^n)$$

Elastic predictor

$$\sigma^{\mathsf{tr}} = \sigma^{\mathsf{n}} + \mathsf{E}\Delta\varepsilon, \quad \alpha^{\mathsf{tr}} = \alpha^{\mathsf{n}}, \quad \eta^{\mathsf{tr}} = \sigma^{\mathsf{tr}} - \alpha^{\mathsf{tr}}$$

· Check yield status

Trial yield function

$$f^{tr} = \left| \eta^{tr} \right| - \sigma_y^0$$

• If $f^{tr} \leq 0$, material is elastic

$$\sigma^{n+1} = \sigma^{tr}$$

Either initial elastic region or unloading

If f^{tr} > 0, material is plastic (yielding)
 Either transition from elastic to plastic or continuous yielding

State Determination (Kinematic Hardening) cont.

· Updating formulas for stress, back stress & plastic strain

$$\sigma^{\mathsf{n}+1} = \sigma^{\mathsf{tr}} - \textit{sgn}(\eta^{\mathsf{tr}}) \mathsf{E} \Delta \epsilon_{\mathsf{p}} \qquad \alpha^{\mathsf{n}+1} = \alpha^{\mathsf{tr}} + \textit{sgn}(\eta^{\mathsf{tr}}) \mathsf{H} \Delta \epsilon_{\mathsf{p}} \qquad \epsilon_{\mathsf{p}}^{\mathsf{n}+1} = \epsilon_{\mathsf{p}}^{\mathsf{n}} + \Delta \epsilon_{\mathsf{p}}$$

- Plastic consistency condition
 - To determine unknown plastic strain increment
 - Stress must be on the yield surface during plastic loading

$$f^{n+1} = \left| \eta^{n+1} \right| - \sigma_y^0 = 0$$

$$\Rightarrow \left| \sigma^{\mathsf{tr}} - \mathsf{sgn}(\eta^{\mathsf{tr}}) \mathsf{E} \Delta \varepsilon_{\mathsf{p}} - \alpha^{\mathsf{tr}} - \mathsf{sgn}(\eta^{\mathsf{tr}}) \mathsf{H} \Delta \varepsilon_{\mathsf{p}} \right| - \sigma_{\mathsf{y}}^{\mathsf{0}} = 0$$

$$\Rightarrow \left| \sigma^{tr} - \alpha^{tr} \right| - \sigma_{v}^{0} - (E + H) \Delta \epsilon_{p} = 0$$

$$\Delta \epsilon_{p} = \frac{\left| \eta^{tr} \right| - \sigma_{y}^{n}}{E + H} = \frac{f^{tr}}{E + H}$$

%Note: the same formula with isotropic hardening model!!

29

Algorithm for Kinematic Hardening

- Given: $\Delta \varepsilon$, E, H, σ_y^0 , σ^n , α^n , ε_p^n
- 1. Trial state $\sigma^{tr} = \sigma^{n} + E\Delta\epsilon$

$$\begin{split} \alpha^{\text{tr}} &= \alpha^{\text{n}} \\ \eta^{\text{tr}} &= \sigma^{\text{tr}} - \alpha^{\text{tr}} \\ f^{\text{tr}} &= \left| \eta^{\text{tr}} \right| - \sigma_{\text{y}}^{\text{0}} \end{split}$$

- 2. If ftr < 0 (elastic)
 - Remain elastic: $\sigma^{n+1} = \sigma^{tr}$, $\alpha^{n+1} = \alpha^n$, $\epsilon_p^{n+1} = \epsilon_p^n$; exit
- 3. If ftr > 0 (plastic)
 - a. Calculate plastic strain: $\Delta \varepsilon_{p} = \frac{f^{tr}}{E + H}$
 - b. Update stress and plastic strain (store them for next increment)

$$\sigma^{n+1} = \sigma^{tr} - sgn(\eta^{tr})E\Delta\varepsilon_{p}$$

$$\varepsilon_{p}^{n+1} = \varepsilon_{p}^{n} + \Delta\varepsilon_{p}$$

$$\alpha^{n+1} = \alpha^{n} + sgn(\eta^{tr})H\Delta\varepsilon_{p}$$

Ex) Elastoplastic Bar (Kinematic Hardening)

- E = 200*G*Pa, H = 25*G*Pa, ${}^{0}\sigma_{y}$ = 200*M*Pa
- n_{σ} = 150MPa, n_{α} = 50MPa, $\Delta \varepsilon$ = -0.002
- Since $^{n}\eta = ^{n}\sigma ^{n}\alpha = 100 < ^{0}\sigma_{y}$, elastic state at t_{n}
- Trial stress:

$$\begin{array}{lll} \Delta^{\, tr} \sigma = E \Delta \epsilon = -400 MPa, & ^{tr} \sigma = \, ^{n} \sigma + \Delta^{\, tr} \sigma = -250 MPa \\ \\ ^{tr} \alpha = \, ^{n} \alpha = 50 MPa, & ^{tr} \eta = \, ^{tr} \sigma - \, ^{tr} \alpha = -300 MPa \end{array}$$

- Since ${}^{tr}f=\left|{}^{tr}\eta\right|-{}^{0}\sigma_{y}>0$, material yields in compression
- Plastic strain $\Delta \epsilon_p = \frac{\text{tr} f}{\text{E} + \text{H}} = 0.444 \times 10^{-3}$
- State update $^{\text{n+1}}\sigma = \, ^{\text{tr}}\sigma \text{sgn}(\,^{\text{tr}}\eta)\text{E}\Delta\epsilon_{\text{p}} = -161.1\text{MPa}$ $^{\text{n+1}}\alpha = \, ^{\text{tr}}\alpha \text{sgn}(\,^{\text{tr}}\eta)\text{H}\Delta\epsilon_{\text{p}} = 38.9\text{MPa}$

3

Ex) Elastoplastic Bar (Kinematic Hardening)

Combined Hardening Model

- · Baushinger effect
 - conditions where the yield strength of a metal decreases when the direction of strain is changed
 - Common for most polycrystalline metals
 - Related to the dislocation structure in the cold worked metal. As deformation occurs, the dislocations will accumulate at barriers and produce dislocation pile-ups and tangles.
- · Numerical modeling of Baushinger effect
 - Modeled as a combined kinematic and isotropic hardening

$$\sigma_y^{n+1} = \sigma_y^n + (1 - \beta)H\Delta\epsilon_p$$

$$\alpha^{n+1} = \alpha^n + sgn(\eta)\beta H\Delta\epsilon_p$$

$$0 \le \beta \le 1$$

 β = 0: isotropic hardening

 β = 1: kinematic hardening

33

Combined Hardening Model cont.

· Trial state

$$\begin{split} \sigma^{tr} &= \sigma^{n} + E \Delta \epsilon \\ \alpha^{tr} &= \alpha^{n} \\ \eta^{tr} &= \sigma^{tr} - \alpha^{tr} \\ f^{tr} &= \left| \eta^{tr} \right| - \sigma^{n}_{y} \end{split}$$

· Stress update

$$\begin{split} \sigma^{n+1} &= \sigma^{tr} - \textit{sgn}(\eta^{tr}) E \Delta \epsilon_p \\ \alpha^{n+1} &= \alpha^{tr} + \textit{sgn}(\eta^{tr}) \beta H \Delta \epsilon_p \\ \sigma^{n+1}_y &= \sigma^n_y + (1 - \beta) H \Delta \epsilon_p \end{split}$$

Show that the plastic increment is the same

$$\Delta \varepsilon_{p} = \frac{f^{tr}}{E + H}$$

MATLAB Program combHard1D

```
% 1D Linear combined isotropic/kinematic hardening model
function [stress, alpha, ep]=combHard1D(mp, deps, stressN, alphaN, epN)
% Inputs:
% mp = [E, beta, H, Y0];
% deps = strain increment
% stressN = stress at load step N
% alphaN = back stress at load step N
% epN = plastic strain at load step N
E=mp(1); beta=mp(2); H=mp(3); Y0=mp(4);
                                                %material properties
ftol = Y0*1E-6;
                                                %tolerance for yield
stresstr = stressN + E*deps;
                                                %trial stress
etatr = stresstr - alphaN;
                                                %trial shifted stress
fyld = abs(etatr) - (Y0+(1-beta)*H*epN);
                                               %trial yield function
                                                %yield test
if fyld < ftol
    stress = stresstr; alpha = alphaN; ep = epN; %trial states are final
    return;
else
    dep = fyld/(E+H);
                                                %plastic strain increment
end
stress = stresstr - sign(etatr)*E*dep;
                                                %updated stress
alpha = alphaN + sign(etatr)*beta*H*dep;
                                                %updated back stress
ep = epN + dep;
                                                %updated plastic strain
return;
```

35

Ex) Two bars in parallel

- Bar 1: A = 0.75, E = 10000, $E_t = 1000$, $\sigma_y = 5$, kinematic
- Bar 2: A = 1.25, E = 5000, $E_t = 500$, $\sigma_y = 7.5$, isotropic
- MATLAB program

```
% Example 4.5 Two elastoplastic bars in parallel
                                                             Bar1
E1=10000; Et1=1000; sYield1=5;
                                                                     Rigid
E2=5000; Et2=500; sYield2=7.5;
mp1 = [E1, 1, E1*Et1/(E1-Et1), sYield1];
mp2 = [E2, 0, E2*Et2/(E2-Et2), sYield2];
nS1 = 0; nA1 = 0; nep1 = 0;
nS2 = 0; nA2 = 0; nep2 = 0;
A1 = 0.75; L1 = 100;
A2 = 1.25; L2 = 100;
tol = 1.0E-5; u = 0; P = 15; iter = 0;
Res = P - nS1*A1 - nS2*A2;
Dep1 = E1; Dep2 = E2;
conv = Res^2/(1+P^2);
fprintf('\niter
                             S1
                                    S2
                                            A1
                                                   A2');
                      ep2 Residual');
fprintf(' ep1
fprintf('\n %3d %7.4f %7.3f %7.3f %7.3f %8.6f %8.6f %10.3e',...
     iter, u, nS1, nS2, nA1, nA2, nep1, nep2, Res);
```

Ex) Two bars in parallel cont.

```
while conv > tol && iter < 20
  delu = Res / (Dep1*A1/L1 + Dep2*A2/L2);
 u = u + delu;
  delE = delu / L1;
  [Snew1, Anew1, epnew1] = combHard1D (mp1, delE, nS1, nA1, nep1);
  [Snew2, Anew2, epnew2]=combHard1D(mp2,delE,nS2,nA2,nep2);
  Res = P - Snew1*A1 - Snew2*A2;
  conv = Res^2/(1+P^2);
  iter = iter + 1;
  Dep1 = E1; if epnew1 > nep1; Dep1 = Et1; end
 Dep2 = E2; if epnew2 > nep2; Dep2 = Et2; end
 nS1 = Snew1; nA1 = Anew1; nep1 = epnew1;
 nS2 = Snew2; nA2 = Anew2; nep2 = epnew2;
  fprintf('\n %3d %7.4f %7.3f %7.3f %7.3f %8.6f %8.6f %10.3e',...
      iter, u, nS1, nS2, nA1, nA2, nep1, nep2, Res);
end
```

Iteration	u	s ₁	s ₂	e _{p1}	e _{p2}	Residual
0	0.0000	0.000	0.000	0.000000	0.000000	1.50E+1
1	0.1091	5.591	5.455	0.000532	0.000000	3.99E+0
2	0.1661	6.161	7.580	0.001045	0.000145	9.04E-1
3	0.2318	6.818	7.909	0.001636	0.000736	0.00E+0

37

Summary

- Plastic deformation depends on load-history and its information is stored in plastic strain
- · Stress only depends on elastic strain
- Isotropic hardening increases the elastic domain, while kinematic hardening maintains the size of elastic domain but moves the center of it
- Major issue in elastoplastic analysis is to decompose the strain into elastic and plastic parts
- Algorithmic tangent stiffness is consistent with the state determination algorithm
- State determination is composed of (a) elastic trial and (b) plastic return mapping

1D Elastoplastic Analysis Using ABAQUS

```
Material Card
*MATERIAL,NAME=ALLE
*ELASTIC
200.E3,.3
*PLASTIC
200.,0.
220.,.0009
220.,.0029
Plastic strain
Yield stress
```

39

1D Elastoplastic Analysis Using ABAQUS

```
5,2
*HEADING
                                       6,2
UniaxialPlasticity
                                       4,1
*NODE, NSET=ALLN
1,0.,0.,0.
                                       5,1
2,1.,0.,0.
                                       8,1
3,1.,1.,0.
                                       2,3
4,0.,1.,0.
                                       3,3
5,0.,0.,1.
                                       4,3
                                       *STEP, INC=20
6,1.,0.,1.
7,1.,1.,1.
                                       *STATIC, DIRECT
8,0.,1.,1.
                                       1.,20.
*ELEMENT, TYPE=C3D8, ELSET=ALLE
                                       *BOUNDARY
1,1,2,3,4,5,6,7,8
                                       7,3,,.004
*SOLID SECTION, ELSET=ALLE, MATERIAL=ALLE 5,3,,.004
*MATERIAL, NAME=ALLE
                                       6,3,,.004
*ELASTIC
                                       8,3,,.004
200.E3,.3
                                       *EL PRINT, FREQ=1
*PLASTIC
200.,0.
                                       Ε,
220.,.0009
220.,.0029
                                       *NODE PRINT
*BOUNDARY
                                       U,RF
1, PINNED
                                       *END STEP
2,2
```


4.3
Multi-Dimensional
Elastoplastic Analysis

Goals

- Understand failure criteria, equivalent stress, and effective strain
- Understand how 1D tension test data can be used for determining failure of 3D stress state
- Understand deviatoric stress and strain
- Understand the concept of elastic domain and yield surface
- Understand hardening models
- Understand evolution of plastic variables along with that of the yield surface

43

Multi-Dimensional Elastoplasticity

- How can we generalize 1D stress state (σ_{11}) to 3D state (6 components)?
 - Need scalar measures of stress and strain to compare with 1D test
 - Equivalent stress & effective strain
 - Key ingredients: yield criteria, hardening model, stress-strain relation
- We will assume small (infinitesimal) strains
- Rate independent elastoplasticity- independent of strain rate
- Von Mises yield criterion with associated hardening model is the most popular

Failure Criteria

Material yields due to relative sliding in lattice structures

- Sliding preserves volume
 plastic deformation is related to shear or deviatoric part
- · Tresca (1864, max. shear stress)
 - Material fails when max. shear stress reaches that of tension test
 - Tension test: yield at $\sigma_1 = \sigma_y$, $\sigma_2 = \sigma_3 = 0$

$$\tau_{max} = \frac{\sigma_1 - \sigma_3}{2} \le \tau_y = \frac{\sigma_y}{2}$$

- Yielding occurs when $\tau_{\text{max}} = \tau_{\text{y}}$

45

Failure Criteria cont.

- Distortion Energy Theory (von Mises)
 - Material fails when distortion energy reaches that of tension test

$$U_d \le U_d$$
 (tension test)

- We need preliminaries before deriving $U_{\rm d}$
- · Volumetric stress and mean strain

$$\begin{split} \sigma_{\text{m}} &= \frac{1}{3} \text{tr}(\sigma) = \frac{1}{3} (\sigma_{11} + \sigma_{22} + \sigma_{33}) \\ \epsilon_{\text{m}} &= \frac{1}{3} \text{tr}(\epsilon) = \frac{1}{3} \epsilon_{\text{v}} = \frac{1}{3} (\epsilon_{11} + \epsilon_{22} + \epsilon_{33}) \end{split}$$

· Deviatoric stress and strain

$$\mathbf{s} = \mathbf{\sigma} - \mathbf{\sigma}_{\mathsf{m}} \mathbf{1} = \mathbf{I}_{\mathsf{dev}} : \mathbf{\sigma} \qquad \qquad \mathbf{I}_{\mathsf{ijkl}} = (\delta_{\mathsf{ik}} \delta_{\mathsf{jl}} + \delta_{\mathsf{il}} \delta_{\mathsf{jk}}) / 2$$

$$\mathbf{e} = \mathbf{\epsilon} - \epsilon_{\mathsf{m}} \mathbf{1} = \mathbf{I}_{\mathsf{dev}} : \mathbf{\epsilon} \qquad \qquad \mathbf{I}_{\mathsf{dev}} = \mathbf{I} - \frac{1}{3} \mathbf{1} \otimes \mathbf{1}$$

Failure Criteria cont.

Example: Linear elastic material

$$\boldsymbol{\sigma} = \left[\lambda \boldsymbol{1} \otimes \boldsymbol{1} + 2\mu \boldsymbol{I}\right] : \boldsymbol{\epsilon} \equiv \boldsymbol{D} : \boldsymbol{\epsilon}$$

$$\begin{split} \sigma &= \lambda (3\epsilon_{m})\mathbf{1} + 2\mu (\mathbf{e} + \epsilon_{m}\mathbf{1}) \\ &= \underbrace{(3\lambda + 2\mu)\epsilon_{m}\mathbf{1}}_{\text{volumetric}} + \underbrace{2\mu \mathbf{e}}_{\text{deviatoric}} \end{split}$$

$$\sigma_{m} = (3\lambda + 2\mu)\epsilon_{m}$$

$$s = 2\mu e$$

Bulk modulus

$$K=\frac{3\lambda+2\mu}{3}$$

Distortion energy density

$$U = \frac{1}{2}\sigma : \varepsilon = \frac{1}{2}(\sigma_{m}\mathbf{1} + \mathbf{s}) : (\varepsilon_{m}\mathbf{1} + \mathbf{e}) = \frac{3}{2}\sigma_{m}\varepsilon_{m} + \frac{1}{2}\mathbf{s} : \mathbf{e}$$

$$U_d = \frac{1}{2}s$$
: $e = \frac{1}{4\mu}s$: s

47

Failure Criteria cont.

1D Case

$$\sigma_{11} = \sigma$$
 $\sigma_{m} = \frac{1}{3}\sigma$ $\mathbf{s} = \sigma \begin{bmatrix} \frac{2}{3} & 0 & 0\\ 0 & -\frac{1}{3} & 0\\ 0 & 0 & -\frac{1}{3} \end{bmatrix}$

$$U_d \left|_{1D} \right. = \frac{1}{4\mu} \boldsymbol{s} : \boldsymbol{s} = \frac{1}{4\mu} \frac{2}{3} \sigma^2 = \frac{1}{6\mu} \sigma^2$$

Material yields when

$$U_d = \frac{1}{4\mu} \boldsymbol{s} : \boldsymbol{s} = \frac{1}{6\mu} \sigma_y^2 = U_d \, \Big|_{1D}$$

Let's define an equivalent stress $\sigma_e = \sqrt{\frac{3}{2}s \cdot s}$

$$\sigma_e = \sqrt{\frac{3}{2}\mathbf{s}:\mathbf{s}}$$

Then, material yields when

$$\sigma_e = \sigma_y$$

von Mises stress

Stress can increase from zero to σ_y , but cannot increase beyond that

Equivalent Stress and Effective Strain

- Equivalent stress is the scalar measure of 3D stress state that can be compared with 1D stress from tension test
- Effective strain is the scalar measure of 3D strain state that makes conjugate with equivalent stress

$$\begin{aligned} & U_{d} = \frac{1}{2}\mathbf{s} : \mathbf{e} = \frac{1}{2}\sigma_{e}\mathbf{e}_{e} \\ & U_{d} = \frac{1}{4\mu}\mathbf{s} : \mathbf{s} = \frac{1}{6\mu}\sigma_{e}^{2} = \frac{1}{2}\sigma_{e}\mathbf{e}_{e} \end{aligned} \qquad \qquad \begin{aligned} & \text{Effective strain} \\ & \mathbf{e}_{e} = \frac{1}{3\mu}\sigma_{e} = \frac{1}{3\mu}\sqrt{\frac{3}{2}\mathbf{s} : \mathbf{s}} = \frac{1}{3\mu}\sqrt{\frac{3}{2}2\mu\mathbf{e} : 2\mu\mathbf{e}} = \sqrt{\frac{2}{3}\mathbf{e} : \mathbf{e}} \end{aligned}$$

Equivalent Stress and Effective Strain cont.

1D Case cont.

$$\epsilon_{11} = \epsilon \quad \epsilon_{22} = \epsilon_{33} = -\nu\epsilon \quad \epsilon_m = \frac{1-2\nu}{3}\epsilon$$

$$\mathbf{e} = \frac{(1+v)\varepsilon}{3} \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \qquad \mathbf{e} : \mathbf{e} = 6 \left(\frac{(1+v)\varepsilon}{3} \right)^2$$

$$\mathbf{e} : \mathbf{e} = 6 \left(\frac{(1+v)\varepsilon}{3} \right)^2$$

$$e_e = \sqrt{\frac{2}{3}e : e} = \frac{2(1+v)}{3}\varepsilon$$

Effective strain for 1D tension

Von Mises Criterion

Material yields when $\sigma_e = \sigma_v$

$$\sigma_e = \sqrt{\frac{3}{2}\mathbf{s} : \mathbf{s}} = \sqrt{3J_2}$$

$$J_2 = \frac{1}{2}s : s$$

2nd invariant of s

$$J_{2} = \frac{1}{6} \left[(\sigma_{x} - \sigma_{y})^{2} + (\sigma_{y} - \sigma_{z})^{2} + (\sigma_{z} - \sigma_{x})^{2} \right] + \tau_{xy}^{2} + \tau_{yz}^{2} + \tau_{zx}^{2}$$

$$J_2 = \frac{1}{6} \Big[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \Big] \qquad \text{In terms of principal stresses}$$

Yield criterion

$$\sigma_e^2 - \sigma_y^2 \equiv 3J_2 - \sigma_y^2 = 0$$

- 1D test data σ_y can be used for multi-dimensional stress state
- Often called J₂ plasticity model

Von Mises Criterion cont.

 J_2 : second invariant of s

$$J_2 = \frac{1}{2}[s : s - tr(s)^2] = \frac{1}{2}s : s$$

Von Mises yield function

$$3J_{2} - \sigma_{y}^{2} = 0$$

$$\Rightarrow \frac{3}{2}s : s - \sigma_{y}^{2} = 0$$

$$\Rightarrow \sqrt{s : s} - \sqrt{\frac{2}{3}}\sigma_{y} = 0$$

$$\Rightarrow \|s\| - \sqrt{\frac{2}{3}}\sigma_{y} = 0$$
Yield function

Yield surface is circular in deviatoric stress space

Example

• Pure shear stress τ to yield

$$\boldsymbol{\sigma} = \begin{bmatrix} 0 & \tau & 0 \\ \tau & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \boldsymbol{s}$$

$$\|\mathbf{s}\| = \sqrt{\mathbf{s} : \mathbf{s}} = \sqrt{\tau^2 + \tau^2} = \tau \sqrt{2}$$

- Yield surface:

$$\sqrt{2}\tau = \sqrt{\frac{2}{3}}\sigma_y \quad \Rightarrow \quad \boxed{\tau = \frac{1}{\sqrt{3}}\sigma_y}$$

- Failure in max. shear stress theory Safe in distortion energy theory
- Von Mises is more accurate, but Tresca is more conservative

53

Example

· Uniaxial tensile test

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \boldsymbol{s} = \begin{bmatrix} \frac{2}{3}\sigma & 0 & 0 \\ 0 & -\frac{1}{3}\sigma & 0 \\ 0 & 0 & -\frac{1}{3}\sigma \end{bmatrix}$$

$$\|\mathbf{s}\| = \sqrt{\frac{4}{9}\sigma^2 + \frac{1}{9}\sigma^2 + \frac{1}{9}\sigma^2} = \sqrt{\frac{2}{3}}\sigma$$

- Yield surface

$$\sqrt{\frac{2}{3}}\sigma - \sqrt{\frac{2}{3}}\sigma_y = 0 \quad \Rightarrow \quad \sigma = \sigma_y$$

Consistent with uniaxial tension test

Hardening Model

- For many materials, the yield surface increases proportional to plastic deformation \Rightarrow strain hardening
- Isotropic hardening: Change in radius
- Kinematic hardening: Change in center

55

Hardening Model cont.

Isotropic hardening model (linear)

$$\sigma_y = \sigma_y^0 + He_p$$

$$H = \frac{\Delta \sigma}{\Delta e_n}$$

Plastic modulus

Effective plastic strain Initial yield stress

- H = 0: elasto-perfectly-plastic material
- Kinematic hardening model (linear)
 - The center of yield surface : back stress α
 - Shifted stress: $\eta = s \alpha$

$$\boxed{\lVert \eta \rVert - \sqrt{\frac{2}{3}} \sigma_y = 0}$$

direction

Hardening Model cont.

- · Combined Hardening
 - Many materials show both isotropic and kinematic hardenings
 - Introduce a parameter $\beta \in [0, 1]$ to consider this effect
 - Baushinger effect: The yield stress increases in one directional loading. But it decreases in the opposite directional load.
 - This is caused by dislocation pileups and tangles (back stress). When strain direction is changed, this makes the dislocations easy to move

$$\left[\| \eta \| - \sqrt{\frac{2}{3}} [\sigma_y^0 + (1 - \beta) He_p] = 0 \right]$$

$$\left(\dot{\alpha} = \sqrt{\frac{2}{3}}\beta H\dot{e}_{p} \frac{\eta}{\|\eta\|}\right)$$

- Isotropic hardening: $\beta = 0$
- Kinematic hardening: $\beta = 1$

57

Ex) Uniaxial Bar with Hardening

• Calculate uniaxial stress s when e_p = 0.1, initial σ_y = 400 MPa and H = 200 MPa (a) isotropic, (b) kinematic and (c) combined hardening with β = 0.5

$$\sigma = \begin{bmatrix} \sigma & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \mathbf{s} = \begin{bmatrix} \frac{2}{3}\sigma & 0 & 0 \\ 0 & -\frac{1}{3}\sigma & 0 \\ 0 & 0 & -\frac{1}{3}\sigma \end{bmatrix} \qquad \left\| \mathbf{s} \right\| = \sqrt{\frac{2}{3}}\sigma$$

a) Isotropic hardening

$$\|\mathbf{s}\| - \sqrt{\frac{2}{3}}(\sigma_{y}^{0} + He_{p}) = \sqrt{\frac{2}{3}}\sigma - \sqrt{\frac{2}{3}}(400 + 200 \times 0.1) = 0$$

$$\sigma = 420 \text{ MPa}$$

b) Kinematic hardening

$$\left\| \mathbf{s} - \alpha \right\| - \sqrt{\frac{2}{3}} \sigma_{y}^{0} = 0$$

$$\Rightarrow \|\mathbf{s}\| - \|\alpha\| - \sqrt{\frac{2}{3}}\sigma_{y}^{0} = \sqrt{\frac{2}{3}}\sigma - \sqrt{\frac{2}{3}}He_{p} - \sqrt{\frac{2}{3}}\sigma_{y}^{0} = 0$$

$$\sigma = 420 \text{ MPa}$$

Ex) Uniaxial Bar with Hardening

c) Combined hardening

$$\begin{split} & \left\| \textbf{s} - \alpha \right\| - \sqrt{\frac{2}{3}} \left[\ \sigma_y^0 + (1 - \beta) He_p \ \right] \\ & = \left\| \textbf{s} \right\| - \left\| \alpha \right\| - \sqrt{\frac{2}{3}} \left[\ \sigma_y^0 + (1 - \beta) He_p \ \right] \\ & = \sqrt{\frac{2}{3}} \sigma - \sqrt{\frac{2}{3}} \beta He_p - \sqrt{\frac{2}{3}} \sigma_y^0 - \sqrt{\frac{2}{3}} (1 - \beta) He_p \ \\ & = 0 \\ & \sigma = \sigma_y^0 + He_p = (400 + 200 \times 0.1) = 420 \text{MPa} \end{split}$$

All three models yield the same stress (proportional loading)

59

Rate-Independent Elastoplasticity

Additive decomposition

$$c - c^e + c^p$$
 $\dot{c} - \dot{c}^e + \dot{c}^p$

 $\epsilon = \epsilon^e + \epsilon^p$ $\dot{\epsilon} = \dot{\epsilon}^e + \dot{\epsilon}^p$ From small deformation assumption

Strain energy (linear elastic)

$$W(\varepsilon^e) = \frac{1}{2}\varepsilon^e : D : \varepsilon^e = \frac{1}{2}(\varepsilon - \varepsilon^p) : D : (\varepsilon - \varepsilon^p)$$

Stress (differentiating W w.r.t. strain)

$$\sigma = \frac{\partial W}{\partial \epsilon^e} = D : \epsilon^e = D : (\epsilon - \epsilon^p)$$

$$\dot{\sigma} = \mathbf{D} : (\dot{\varepsilon} - \dot{\varepsilon}^{\mathsf{p}})$$

$$\mathbf{D} = \lambda \mathbf{1} \otimes \mathbf{1} + 2\mu \mathbf{I}$$

Why we separate volumetric part from deviatoric part?

$$\mathbf{D} = (\lambda + \frac{2}{3}\mu)\mathbf{1} \otimes \mathbf{1} + 2\mu \mathbf{I}_{\text{dev}}$$

Rate-Independent Elastoplasticity cont.

- · Stress cont.
 - Volumetric stress: $\dot{\sigma}_{m}=\frac{1}{3}\text{tr}(\dot{\sigma})=(\lambda+\frac{2}{3}\mu)\text{tr}(\dot{\epsilon})=(3\lambda+2\mu)\dot{\epsilon}_{m}$
 - Deviatoric stress: $\dot{\mathbf{s}} = 2\mu(\dot{\mathbf{e}} \dot{\mathbf{e}}^p)$ Why isn't this an elastic strain?
- Yield function
 - We will use von Mises, pressure insensitive yield function

$$f(\eta, e_p) = \|\eta\| - \sqrt{\frac{2}{3}}\kappa(e_p) \le 0$$

- $\kappa(e_p)$: Radius of elastic domain
- e_p : effective plastic strain
- Elastic domain (smooth, convex)

$$E = \left\{ (\eta, e_p) \middle| f(\eta, e_p) \le 0 \right\}$$

6

Rate-Independent Elastoplasticity cont.

Flow rule (determine evolution of plastic strain)

$$\dot{\epsilon}^{p} = \dot{\gamma} \mathbf{r}(\sigma, \xi)$$

$$\xi = (\alpha, e_p)$$

Plastic variables

- Plastic consistency parameter γ : γ > 0 (plastic), γ =0 (elastic)
- Flow potential $g(\sigma, \xi)$

$$\mathbf{r} = \frac{\partial g(\sigma, \xi)}{\partial \sigma} \quad \Rightarrow \quad \dot{\mathbf{\epsilon}}^{\mathsf{p}} = \dot{\gamma} \frac{\partial g(\sigma, \xi)}{\partial \sigma}$$

- Plastic strain increases in the normal direction to the flow potential

Rate-Independent Elastoplasticity cont.

- Associative flow rule
 - Flow potential = yield function

$$\frac{\dot{\epsilon}^p = \dot{\gamma} \frac{\partial f(\eta, \xi)}{\partial \eta}}{\partial \eta} \qquad \begin{array}{c} \text{Unit deviatoric tensor} \\ \text{normal to the yield surface} \\ \frac{\partial f}{\partial \eta} = \frac{\partial \|\eta\|}{\partial \eta} = \frac{\partial \sqrt{\eta : \eta}}{\partial \eta} = \frac{\eta}{\sqrt{\eta : \eta}} = \frac{\eta}{\|\eta\|} = N \end{array}$$

$$\Rightarrow \left[\dot{\epsilon}^p = \dot{\gamma} \frac{\partial f}{\partial \eta} = \dot{\gamma} \frac{\eta}{\|\eta\|} = \dot{\gamma} \mathbf{N} \right]$$

N determines the direction of plastic strain rate and $\dot{\gamma}$ determines the magnitude

63

Rate-Independent Elastoplasticity cont.

- · Evolution of plastic variables (hardening model)
- Back stress α

$$\dot{\alpha} = H_{\alpha}(e_{p})\dot{\gamma}\frac{\partial f(\eta, e_{p})}{\partial \eta} = H_{\alpha}(e_{p})\dot{\gamma}N$$

Plastic modulus for kinematic hardening

· Effective plastic strain

$$\dot{e}^{p} = \sqrt{\frac{2}{3}}\dot{e}^{p} : \dot{e}^{p} = \sqrt{\frac{2}{3}} \|\dot{e}^{p}\|$$

- Note: plastic deformation only occurs in deviatoric components

$$\dot{eta}^{\mathrm{p}} = \dot{oldsymbol{e}}^{\mathrm{p}} \qquad \left\| \dot{eta}^{\mathrm{p}} \right\| = \left\| \dot{\gamma} \mathbf{N} \right\| = \dot{\gamma}$$
 $\dot{eta}^{\mathrm{p}} = \sqrt{\frac{2}{3}} \dot{\gamma}$ $\Rightarrow \dot{\xi} = \dot{\gamma} \mathbf{h}(\sigma, \xi)$

Rate-Independent Elastoplasticity cont.

- Kuhn-Tucker conditions
 - The plastic consistency parameter must satisfy

$$\dot{\gamma} \geq 0 \quad \dot{\gamma}f = 0 \quad f \leq 0$$

- 1. Within elastic domain: f < 0 $\dot{\gamma} = 0$ $\Rightarrow \dot{\gamma}f = 0$
- 2. On the yield surface
 - a. Elastic unloading $\dot{f} < 0$ $\dot{\gamma} = 0$ $\Rightarrow \dot{\gamma} f = 0$
 - b. Neutral loading $\dot{f} = 0$ $\dot{\gamma} = 0$ $\Rightarrow \dot{\gamma}f = 0$
 - c. Plastic loading (process attempt to violate $f \le 0$)

$$\dot{f}=0 \quad \dot{\gamma}>0 \quad \Rightarrow \dot{\gamma}f=0$$

 \Rightarrow Equivalent to $\dot{\gamma}\dot{f}=0$

65

Classical Elastoplasticity

- Elastoplasticity boils down to how to calculate plasticity consistency parameter
- Classical plasticity uses the rate form of evolution relations to calculate it
- Plastic consistency condition $\dot{\gamma}\dot{f} = 0$
 - $\dot{\gamma}$ is only non-zero when continues plastic deformation

$$\dot{\gamma} > 0 \quad \dot{f}(\sigma, \xi) = 0$$

$$\dot{f}(\sigma,\xi) = \frac{\partial f}{\partial \sigma} : \dot{\sigma} + \frac{\partial f}{\partial \xi} \cdot \dot{\xi} = 0$$

$$\frac{\partial f}{\partial \sigma}: \textbf{D}: (\dot{\epsilon} - \dot{\epsilon}^p) + \frac{\partial f}{\partial \xi} \cdot \dot{\gamma} \textbf{h} = 0$$

$$\frac{\partial f}{\partial \sigma}: \mathbf{D}: \dot{\epsilon} - \frac{\partial f}{\partial \sigma}: \mathbf{D}: \dot{\gamma} \mathbf{r} + \frac{\partial f}{\partial \xi} \cdot \dot{\gamma} \mathbf{h} = 0$$

Solve for plastic consistency parameter

Classical Elastoplasticity cont.

Plastic consistency parameter

$$\dot{\gamma} = rac{\left\langle rac{\partial f}{\partial \sigma} : \mathbf{D} : \dot{\epsilon}
ight
angle}{rac{\partial f}{\partial \sigma} : \mathbf{D} : \mathbf{r} - rac{\partial f}{\partial \xi} \cdot \mathbf{h}}$$

Assume the denominator is positive

$$\langle x \rangle = \begin{cases} x & \text{if } x > 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

$$\dot{\gamma} > 0 \implies \frac{\partial f}{\partial \sigma} : \mathbf{D} : \dot{\epsilon} > 0$$

$$\cos\theta = \frac{\frac{\partial f}{\partial \sigma} : \mathbf{D} : \dot{\epsilon}}{\left\| \frac{\partial f}{\partial \sigma} \right\| \left\| \mathbf{D} : \dot{\epsilon} \right\|}$$

 $\mathsf{E} \qquad \qquad \frac{\partial f}{\partial \sigma} \mathsf{normal}$

 θ < 90°: plastic loading

 $\theta = 90^{\circ}$: neutral loading $\theta > 90^{\circ}$: elastic unloading): È trial stress rate

67

Classical Elastoplasticity cont.

Elastoplastic tangent stiffness (when $\dot{\gamma} > 0$)

$$\dot{\sigma} = \mathbf{D} : (\dot{\epsilon} - \dot{\epsilon}^{p})$$

$$\dot{\sigma} = \textbf{D} : \dot{\epsilon} - \textbf{D} : \dot{\gamma} \textbf{r} = \textbf{D} : \dot{\epsilon} - \textbf{D} : \textbf{r} \frac{\left\langle \frac{\partial f}{\partial \sigma} : \textbf{D} : \dot{\epsilon} \right\rangle}{\frac{\partial f}{\partial \sigma} : \textbf{D} : \textbf{r} - \frac{\partial f}{\partial \xi} \cdot \textbf{h}}$$

$$\dot{\sigma} = \left[\mathbf{D} - \frac{\left\langle \mathbf{D} : \mathbf{r} \otimes \frac{\partial f}{\partial \sigma} : \mathbf{D} \right\rangle}{\frac{\partial f}{\partial \sigma} : \mathbf{D} : \mathbf{r} - \frac{\partial f}{\partial \xi} \cdot \mathbf{h}} \right] : \dot{\varepsilon}$$

In general, it is not symmetric, but for associative flow rule, it is

Nonlinear Hardening Models

· Nonlinear kinematic hardening model

$$\dot{\alpha} = H(e_p)\dot{e}^p \quad H(e_p) = H_0 \exp\left(-\frac{e_p}{e_p^{\infty}}\right)$$
 Saturated hardening

Nonlinear isotropic hardening model

$$\kappa(e_{p}) = \sigma_{y}^{0} + (\sigma_{y}^{\infty} - \sigma_{y}^{0}) \left[1 - \exp(-e_{p} / e_{p}^{\infty}) \right]$$

69

Example: Linear hardening model

- · Linear combined hardening model, associative flow rule
- 5 params: 2 elastic (λ , μ) and 3 plastic (β , H, σ_y^0) variables

$$\kappa(e_p) = \sigma_y^0 + (1 - \beta)He_p$$
 $\dot{\alpha} = \frac{2}{3}\beta H\dot{e}^p$

· Plastic consistency parameter

$$\begin{split} f(\boldsymbol{s}, \boldsymbol{\alpha}, \boldsymbol{e}_p) &= \left\| \boldsymbol{s} - \boldsymbol{\alpha} \right\| - \sqrt{\frac{2}{3}} [\sigma_{\boldsymbol{\gamma}}^0 + (1-\beta) \boldsymbol{H} \boldsymbol{e}_p] = 0 \\ \dot{f} &= \frac{\partial f}{\partial \boldsymbol{s}} : \dot{\boldsymbol{s}} + \frac{\partial f}{\partial \boldsymbol{\alpha}} : \dot{\boldsymbol{\alpha}} + \frac{\partial f}{\partial \boldsymbol{e}_p} \dot{\boldsymbol{e}}_p = \boldsymbol{N} : \dot{\boldsymbol{s}} - \boldsymbol{N} : \dot{\boldsymbol{\alpha}} - \sqrt{\frac{2}{3}} (1-\beta) \boldsymbol{H} \dot{\boldsymbol{e}}_p = 0 \\ \dot{\boldsymbol{s}} &= 2\mu \Big(\dot{\boldsymbol{e}} - \dot{\boldsymbol{e}}^p \Big) = 2\mu \dot{\boldsymbol{e}} - 2\mu \boldsymbol{\gamma} \boldsymbol{N} \\ \dot{\boldsymbol{\alpha}} &= \frac{2}{3}\beta \boldsymbol{H} \dot{\boldsymbol{e}}^p = \frac{2}{3}\beta \boldsymbol{H} \boldsymbol{\gamma} \boldsymbol{N} \\ \dot{\boldsymbol{e}}_p &= \sqrt{\frac{2}{3}} \boldsymbol{\gamma} \end{split}$$

Example: Linear hardening model cont.

· Plastic consistency parameter cont.

$$\begin{split} \dot{f} &= 2\mu \textbf{N} : \dot{\epsilon} - 2\mu\gamma \textbf{N} : \textbf{N} - \frac{2}{3}\beta H\gamma \textbf{N} : \textbf{N} - \frac{2}{3}(1-\beta)H\gamma = 0 \\ \gamma &= \frac{2\mu \textbf{N} : \dot{\epsilon}}{2\mu + \frac{2}{3}H} \end{split} \qquad \qquad \begin{split} \textbf{N} : \textbf{N} &= 1 \\ \textbf{N} : \dot{\textbf{e}} &= \textbf{N} : \dot{\epsilon} \end{split}$$

- No iteration is required
- Elastoplastic tangent stiffness

$$\begin{split} \dot{\sigma} = \textbf{D} : \dot{\epsilon} - \textbf{D} : \dot{\epsilon}^p = \textbf{D} : \dot{\epsilon} - \dot{\gamma} \textbf{D} : \textbf{N} \\ \textbf{D} : \textbf{N} = 2 \mu \textbf{N} \end{split}$$

$$\dot{\sigma} = \mathbf{D} : \dot{\epsilon} - 2\mu \mathbf{N} \frac{2\mu \mathbf{N} : \dot{\epsilon}}{2\mu + \frac{2}{3}H} = \left[\mathbf{D} - \frac{4\mu^2}{2\mu + \frac{2}{3}H} \mathbf{N} \otimes \mathbf{N} \right] : \dot{\epsilon}$$

71

Ex) Plastic Deformation of a Bar

Ε	μ	ν	σ_{y}	Н	β
2.4 G Pa	1.0 <i>G</i> Pa	0,2	300MPa	100MPa	0.3

- At t_n : purely elastic, σ_{11} = 300 Mpa
- At t_{n+1} : $\Delta\epsilon_{11}$ = 0.1, determine stress and plastic variables

· Strain increments

$$\Delta \epsilon = \begin{bmatrix} 0.1 & 0 & 0 \\ 0 & -0.02 & 0 \\ 0 & 0 & -0.02 \end{bmatrix}, \quad \Delta \boldsymbol{e} = \begin{bmatrix} 0.08 & 0 & 0 \\ 0 & -0.04 & 0 \\ 0 & 0 & -0.04 \end{bmatrix}$$

Ex) Plastic Deformation of a Bar

Purely elastic at t_n : ${}^{n}\alpha = 0$, ${}^{n}e_p = 0$. ${}^{n}\eta = {}^{n}s - {}^{n}\alpha = {}^{n}s$

Trial states:

$$^{tr}\eta={}^{tr}\mathbf{s}={}^{n}\mathbf{s}+2\mu\Delta\mathbf{e}=\begin{bmatrix} 360 & 0 & 0 \\ 0 & -180 & 0 \\ 0 & 0 & -180 \end{bmatrix}$$
 MPa

$$\left\| \ ^{\text{tr}}\eta \right\| = \sqrt{360^2 + 180^2 + 180^2} \ = 180\sqrt{6} M \text{Pa}$$

$$N = \frac{\text{tr} \eta}{\left\| \text{tr} \eta \right\|} = \frac{1}{\sqrt{6}} \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Yield function

$$f({}^{\dagger r}\eta, {}^{\dagger r}e_p) = \|{}^{\dagger r}\eta\| - \sqrt{\frac{2}{3}}\kappa({}^{n}e_p) = 180\sqrt{6} - 300\sqrt{\frac{2}{3}} = 80\sqrt{6} > 0$$
Plastic state!

Ex) Plastic Deformation of a Bar

Plastic consistency parameter

$$\gamma = \frac{2\mu N : \Delta \epsilon}{2\mu + \frac{2}{3}H} = 0.0948$$

Update stress and plastic variables

$$^{n+1}\sigma = {}^{n}\sigma + \mathbf{D} : \Delta \varepsilon - 2\mu \gamma \mathbf{N} = \begin{bmatrix} 385.2 & 0 & 0 \\ 0 & 77.4 & 0 \\ 0 & 0 & 77.4 \end{bmatrix} \mathbf{MPa}$$

$${}^{n+1}\alpha = {}^{n}\alpha + \frac{2}{3}\beta H\gamma \textbf{N} = \begin{bmatrix} 1.54 & 0 & 0 \\ 0 & -0.77 & 0 \\ 0 & 0 & -0.77 \end{bmatrix} \text{MPa} \quad {}^{\text{No}}_{\text{equilibrium!!}}$$

$$^{n+1}e_p = {}^ne_p + \sqrt{\frac{2}{3}}\gamma = 0.0774$$

Numerical Integration

- · Plastic evolution is given in the rate form
- · We will use backward Euler method to integrate it

$$\dot{y} = f(t,y)$$
 $\frac{y_{n+1} - y_n}{\Delta t} = f(t_{n+1} + y_{n+1})$

$$y_{n+1} = y_n + \Delta t \cdot f(t_{n+1} + y_{n+1})$$
A-stable
Stable for all Δt

- Assumptions
 - We assume that all variables are known at load step n: σ^n , ξ^n
 - At the current time n+1, $\Delta \mathbf{u}$ or $\Delta \epsilon$ is given
- We will use 2-step procedure
 - 1. Predictor: elastic trial
 - 2. Corrector: plastic return mapping (projection onto the yield surface)

75

Numerical Integration cont.

1. Elastic predictor

$$\textbf{s}^{\text{tr}} = \textbf{s}^{\text{n}} + 2\mu\Delta\textbf{e} \qquad \alpha^{\text{tr}} = \alpha^{\text{n}} \qquad e_{p}^{\text{tr}} = e_{p}^{\text{n}}$$
 dev. inc. strain No plasticity

- Shifted stress: $\boldsymbol{\eta}^{tr} = \boldsymbol{s}^{tr} \boldsymbol{\alpha}^{tr}$
- Yield function: $f(\eta^{tr}, e_p^n) = \|\eta^{tr}\| \sqrt{\frac{2}{3}}\kappa(e_p^n)$
- 2. Plastic corrector
 - 1. If f < 0 (within the elastic domain)

$$\mathbf{s}^{\mathsf{n}+1} = \mathbf{s}^{\mathsf{tr}} \qquad \alpha^{\mathsf{n}+1} = \alpha^{\mathsf{tr}} \qquad e^{\mathsf{n}+1}_\mathsf{p} = e^{\mathsf{tr}}_\mathsf{p}$$

- Exit

Numerical Integration cont.

- 2. Plastic corrector cont.
 - 2. If f > 0 (return mapping to yield surface)

$$\mathbf{s}^{n+1} = \mathbf{s}^{tr} - 2\mu \Delta \mathbf{\epsilon}_{p} \xrightarrow{\text{unknown}} \Delta \mathbf{\epsilon}_{p} = \Delta \gamma \mathbf{N}$$

$$\mathbf{s}^{n+1} = \mathbf{s}^{tr} - 2\mu \Delta \gamma \mathbf{N}$$

$$\alpha^{n+1} = \alpha^{tr} - H_{\alpha} \Delta \gamma \mathbf{N}$$

$$\eta^{n+1} = \mathbf{s}^{n+1} - \alpha^{n+1} = \eta^{tr} - (2\mu + H_{\alpha}) \Delta \gamma \mathbf{N}$$

So far, unknowns are $\Delta \gamma$ and $N = \left\| \eta^{n+1} \right\| / \eta^{n+1}$

Trial direction is parallel to final direction

$$\eta^{n+1} = \eta^{tr} + \phi \eta^{n+1} \implies \eta^{tr} \parallel \eta^{n+1}$$

$$N = \frac{\eta^{n+1}}{\eta^{n+1}} = \frac{\eta^{tr}}{\eta^{n+1}}$$

Known from trial state

So, everything boils down to $\Delta \gamma$ 77

Numerical Integration cont.

- 2. Plastic corrector cont.
 - Now the plastic consistency parameter is only unknown!!
 - How to compute: stress must stay on the yield surface

$$f(\eta^{n+1},e_p^{n+1})=0$$

- While projecting the trial stress, the yield surface also varies
- But, both happen in the same direction N

$$f(\eta^{n+1},e_p^{n+1})=\left\|\eta^{n+1}\right\|-\sqrt{\tfrac{2}{3}}\kappa(e_p^{n+1})=0$$

$$\left\|\boldsymbol{\eta}^{n+1}\right\| = \left\|\boldsymbol{\eta}^{\dagger r} - (2\mu + H_{\alpha})\Delta\gamma\boldsymbol{N}\right\| = \left\|\boldsymbol{\eta}^{\dagger r}\right\| - (2\mu + H_{\alpha})\Delta\gamma$$

Numerical Integration cont.

- 2. Plastic corrector cont.
 - Plastic consistency condition

$$\|\eta^{tr}\| - (2\mu + H_{\alpha}(e_p^{n+1}))\Delta\gamma - \sqrt{\frac{2}{3}}\kappa(e_p^{n+1}) = 0$$

- Nonlinear (scalar) equation w.r.t. $\Delta \gamma$ $e_p^{n+1} = e_p^n + \sqrt{\frac{2}{3}} \Delta \gamma$
- Use Newton-Raphson method (start with $\Delta \gamma = 0, \ e_p^{n+1} = e_p^n$)

$$\begin{split} f &= \left\| \eta^{tr} \right\| - \left(2\mu + H_{\alpha}(e_p^{n+1}) \right) \Delta \gamma - \sqrt{\frac{2}{3}} \kappa(e_p^{n+1}) \\ \frac{df}{d\gamma} &= -(2\mu + H_{\alpha}) - \sqrt{\frac{2}{3}} \frac{dH_{\alpha}}{de_p} \Delta \gamma - \frac{2}{3} \frac{d\kappa}{de_p} \\ \Delta \gamma &= \Delta \gamma - \frac{f}{df / d\gamma} \\ e_p^{n+1} &= e_p^{n+1} + \sqrt{\frac{2}{3}} \Delta \gamma \end{split}$$

- Stop when f ~ 0

79

Numerical Integration cont.

· When N-R iteration is converged, update stress

$$\begin{split} \boldsymbol{s}^{n+1} &= \boldsymbol{s}^n + 2\mu\Delta\boldsymbol{e} - 2\mu\Delta\gamma\boldsymbol{N} \\ \boldsymbol{\alpha}^{n+1} &= \boldsymbol{\alpha}^n + \boldsymbol{H}_{\alpha}\Delta\gamma\boldsymbol{N} \\ \boldsymbol{e}^{n+1}_p &= \boldsymbol{e}^n_p + \sqrt{\frac{2}{3}}\Delta\gamma \\ \boldsymbol{\sigma}^{n+1} &= \boldsymbol{\sigma}^n + \boldsymbol{D}: \Delta\epsilon - 2\mu\Delta\gamma\boldsymbol{N} \\ \boldsymbol{D}^{ep}: \Delta\epsilon \quad \text{Tangent operator} \end{split}$$

Difference from the Rate Form

Rate form (linear hardening)

$$\gamma = \frac{2\mu N : \dot{\epsilon}}{2\mu + \frac{2}{3}H}$$

Incremental form

$$\Delta \gamma = \frac{\left\| \boldsymbol{\eta}^{\text{tr}} \right\| - \sqrt{\frac{2}{3}} \kappa(\boldsymbol{e}_{p}^{n})}{2\mu + \frac{2}{3}H}$$

- Two formulations are equivalent when
 - The material is in the plastic state at tn
 - Δe is parallel to $^{n}\eta$
- When time increment is very small, these two requirements are satisfied

81

Consistent Tangent Operator

Consistent tangent operator - tangent operator that is consistent with numerical integration algorithm

$$\begin{array}{c} \textbf{D}^{\text{ep}} = \frac{\partial \dot{\sigma}}{\partial \dot{\epsilon}} \\ \\ \uparrow \\ \end{array} \qquad \begin{array}{c} \textbf{D}^{\text{alg}} = \frac{\partial \Delta \sigma}{\partial \Delta \epsilon} \\ \end{array}$$

Continuum tangent operator Consistent tangent operator

Differentiate stress update equation

$$\Delta \sigma = \mathbf{D} : \Delta \epsilon - 2\mu \Delta \gamma \mathbf{N}$$

$$\frac{\partial \Delta \sigma}{\partial \Delta \epsilon} = D - 2\mu N \otimes \frac{\partial \Delta \gamma}{\partial \Delta \epsilon} - 2\mu \Delta \gamma \frac{\partial N}{\partial \Delta \epsilon}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

Consistent Tangent Operator cont

$$\begin{array}{ccc} \text{Term (1)} & f(\eta^{n+1},e_p^{n+1}) = f(\eta^n,e_p^n) = 0 & \Rightarrow & \frac{\partial f}{\partial \Delta \epsilon} = 0 \\ & \frac{\partial f}{\partial \Delta \epsilon} = \frac{\partial}{\partial \Delta \epsilon} \Big[\left\| \eta^{tr} \right\| - (2\mu + H_{\alpha}(e_p^{n+1})) \Delta \gamma - \sqrt{\frac{2}{3}} \kappa(e_p^{n+1}) \Big] = 0 \end{array}$$

$$\begin{split} \frac{\partial \left\| \boldsymbol{\eta}^{tr} \right\|}{\partial \Delta \boldsymbol{\epsilon}} &= \frac{\partial (\boldsymbol{\eta}^{tr} : \boldsymbol{\eta}^{tr})^{1/2}}{\partial \Delta \boldsymbol{\epsilon}} = \frac{1}{2} \frac{1}{\left\| \boldsymbol{\eta}^{tr} \right\|} 2 \boldsymbol{\eta}^{tr} \\ \vdots & \vdots \\ \frac{\partial \left\| \boldsymbol{\eta}^{tr} \right\|}{\partial \Delta \boldsymbol{\epsilon}} &= \frac{\boldsymbol{\eta}^{tr}}{\left\| \boldsymbol{\eta}^{tr} \right\|} : \frac{\partial \boldsymbol{\eta}^{tr}}{\partial \Delta \boldsymbol{\epsilon}} = 2 \mu \boldsymbol{N} \end{split} \qquad \qquad \\ \frac{\partial \left\| \boldsymbol{\eta}^{tr} \right\|}{\partial \Delta \boldsymbol{\epsilon}} &= \frac{\partial (\boldsymbol{s}^{tr} - \boldsymbol{\alpha}^{n})}{\partial \Delta \boldsymbol{\epsilon}} = 2 \mu \boldsymbol{I}_{dev} \end{split}$$

$$\begin{split} \frac{\partial f}{\partial \Delta \epsilon} &= 2 \mu \textbf{N} - (2 \mu + H_{\alpha} (\textbf{e}_p^{n+1})) \frac{\partial \Delta \gamma}{\partial \Delta \epsilon} - \frac{\partial H_{\alpha}}{\partial \textbf{e}_p} \frac{\partial \textbf{e}_p}{\partial \Delta \epsilon} \Delta \gamma - \sqrt{\frac{2}{3}} \frac{\partial \kappa}{\partial \textbf{e}_p} \frac{\partial \textbf{e}_p}{\partial \Delta \epsilon} \right) 0 \\ &2 \mu \textbf{N} - \left(2 \mu + H_{\alpha} (\textbf{e}_p^{n+1}) + \sqrt{\frac{2}{3}} H_{\alpha,\textbf{e}_p} \Delta \gamma + \frac{2}{3} \kappa_{,\textbf{e}_p} \right) \frac{\partial \Delta \gamma}{\partial \Delta \epsilon} = 0 \end{split}$$

$$rac{\partial \Delta \gamma}{\partial \Delta \epsilon} = 2 \mu A N$$

$$\frac{1}{A} = 2\mu + H_{\alpha}(e_p^{n+1}) + \sqrt{\frac{2}{3}}H_{\alpha,e_p}\Delta\gamma + \frac{2}{3}\kappa_{,e_p}$$

83

Consistent Tangent Operator cont

• Term (2):

$$\frac{\partial \mathbf{N}}{\partial \Delta \mathbf{\epsilon}} = \frac{\partial \mathbf{N}}{\partial \eta^{tr}} : \frac{\partial \eta^{tr}}{\partial \Delta \mathbf{\epsilon}} : \frac{\partial \eta^{tr}}{\partial \Delta \mathbf{\epsilon}} = \frac{\partial}{\partial \Delta \mathbf{\epsilon}} (\mathbf{s}^{n} + 2\mu \Delta \mathbf{e} - \alpha^{n}) = 2\mu \mathbf{I}_{dev}$$

$$\frac{\partial \mathbf{N}}{\partial \eta^{tr}} = \frac{\partial}{\partial \eta^{tr}} \left(\frac{\partial \eta^{tr}}{\partial \| \eta^{tr} \|} \right) = \frac{\mathbf{I}}{\| \eta^{tr} \|} - \frac{\eta^{tr} \otimes \eta^{tr}}{\| \eta^{tr} \|^{3}} = \frac{1}{\| \eta^{tr} \|} \left[\mathbf{I} - \mathbf{N} \otimes \mathbf{N} \right]$$

$$\boxed{\frac{\partial \boldsymbol{N}}{\partial \Delta \boldsymbol{\epsilon}} = \frac{1}{\left\|\boldsymbol{\eta}^{\text{tr}}\right\|} \left[\boldsymbol{I} - \boldsymbol{N} \otimes \boldsymbol{N} \right] : 2\mu \boldsymbol{I}_{\text{dev}} = \frac{2\mu}{\left\|\boldsymbol{\eta}^{\text{tr}}\right\|} \left[\boldsymbol{I}_{\text{dev}} - \boldsymbol{N} \otimes \boldsymbol{N} \right]}$$

· Consistent tangent operator

$$\boldsymbol{D}^{\text{alg}} = \frac{\partial \Delta \boldsymbol{\sigma}}{\partial \Delta \boldsymbol{\epsilon}} = \boldsymbol{D} - 2 \mu \boldsymbol{N} \otimes (2 \mu \boldsymbol{A} \boldsymbol{N}) - 2 \mu \Delta \boldsymbol{\gamma} \frac{2 \mu}{\left\|\boldsymbol{\eta}^{\text{tr}}\right\|} \left[\boldsymbol{I}_{\text{dev}} - \boldsymbol{N} \otimes \boldsymbol{N} \right]$$

$$D^{\text{alg}} = D - 4\mu^2 A N \otimes N - \frac{4\mu^2 \Delta \gamma}{\left\| \eta^{\text{tr}} \right\|} \left[\mathbf{I}_{\text{dev}} - N \otimes N \right]$$

Not existing in Dep

Example

· Linear combined hardening

$$\begin{split} &H_{\alpha}(\boldsymbol{e}_{p}^{n+1}) = \frac{2}{3}\beta H \qquad H_{\alpha,\boldsymbol{e}_{p}} = 0 \\ &\kappa(\boldsymbol{e}_{p}^{n+1}) = \sigma_{y}^{0} + (1-\beta)H\boldsymbol{e}_{p}^{n+1} = \kappa(\boldsymbol{e}_{p}^{n}) + \sqrt{\frac{2}{3}}(1-\beta)H\Delta\gamma \end{split}$$

· Consistency condition

$$f = \left\| \eta^{\text{tr}} \right\| - \left(2\mu + \tfrac{2}{3}\beta H \right) \Delta \gamma - \sqrt{\tfrac{2}{3}} \left(\kappa(e_p^n) + \sqrt{\tfrac{2}{3}}(1-\beta) H \Delta \gamma \right) = 0$$

$$\Rightarrow \quad \Delta \gamma = \frac{\left\| \boldsymbol{\eta}^{\text{tr}} \right\| - \sqrt{\frac{2}{3}} \kappa(\boldsymbol{e}_p^n)}{2\mu + \frac{2}{3}H} \qquad \qquad \text{No iteration is required}$$

$$\frac{1}{A}=2\mu+\frac{2}{3}H$$

85

Variational Equation

· Variational equation

- The only nonlinearity is from stress (material nonlinearity)
- Small strain, small rotation
- Linearization

$$\boxed{\alpha^*(^n\xi,^{n+1}\mathbf{u}^k;\delta\mathbf{u}^k,\overline{\mathbf{u}}) = \ell(\overline{\mathbf{u}}) - \alpha(^n\xi;^{n+1}\mathbf{u}^k,\overline{\mathbf{u}}), \quad \forall \overline{\mathbf{u}} \in \mathbb{Z},}$$

$$a^*({}^n\xi, {}^{n+1}\mathbf{u}; \delta\mathbf{u}, \overline{\mathbf{u}}) = \iint_{\Omega} \varepsilon(\overline{\mathbf{u}}) : \mathbf{D}^{alg} : \varepsilon(\delta\mathbf{u}) d\Omega.$$

· Update displacement

$$^{n+1}\boldsymbol{u}^{k+1} = ^{n+1}\boldsymbol{u}^k + \delta\boldsymbol{u}^k$$

Implementation of Elastoplasticity

- We will explain for a 3D solid element at a Gauss point
- Voigt notation

$$\{\sigma\} = \begin{bmatrix} \sigma_{11} & \sigma_{22} & \sigma_{33} & \sigma_{12} & \sigma_{23} & \sigma_{13} \end{bmatrix}^\mathsf{T}$$

$$\{\Delta \varepsilon\} = \begin{bmatrix} \Delta \varepsilon_{11} & \Delta \varepsilon_{22} & \Delta \varepsilon_{33} & 2\Delta \varepsilon_{12} & 2\Delta \varepsilon_{23} & 2\Delta \varepsilon_{13} \end{bmatrix}^\mathsf{T}$$

$$\begin{split} \textbf{Inputs} & \quad \Delta \textbf{d}_{\text{I}} = \left\{\Delta \textbf{d}_{\text{I}1} \quad \Delta \textbf{d}_{\text{I}2} \quad \Delta \textbf{d}_{\text{I}3}\right\}^{\text{T}} \\ & \quad \boldsymbol{\sigma}^{\text{n}} = \left\{\boldsymbol{\sigma}_{11}^{\text{n}} \quad \boldsymbol{\sigma}_{22}^{\text{n}} \quad \boldsymbol{\sigma}_{33}^{\text{n}} \quad \boldsymbol{\sigma}_{12}^{\text{n}} \quad \boldsymbol{\sigma}_{23}^{\text{n}} \quad \boldsymbol{\sigma}_{13}^{\text{n}}\right\}^{\text{T}} \\ & \quad \boldsymbol{\xi}^{\text{n}} = \left\{\boldsymbol{\alpha}_{11}^{\text{n}} \quad \boldsymbol{\alpha}_{22}^{\text{n}} \quad \boldsymbol{\alpha}_{33}^{\text{n}} \quad \boldsymbol{\alpha}_{12}^{\text{n}} \quad \boldsymbol{\alpha}_{23}^{\text{n}} \quad \boldsymbol{\alpha}_{13}^{\text{n}} \quad \boldsymbol{e}_{p}^{\text{n}}\right\}^{\text{T}} \end{split}$$

(b) Reference Element

87

Implementation of Elastoplasticity cont.

Displacement

 $\xi = \{\xi, \eta, \zeta\}^T$ is the natural coordinates at an integration point

$$\Delta \boldsymbol{u} = \sum_{T=1}^{8} N_{T}(\boldsymbol{\xi}) \Delta \boldsymbol{d}_{T}$$

Strain

$$\Delta \epsilon = \sum_{I=1}^{8} \textbf{B}_{I} \Delta \textbf{u}_{I}$$

Update

$$^{n+1}\mathbf{u} = {}^{n}\mathbf{u} + \Delta\mathbf{u}$$

 $\{^{n+1}\mathbf{\varepsilon}\} = \{^{n}\mathbf{\varepsilon}\} + \{\Delta\mathbf{\varepsilon}\}$

Return Mapping Algorithm

- · Elastic predictor
 - Unit tensor $\mathbf{1} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}^T$
 - Trial stress $\sigma^{tr} = \sigma^n + \boldsymbol{C} \cdot \Delta \epsilon$
 - Trace of stress $tr(\sigma) = \sigma_{11}^{tr} + \sigma_{22}^{tr} + \sigma_{33}^{tr}$
 - Shifted stress $\eta^{tr} = \sigma^{tr} \frac{1}{3} tr(\sigma) \alpha^n$
 - Norm $\|\eta^{tr}\| = \sqrt{(\eta_{11}^{tr})^2 + (\eta_{22}^{tr})^2 + (\eta_{33}^{tr})^2 + 2[(\eta_{12}^{tr})^2 + (\eta_{23}^{tr})^2 + (\eta_{13}^{tr})^2]}$
 - Yield function $f = \left\| \eta^{tr} \right\| \sqrt{\frac{2}{3}} \left[\sigma_y^0 + (1 \beta) H e_p^n \right]$

89

Return Mapping Algorithm cont.

- · Check yield status
 - If f < 0, then the material is elastic

$$\sigma^{n+1} = \sigma^{tr}$$
 $D^{\alpha lg} = D$

- Exit
- Consistency parameter $\Delta \gamma = f/(2\mu + \frac{2}{3}H)$
- Unit deviatoric tensor $N = \eta^{tr} / \|\eta^{tr}\|$
- Update stress $\sigma^{n+1} = \sigma^{tr} 2\mu\Delta\gamma \textbf{N}$
- Update back stress $\alpha^{n+1} = \alpha^n + \frac{2}{3}\beta H \Delta \gamma N$
- Update plastic strain $e_p^{n+1} = e_p^n + \sqrt{\frac{2}{3}} \Delta \gamma$
- · Calculate consistent tangent matrix

Implementation of Elastoplasticity cont.

Consistent tangent matrix

tent tangent matrix
$$c_1 = \frac{4\mu^2}{2\mu + \frac{2}{3}H} \qquad c_2 = \frac{4\mu^2\Delta\gamma}{\|\eta^{\text{tr}}\|} \qquad \mathbf{I}^{\text{dev}} = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & 0 \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} & 0 & 0 & 0 \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \end{bmatrix}$$

Internal force and tangent stiffness matrix

$$\boldsymbol{f}^{\text{int}} = \sum_{\mathtt{I}=1}^{4} \sum_{K=1}^{NG} (\boldsymbol{B}_{\mathtt{I}}^{\mathsf{T}} \boldsymbol{\sigma}^{\mathsf{n}+1} \, \big| \, \boldsymbol{J} \, \big|_{\boldsymbol{k}} \, \boldsymbol{\omega}_{K} \qquad \qquad \boldsymbol{K}_{\mathtt{T}} = \sum_{\mathtt{I}=1}^{4} \sum_{\mathtt{J}=1}^{4} \sum_{K=1}^{NG} (\boldsymbol{B}_{\mathtt{I}}^{\mathsf{T}} \boldsymbol{D}^{\mathsf{alg}} \boldsymbol{B}_{\mathtt{J}} \, \big| \, \boldsymbol{J} \, \big|_{\boldsymbol{k}} \, \boldsymbol{\omega}_{K}$$

Solve for incremental displacement

$$[\mathbf{K}_{\mathsf{T}}]\{\Delta \mathbf{u}\} = \{\mathbf{f}^{\mathsf{ext}}\} - \{\mathbf{f}^{\mathsf{int}}\}$$

- The algorithm repeats until the residual reduces to zero
- · Once the solution converges, save stress and plastic variables and move to next load step

91

Program combHard.m

```
% Linear combined isotropic/kinematic hardening model
function [stress, alpha, ep]=combHard(mp,D,deps,stressN,alphaN,epN)
% Inputs:
% mp = [lambda, mu, beta, H, Y0];
% D = elastic stiffness matrix
% stressN = [s11, s22, s33, t12, t23, t13];
% alphaN = [a11, a22, a33, a12, a23, a13];
Iden = [1 1 1 0 0 0]';
two3 = 2/3; stwo3=sqrt(two3);
                                            %material properties
mu=mp(2); beta=mp(3); H=mp(4); Y0=mp(5);
ftol = Y0*1E-6;
                                                %tolerance for yield
stresstr = stressN + D*deps;
                                                %trial stress
I1 = sum(stresstr(1:3));
                                                %trace(stresstr)
str = stresstr - I1*Iden/3;
                                                %deviatoric stress
eta = str - alphaN;
                                                %shifted stress
etat = sqrt(eta(1)^2 + eta(2)^2 + eta(3)^2 ...
         + 2*(eta(4)^2 + eta(5)^2 + eta(6)^2);%norm of eta
fyld = etat - stwo3*(Y0+(1-beta)*H*epN); %trial yield function
if fyld < ftol
                                               %yield test
   stress = stresstr; alpha = alphaN; ep = epN; %trial states are final
else
   gamma = fyld/(2*mu + two3*H);
                                                %plastic consistency param
    ep = epN + gamma*stwo3;
                                                %updated eff. plastic strain
N = eta/etat;
                                                %unit vector normal to f
stress = stresstr - 2*mu*gamma*N;
                                                %updated stress
alpha = alphaN + two3*beta*H*gamma*N;
                                                %updated back stress
```

Program combHardTan.m

```
function [Dtan] = combHardTan(mp, D, deps, stressN, alphaN, epN)
% Inputs:
% mp = [lambda, mu, beta, H, Y0];
% D = elastic stiffness matrix
% stressN = [s11, s22, s33, t12, t23, t13];
% alphaN = [a11, a22, a33, a12, a23, a13];
Iden = [1 1 1 0 0 0]';
two3 = 2/3; stwo3=sqrt(two3);
                                                %constants
mu=mp(2); beta=mp(3); H=mp(4); Y0=mp(5);
                                                %material properties
ftol = Y0*1E-6;
                                                 %tolerance for yield
stresstr = stressN + D*deps;
                                                 %trial stress
I1 = sum(stresstr(1:3));
                                                 %trace(stresstr)
str = stresstr - I1*Iden/3;
                                                %deviatoric stress
eta = str - alphaN;
                                                %shifted stress
etat = sqrt(eta(1)^2 + eta(2)^2 + eta(3)^2 ...
        + 2*(eta(4)^2 + eta(5)^2 + eta(6)^2);%norm of eta
fyld = etat - stwo3*(Y0+(1-beta)*H*epN);
                                                %trial yield function
if fyld < ftol
                                                 %yield test
   Dtan = D; return;
                                                 %elastic
gamma = fyld/(2*mu + two3*H);
                                                %plastic consistency param
N = eta/etat;
                                                 %unit vector normal to f
var1 = 4*mu^2/(2*mu+two3*H);
var2 = 4*mu^2*gamma/etat;
                                                 %coefficients
Dtan = D - (var1-var2)*N*N' + var2*Iden*Iden'/3;%tangent stiffness
Dtan(1,1) = Dtan(1,1) - var2;
                                                %contr. from 4th-order I
Dtan(2,2) = Dtan(2,2) - var2;
Dtan(3,3) = Dtan(3,3) - var2;
Dtan(4,4) = Dtan(4,4) - .5*var2;
Dtan(5,5) = Dtan(5,5) - .5*var2;
Dtan(6,6) = Dtan(6,6) - .5*var2;
```

93

Program PLAST3D.m

```
function PLAST3D (MID, PROP, ETAN, UPDATE, LTAN, NE, NDOF, XYZ, LE)
8******************
% MAIN PROGRAM COMPUTING GLOBAL STIFFNESS MATRIX RESIDUAL FORCE FOR
% PLASTIC MATERIAL MODELS
응응
%LOOP OVER ELEMENTS, THIS IS MAIN LOOP TO COMPUTE K AND F
 for IE=1:NE
   DSP=DISPTD(IDOF);
   DSPD=DISPDD(IDOF);
   % LOOP OVER INTEGRATION POINTS
    for LX=1:2, for LY=1:2, for LZ=1:2
      % Previous converged history variables
     NALPHA=6;
     STRESSN=SIGMA(1:6, INTN);
     ALPHAN=XQ(1:NALPHA, INTN);
     EPN=XQ(NALPHA+1, INTN);
    % Computer stress, back stress & effective plastic strain
     if MID == 1
       % Infinitesimal plasticity
       [STRESS, ALPHA, EP] = combHard(PROP, ETAN, DDEPS, STRESSN, ALPHAN, EPN);
      % Tangent stiffness
     if LTAN
       if MID == 1
         DTAN=combHardTan (PROP, ETAN, DDEPS, STRESSN, ALPHAN, EPN);
         EKF = BM'*DTAN*BM;
```

Summary

- 1D tension test data are used for 2D or 3D stress state using failure theories
 - All failure criteria are independent of coordinate system (must defined using invariants)
- Yielding of a ductile material is related to shear stress or deviatoric stress
- Kinematic hardening shift the center of elastic domain, while isotropic hardening increase the radius of it
- For rate-independent J_2 plasticity, elastic predictor and plastic correct algorithm is used
- Return mapping occurs in the radial direction of deviatoric stress
- During return mapping, the yield surface also changes

95

4.4

Elastoplasticity with Finite Rotation

Goals

- Understand the concept of objective rate and frameindifference (why do we need objectivity?)
- · Learn how to make a non-objective rate to objective one
- · Learn different objective stress rates
- · Learn how to maintain objectivity at finite rotation
- Understand midpoint configuration
- Understand how to linearize the energy form in the updated Lagrangian formulation
- Understand how to implement update Lagrangian frame

97

Elastoplasticity with Finite Rotation

- · We studied elastoplasticity with infinitesimal deformation
 - Infinitesimal deformation means both strain and rotation are small

$$\nabla \mathbf{u} = \underbrace{\text{sym}(\nabla \mathbf{u})}_{\text{strain}} + \underbrace{\text{skew}(\nabla \mathbf{u})}_{\text{rotation}}$$

- · We can relax this limitation by allowing finite rotation
- However, the engineering strain changes in rigid-body rotation (We showed in Chapter 3) $_{\cos \alpha 1}$ 0
- How can we use engineering strain $\epsilon = \begin{bmatrix} \cos \alpha & 1 & 0 & 0 \\ 0 & \cos \alpha 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for a finite rotation problem?
- Instead of using X, we can use x^n as a reference (Body-fixed coordinate, not Eulerian but Lagrangian)
- · Can the frame of reference move?

Objective Tensor

- We want to take care of the issues related to the moving reference frame \mathbf{x}^n (rotation and translation) using objectivity
- Objective tensor: any tensor that is not affected by superimposed rigid body translations and rotations of the spatial frame
- Rotation of a body is equivalent to rotation of coordinate frame in opposite direction
- Consider two frames in the figure (rotation + translation)

$$\overline{\mathbf{x}} = \mathbf{Q}(\dagger) \cdot \mathbf{x} + \mathbf{c}(\dagger)$$

 ${f x}$ and ${f ar x}$ are different by rigid-body motion, by relative motion between observers

99

Objective Tensor cont.

- Frame indifference (objectivity)
 - Quantities that depend only on **Q** and not on the other aspects of the motion of the reference frame (e.g., translation, velocity and acceleration, angular velocity and angular acceleration)
- · Objective scalar

$$\overline{f} = f$$

Objective vector

$$\overline{\mathbf{v}} = \mathbf{Q} \cdot \mathbf{v}$$

Objective tensor

$$\overline{\mathbf{T}} = \mathbf{Q} \cdot \mathbf{T} \cdot \mathbf{Q}^{\mathsf{T}}$$

 In order to use a moving reference, we must use objective quantities

Example

· Deformation gradient

$$\overline{F} = \frac{\partial \overline{x}}{\partial X} = \frac{\partial}{\partial X} (Q(t) \cdot x + c(t)) = Q(t) \cdot \frac{\partial x}{\partial X} = Q(t) \cdot F$$

- F transforms like a vector
- Right C-G deformation tensor

$$\overline{C} = \overline{F}^T \overline{F} = (QF)^T (QF) = F^T Q^T QF = F^T F = C$$

- Material tensors are not affected by rigid-body motion
- · Left C-G deformation tensor

$$\overline{b} = \overline{F}\overline{F}^{T} = (QF)(F^{T}Q^{T}) = QFF^{T}Q^{T} = QbQ^{T}$$
Objective tensor

- Objectivity only applies to a spatial tensor, not material tensor
- Deformation gradient transforms like a vector because it has one spatial component and one material component

Velocity Gradient

· In two different frames

$$L = \frac{\partial v}{\partial x}, \qquad \overline{L} = \frac{\partial \overline{v}}{\partial \overline{x}}$$

Velocity gradient is related to incremental displacement gradient in finite time step

$$\mathbf{L}\Delta\mathbf{t}\approx\frac{\partial\Delta\mathbf{u}}{\partial\mathbf{x}}$$

• Time differentiate of $\overline{\mathbf{x}} = \mathbf{Q} \cdot \mathbf{x}$

$$\dot{\overline{x}} = Q \cdot v + \dot{Q} \cdot x$$

$$\overline{\mathbf{v}} = \mathbf{Q} \cdot \mathbf{v} + \dot{\mathbf{Q}} \mathbf{Q}^{\mathsf{T}} \overline{\mathbf{x}}$$

Velocity is not objective

· Spatial differentiation of $\overline{\mathbf{v}}$

$$\begin{split} \vec{L} &= \frac{\partial \overline{\mathbf{v}}}{\partial \overline{\mathbf{x}}} \\ &= \mathbf{Q} \cdot \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \cdot \frac{\partial \mathbf{x}}{\partial \overline{\mathbf{x}}} + \dot{\mathbf{Q}} \cdot \mathbf{Q}^{\mathsf{T}} \cdot \frac{\partial \overline{\mathbf{x}}}{\partial \overline{\mathbf{x}}} \\ &= \mathbf{Q} \cdot \mathbf{L} \cdot \mathbf{Q}^{\mathsf{T}} + \dot{\mathbf{Q}} \cdot \mathbf{Q}^{\mathsf{T}} \end{split}$$

Velocity gradient is not objective

Rate of Deformation and Spin Tensor

· Rate of Deformation

$$\begin{split} \mathbf{d} &= \text{sym}(\mathbf{L}) & \quad \overline{\mathbf{d}} = \text{sym}(\overline{\mathbf{L}}) \\ & \quad \overline{\mathbf{d}} = \text{sym}(\overline{\mathbf{L}}) = \frac{1}{2} \Big(\mathbf{Q} \cdot \mathbf{L} \cdot \mathbf{Q}^\mathsf{T} + \mathbf{Q} \cdot \mathbf{L}^\mathsf{T} \cdot \mathbf{Q}^\mathsf{T} + \dot{\mathbf{Q}} \cdot \mathbf{Q}^\mathsf{T} + \mathbf{Q} \cdot \dot{\mathbf{Q}}^\mathsf{T} \Big) \\ & \quad \mathbf{Q} \cdot \mathbf{Q}^\mathsf{T} = \mathbf{1} \quad \Rightarrow \quad \dot{\mathbf{Q}} \cdot \mathbf{Q}^\mathsf{T} + \mathbf{Q} \cdot \dot{\mathbf{Q}}^\mathsf{T} = \mathbf{0} \end{split}$$

$$\overline{d} = Q \cdot \frac{1}{2} (L + L^{T}) \cdot Q^{T} = Q \cdot d \cdot Q^{T}$$
Objective
This is incremental stain

· Spin tensor

$$\begin{split} \mathbf{W} &= \frac{1}{2} (\mathbf{L} - \mathbf{L}^{\mathsf{T}}) & \quad \mathbf{\overline{W}} &= \frac{1}{2} (\mathbf{\overline{L}} - \mathbf{\overline{L}}^{\mathsf{T}}) \\ & \quad \mathbf{\overline{W}} &= \frac{1}{2} (\mathbf{\overline{L}} - \mathbf{\overline{L}}^{\mathsf{T}}) = \frac{1}{2} (\mathbf{Q} \cdot \mathbf{L} \cdot \mathbf{Q}^{\mathsf{T}} - \mathbf{Q} \cdot \mathbf{L}^{\mathsf{T}} \cdot \mathbf{Q}^{\mathsf{T}} + \dot{\mathbf{Q}} \cdot \mathbf{Q}^{\mathsf{T}} - \mathbf{Q} \cdot \dot{\mathbf{Q}}^{\mathsf{T}}) \\ & \quad \mathbf{\overline{W}} &= \mathbf{Q} \cdot \mathbf{W} \cdot \mathbf{Q}^{\mathsf{T}} + \frac{1}{2} (\dot{\mathbf{Q}} \cdot \mathbf{Q}^{\mathsf{T}} - \mathbf{Q} \cdot \dot{\mathbf{Q}}^{\mathsf{T}}) \end{split}$$

Depends on the spin of rotating frame

Not Objective

103

Cauchy Stress Is an Objective Tensor

· Proof from the relation between stresses

$$\begin{split} \boldsymbol{\sigma} &= \frac{1}{J} \boldsymbol{F} \boldsymbol{S} \boldsymbol{F}^{\mathsf{T}} \\ \boldsymbol{\bar{\sigma}} &= \frac{1}{J} \boldsymbol{\bar{F}} \boldsymbol{\bar{S}} \boldsymbol{\bar{F}}^{\mathsf{T}} = \frac{1}{J} \boldsymbol{Q} \boldsymbol{F} \boldsymbol{S} \boldsymbol{F}^{\mathsf{T}} \boldsymbol{Q}^{\mathsf{T}} = \boldsymbol{Q} \bigg(\frac{1}{J} \boldsymbol{F} \boldsymbol{S} \boldsymbol{F}^{\mathsf{T}} \bigg) \boldsymbol{Q}^{\mathsf{T}} = \boldsymbol{Q} \boldsymbol{\sigma} \boldsymbol{Q}^{\mathsf{T}} \\ \boldsymbol{\bar{S}} &= \boldsymbol{S} \end{split}$$

Proof from coordinate transformation of stress tensor

$$[T^{(b^1)} T^{(b^2)} T^{(b^3)}]_{xyz} = [\sigma]_{xyz}[b^1 b^2 b^3] = [\sigma]_{xyz}[Q]$$

 $[\boldsymbol{\sigma}]_{\boldsymbol{x}'\boldsymbol{y}'\boldsymbol{z}'} = [\boldsymbol{Q}]^T[\boldsymbol{\sigma}]_{\boldsymbol{x}\boldsymbol{y}\boldsymbol{z}}[\boldsymbol{Q}]$

- Coordinate transformation is opposite to rotation

$$[\overline{\sigma}]_{xyz} = [\mathbf{Q}][\sigma]_{xyz}[\mathbf{Q}]^T$$

Objective Rate

- If T is an objective tensor, will its rate be objective, too?
 - This is important because in plasticity the constitutive relation is given in terms of stress rate
- Differentiate an objective tensor $\overline{T} = Q \cdot T \cdot Q^T$

$$\dot{\vec{T}} = \dot{\mathbf{Q}} \cdot \mathbf{T} \cdot \mathbf{Q}^{\mathsf{T}} + \mathbf{Q} \cdot \dot{\mathbf{T}} \cdot \mathbf{Q}^{\mathsf{T}} + \mathbf{Q} \cdot \mathbf{T} \cdot \dot{\mathbf{Q}}^{\mathsf{T}}$$

- Not objective due to $\dot{\mathbf{Q}}$ and $\dot{\mathbf{Q}}^T$
- Remove non-objective terms using $\overline{L} = Q \cdot L \cdot Q^T + \dot{Q} \cdot Q^T$

$$\dot{\mathbf{Q}} = \overline{\mathbf{L}} \cdot \mathbf{Q} - \mathbf{Q} \cdot \mathbf{L} \qquad \dot{\mathbf{Q}}^\mathsf{T} = \mathbf{Q}^\mathsf{T} \cdot \overline{\mathbf{L}}^\mathsf{T} - \mathbf{L}^\mathsf{T} \cdot \mathbf{Q}^\mathsf{T}$$

$$\begin{split} \dot{\overline{T}} &= (\overline{L}Q - QL)TQ^{T} + Q\dot{T}Q^{T} + QT(Q^{T}\overline{L}^{T} - L^{T}Q^{T}) \\ &= \overline{L}QTQ^{T} - QLTQ^{T} + Q\dot{T}Q^{T} + QTQ^{T}\overline{L}^{T} - QTL^{T}Q^{T} \\ &= \overline{L}\overline{T} - QLTQ^{T} + Q\dot{T}Q^{T} + \overline{T}\overline{L}^{T} - QTL^{T}Q^{T} \end{split}$$

105

Objective Rate cont.

· Objective rate

$$\dot{\overline{T}} = \overline{L}\overline{T} - QLTQ^T + Q\dot{T}Q^T + \overline{T}\overline{L}^T - QTL^TQ^T$$

$$\dot{\overline{T}} - \overline{L}\overline{T} - \overline{T}\overline{L}^{\top} = Q(\dot{T} - LT - TL^{\top})Q^{\top}$$

- Thus, $T LT TL^{T}$ is an objective rate (Truesdell rate)
- · Co-rotational rate (Jaumann rate)

$$\dot{\mathsf{T}} - \mathsf{W} \cdot \mathsf{T} + \mathsf{T} \cdot \mathsf{W}$$

Convected rate

$$\dot{T} + L^T \cdot T + T \cdot L$$

- · These objective rates are different, but perform equally
- · When T is stress, they are objective stress rate

Finite Rotation and Objective Rate

- Since constitutive relation should be independent of the reference frame, it has to be given in terms of objective rate
- Cauchy stress is an objective tensor, but Cauchy stress rate is not objective rate
- Instead of rate, we will use increment (from previous converged load step to the current iteration)
- Consider a unit vector \mathbf{e}_j in spatial Cartesian coordinates under rigid body rotation from material vector \mathbf{E}_i

$$\boldsymbol{e}_{j} = \boldsymbol{Q} \cdot \boldsymbol{E}_{j} \qquad \qquad \boldsymbol{W} = \frac{1}{2} \left(\frac{\partial \Delta \boldsymbol{u}}{\partial \boldsymbol{x}} - \frac{\partial \Delta \boldsymbol{u}}{\partial \boldsymbol{x}}^{T} \right) = \Delta \boldsymbol{Q} \cdot \boldsymbol{Q}^{T}$$

 $\Delta \mathbf{e}_{j} = \Delta \mathbf{Q} \cdot \mathbf{E}_{j} = \mathbf{W} \cdot \mathbf{Q} \cdot \mathbf{E}_{j} = \mathbf{W} \cdot \mathbf{e}_{j}$

W: spin tensor Q: rotation tensor

107

Finite Rotation and Objective Rate cont.

Cauchy stress in Cartesian coordinates

$$\boldsymbol{\sigma} = \sigma_{ij} \boldsymbol{e}_i \otimes \boldsymbol{e}_j$$

Incremental Cauchy stress

Only accurate for small, rigid body rotations

· Constitutive relation

$$\Delta \sigma^{J} = \mathbf{D}^{alg} : \Delta \epsilon$$

$$\Delta \sigma^J \, = \Delta \sigma - \boldsymbol{W} \sigma + \sigma \boldsymbol{W}$$

Finite Rotation and Objective Rate cont.

- For finite rotation, the spin tensor ${\bf W}$ is not constant throughout the increment
- Preserving objectivity for large rotational increments using midpoint configuration
- Instead of n+1, calculate strain increment and spin at $n+\frac{1}{2}$

$$\Delta \epsilon_{ij} = \frac{1}{2} \Biggl[\frac{\partial \Delta u_i}{\partial x_j^{n+\frac{1}{2}}} + \frac{\partial \Delta u_j}{\partial x_i^{n+\frac{1}{2}}} \Biggr]$$

$$W_{ij} = \frac{1}{2} \left(\frac{\partial \Delta u_i}{\partial x_j^{n+\frac{1}{2}}} - \frac{\partial \Delta u_j}{\partial x_i^{n+\frac{1}{2}}} \right)$$

· Midpoint configuration

How to calculate these?

$$\mathbf{x}^{n+\frac{1}{2}} = \frac{1}{2}(\mathbf{x}^{n+1} + \mathbf{x}^n) = \mathbf{x}^n + \frac{1}{2}\Delta\mathbf{u} = \mathbf{x}^{n+1} - \frac{1}{2}\Delta\mathbf{u}$$

- We want to rotation stress into the midpoint configuration

$$\frac{\partial \Delta \boldsymbol{u}}{\partial \boldsymbol{x}^{n+1/2}} = \frac{\partial \Delta \boldsymbol{u}}{\partial \boldsymbol{x}^n} \cdot \frac{\partial \boldsymbol{x}^n}{\partial \boldsymbol{x}^{n+1/2}}, \qquad \frac{\partial \boldsymbol{x}^{n+1/2}}{\partial \boldsymbol{x}^n} = 1 + \frac{1}{2} \frac{\partial \Delta \boldsymbol{u}}{\partial \boldsymbol{x}^n}$$

109

Finite Rotation and Objective Rate cont.

Rotational matrix to the midpoint configuration

$$\frac{d\boldsymbol{R}}{dt} = \boldsymbol{W} \cdot \boldsymbol{R}$$

$$\frac{R_{n+1} - R_n}{\Delta t} \approx W(\dot{u}) \cdot R_{n+\frac{1}{2}} \approx W(\dot{u}) \cdot \frac{R_{n+1} + R_n}{2}$$
$$W(\Delta u) = \Delta t W(\dot{u})$$

$$R_n = 1$$

$$\Rightarrow \mathbf{R} = (\mathbf{1} - \frac{1}{2}\mathbf{W})^{-1}(\mathbf{1} + \frac{1}{2}\mathbf{W}) = \mathbf{1} + (\mathbf{1} - \frac{1}{2}\mathbf{W})^{-1}\mathbf{W}$$

· Rotation of stress and back stress

$$\overline{\sigma}^n = \mathbf{R} \cdot \sigma^n \cdot \mathbf{R}^T$$
$$\overline{\alpha}^n = \mathbf{R} \cdot \alpha^n \cdot \mathbf{R}^T$$

This takes care of rigid body rotation

- · Now, return mapping with these stresses
 - Exactly same as small deformation plasticity

Program rotatedStress.m

```
%
% Rotate stress and back stress to the rotation-free configuration
%
function [stress, alpha] = rotatedStress(L, S, A)
%L = [dui/dxj] velocity gradient
%
str=[S(1) S(4) S(6);S(4) S(2) S(5);S(6) S(5) S(3)];
alp=[A(1) A(4) A(6);A(4) A(2) A(5);A(6) A(5) A(3)];
factor=0.5;
R = L*inv(eye(3) + factor*L);
W = .5*(R-R');
R = eye(3) + inv(eye(3) - factor*W)*W;
str = R*str*R';
alp = R*alp*R';
stress=[str(1,1) str(2,2) str(3,3) str(1,2) str(2,3) str(1,3)]';
alpha = [alp(1,1) alp(2,2) alp(3,3) alp(1,2) alp(2,3) alp(1,3)]';
```

111

Variational Principle for Finite Rotation

- Total Lagrangian is inconvenient
 - We don't know how 2nd P-K stress evolves in plasticity
 - plastic variables is directly related to the Cauchy stress
- Thus, we will use the updated Lagrangian formulation
- Assume the problem has been solved up to $\bf n$ load step, and we are looking for the solution at load step $\bf n+1$
- Since load form is straightforward, we will ignore it
- Energy form

$$a(\xi^n; \mathbf{u}^{n+1}, \overline{\mathbf{u}}) \equiv \iint_{\Omega_{n+1}} \nabla_{n+1} \overline{\mathbf{u}} : \sigma^{n+1} d\Omega$$

- Since the Cauchy stress is symmetric, it is OK to use $\nabla_{n+1} \overline{\mathbf{u}}$
- Both $\Omega_{\text{n+1}}$ and $\sigma^{\text{n+1}}$ are unknown
- Nonlinear in terms of u

Variational Principle for Finite Rotation cont.

- Energy form cont.
 - Since the current configuration is unknown (depends on displacement) , let's transform it to the undeformed configuration Ω_0

$$\alpha(\xi^n; \boldsymbol{u}^{n+1}, \overline{\boldsymbol{u}}) = \iint_{\Omega_{n+1}} \nabla_{n+1} \overline{\boldsymbol{u}} : \sigma^{n+1} \, d\Omega = \underbrace{\iint_{\Omega_0} (\nabla_0 \overline{\boldsymbol{u}} \overline{\boldsymbol{F}}^{-1}) : \sigma^{n+1} J \, d\Omega}_{\Omega_0}$$

- Integral domain can be changed by $\iint_{\Omega_{n+1}} d\Omega = \iint_{\Omega_0} J \, d\Omega \quad J = \text{det}(\textbf{F})$
- This is only for convenience in linearization. Eventually, we will come back to the deformed configuration and integrate at there
- The integrand is identical to $T: \overline{F}$ where $T = JF^{-1}\sigma$ is the first P-K stress
- Nonlinearity comes from (a) constitutive relation (hypoelasticity),
 (b) spatial gradient (deformation gradient), and (c) Jacobian of deformation gradient (domain change)

113

Linearization

· Increment of deformation gradient

$$\Delta \boldsymbol{F} = \frac{\partial}{\partial \omega} \left[\frac{\partial (\boldsymbol{x} + \omega \Delta \boldsymbol{u})}{\partial \boldsymbol{X}} \right]_{\omega = 0} = \frac{\partial \Delta \boldsymbol{u}}{\partial \boldsymbol{X}} = \nabla_0 \Delta \boldsymbol{u}$$

$$\textbf{F}\textbf{F}^{-1} = \textbf{1} \quad \Rightarrow \quad \Delta \textbf{F}^{-1} = -\textbf{F}^{-1}\nabla_0\Delta \textbf{u}\textbf{F}^{-1} = -\textbf{F}^{-1}\nabla_{\textbf{n}+1}\Delta \textbf{u}$$

· Increment of Jacobian

$$\begin{split} \Delta J &= \Delta \left| \boldsymbol{F} \right| = J \, \text{div}(\Delta \boldsymbol{u}) & \left| \boldsymbol{F}_{mn} \right| = \frac{1}{6} e_{ijk} e_{rst} \boldsymbol{F}_{ir} \boldsymbol{F}_{js} \boldsymbol{F}_{kt} \\ e_{ijk} e_{ijr} &= 2 \delta_{kr} \end{split}$$

Linearization cont.

· Linearization of energy form

115

Linearization cont.

· Linearization of energy form cont.

$$\begin{split} L[\alpha(\xi^n; \mathbf{u}^{n+1}, \overline{\mathbf{u}})] &= \iint_{\Omega_{n+1}} \nabla_{n+1} \overline{\mathbf{u}} : \Big[\Delta \sigma + \sigma \text{div}(\Delta \mathbf{u}) - \sigma(\nabla_{n+1} \Delta \mathbf{u})^T \Big] d\Omega \\ &= \iint_{\Omega_{n+1}} \nabla_{n+1} \overline{\mathbf{u}} : \Big[\Delta \sigma^J + \mathbf{W} \sigma - \sigma \mathbf{W} + \sigma \text{div}(\Delta \mathbf{u}) - \sigma(\nabla_{n+1} \Delta \mathbf{u})^T \Big] d\Omega \end{split}$$

- Express inside of [] in terms of $\nabla_{\mathbf{n}+\mathbf{1}}\Delta\mathbf{u}$
- Constitutive relation: $\Delta \sigma^J = D^{\alpha lg} : \Delta \epsilon = D^{\alpha lg} : (\nabla_{n+1} \Delta u)$
- Spin term

$$\begin{split} W_{im}\sigma_{mj} &= \frac{1}{2} \big(\frac{\partial \Delta u_i}{\partial x_m} - \frac{\partial \Delta u_m}{\partial x_i} \big) \sigma_{mj} = \frac{1}{2} \, \sigma_{mj} \big(\delta_{ik} \delta_{ml} - \delta_{mk} \delta_{il} \big) \frac{\partial \Delta u_k}{\partial x_i} \\ &= \frac{1}{2} \big(\sigma_{lj} \delta_{ik} - \sigma_{kj} \delta_{il} \big) [\nabla_{n+1} \Delta \mathbf{u}]_{kl} \\ &- \sigma_{im} W_{mj} = \frac{1}{2} \big(\sigma_{il} \delta_{jk} - \sigma_{ik} \delta_{jl} \big) [\nabla_{n+1} \Delta \mathbf{u}]_{kl} \\ &\sigma_{ij} \, \frac{\partial \Delta u_k}{\partial x_k} = \sigma_{ij} \delta_{kl} [\nabla_{n+1} \Delta \mathbf{u}]_{kl} \\ &- \sigma_{im} \, \frac{\partial \Delta u_j}{\partial x_m} = - \sigma_{il} \delta_{jk} [\nabla_{n+1} \Delta \mathbf{u}]_{kl} \end{split}$$

Linearization cont.

· Linearization of energy form cont.

- Initial stiffness term (we need to separate this term)

$$\begin{split} & \sigma : \text{sym}(\nabla_{n+1}\overline{\boldsymbol{u}}^T\nabla_{n+1}\Delta\boldsymbol{u}) = \sigma : \eta(\Delta\boldsymbol{u},\overline{\boldsymbol{u}}) \\ & \sigma_{rs}\,\tfrac{1}{2}\big(\tfrac{\partial \overline{u}_m}{\partial x_n}\tfrac{\partial \Delta u_m}{\partial x_s} + \tfrac{\partial \overline{u}_m}{\partial x_n}\tfrac{\partial \Delta u_m}{\partial x_s}\big) = \tfrac{\partial \overline{u}_i}{\partial x_j}\sigma_{jl}\delta_{ik}\,\tfrac{\partial \Delta u_k}{\partial x_l} \end{split}$$

- Define

$$-\boldsymbol{D}_{ijkl}^{\star} = \sigma_{ij}\delta_{kl} - \frac{1}{2}(\sigma_{il}\delta_{jk} + \sigma_{jl}\delta_{ik} + \sigma_{ik}\delta_{jl} + \sigma_{jk}\delta_{il})$$

Rotational effect of Cauchy stress tensor

117

Linearization cont.

· Linearization of energy form cont.

$$\begin{split} L[a(\xi^n; \mathbf{u}^{n+1}, \overline{\mathbf{u}})] &= \iint_{\Omega_{n+1}} \left[\nabla_{n+1} \overline{\mathbf{u}} : (\mathbf{D}^{alg} - \mathbf{D}^*) : \nabla_{n+1} \Delta \mathbf{u} + \sigma : \eta(\Delta \mathbf{u}, \overline{\mathbf{u}}) \right] d\Omega \\ &= a^* (\xi^n, \mathbf{u}^{n+1}; \Delta \mathbf{u}, \overline{\mathbf{u}}) \end{split}$$

· N-R iteration

$$\boldsymbol{\alpha}^{\star}(^{n}\boldsymbol{\xi},\boldsymbol{u}_{k}^{n+1};\Delta\boldsymbol{u}_{k+1},\overline{\boldsymbol{u}})=\ell(\overline{\boldsymbol{u}})-\boldsymbol{\alpha}(^{n}\boldsymbol{\xi};\boldsymbol{u}_{k}^{n+1},\overline{\boldsymbol{u}}),\quad\forall\overline{\boldsymbol{u}}\in\mathbb{Z}$$

History-dependent Bilinear (implicit)

Implementation

- We will explain using a 3D solid element at a Gauss point using updated Lagrangian form
- The return mapping and consistent tangent operator will be the same with infinitesimal plasticity
- Voigt Notation

$$\{\boldsymbol{\sigma}\} = \begin{bmatrix} \boldsymbol{\sigma}_{11} & \boldsymbol{\sigma}_{22} & \boldsymbol{\sigma}_{33} & \boldsymbol{\sigma}_{12} & \boldsymbol{\sigma}_{23} & \boldsymbol{\sigma}_{13} \end{bmatrix}^\mathsf{T}$$

$$\{\boldsymbol{\Delta}\boldsymbol{\varepsilon}\} = \begin{bmatrix} \boldsymbol{\Delta}\boldsymbol{\varepsilon}_{11} & \boldsymbol{\Delta}\boldsymbol{\varepsilon}_{22} & \boldsymbol{\Delta}\boldsymbol{\varepsilon}_{33} & \boldsymbol{2}\boldsymbol{\Delta}\boldsymbol{\varepsilon}_{12} & \boldsymbol{2}\boldsymbol{\Delta}\boldsymbol{\varepsilon}_{23} & \boldsymbol{2}\boldsymbol{\Delta}\boldsymbol{\varepsilon}_{13} \end{bmatrix}^\mathsf{T}$$

• Inputs $\Delta \mathbf{d_I} = \left\{ \Delta \mathbf{d_{I1}} \quad \Delta \mathbf{d_{I2}} \quad \Delta \mathbf{d_{I3}} \right\}^\mathsf{T}$ $\boldsymbol{\sigma^n} = \left\{ \begin{matrix} \sigma_{11}^n & \sigma_{22}^n & \sigma_{33}^n & \sigma_{12}^n & \sigma_{23}^n & \sigma_{13}^n \end{matrix} \right\}^\mathsf{T}$ $\boldsymbol{\xi^n} = \left\{ \begin{matrix} \alpha_{11}^n & \alpha_{22}^n & \alpha_{33}^n & \alpha_{12}^n & \alpha_{23}^n & \alpha_{13}^n & \boldsymbol{e_p^n} \end{matrix} \right\}^\mathsf{T}$

119

Implementation cont.

- In the updated Lagrangian, the derivative is evaluated at the current configuration (unknown yet)
- Let the current load step is n+1 (unknown) and k+1 N-R iteration
- Then, we use the configuration at the previous iteration (n+1, k) as a reference
- This is not 'true' updated Lagrangian, but when the N-R iteration converges, k is almost identical to k+1
- Caution: we only update stresses at the converged load step, not individual iteration
- All derivatives and integration in updated Lagrangian must be evaluated at (n+1, k) configuration
- Displacement increment Δu is from (n+1,0) to (n+1,k)

Implementation cont.

- Stress-displacement matrix (Two approaches)
 - 1. Mapping between current (n+1, k) and reference configurations

$$\mathbf{J} = \begin{bmatrix} \frac{\partial \mathbf{x}_1}{\partial \xi} & \frac{\partial \mathbf{x}_2}{\partial \xi} & \frac{\partial \mathbf{x}_3}{\partial \xi} \\ \frac{\partial \mathbf{x}_1}{\partial \eta} & \frac{\partial \mathbf{x}_2}{\partial \eta} & \frac{\partial \mathbf{x}_3}{\partial \eta} \\ \frac{\partial \mathbf{x}_1}{\partial \zeta} & \frac{\partial \mathbf{x}_2}{\partial \zeta} & \frac{\partial \mathbf{x}_3}{\partial \zeta} \end{bmatrix} \qquad \begin{bmatrix} \frac{\partial}{\partial \mathbf{x}_1} \\ \frac{\partial}{\partial \mathbf{x}_2} \\ \frac{\partial}{\partial \mathbf{x}_3} \end{bmatrix} = \mathbf{J}^{-1} \begin{bmatrix} \frac{\partial}{\partial \xi} \\ \frac{\partial}{\partial \eta} \\ \frac{\partial}{\partial \zeta} \end{bmatrix}$$

2. Mapping between undeformed and reference configurations

$$\begin{bmatrix} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_3} \end{bmatrix} = \mathbf{F}^{-1} \begin{bmatrix} \frac{\partial}{\partial X_1} \\ \frac{\partial}{\partial X_2} \\ \frac{\partial}{\partial X_3} \end{bmatrix}$$

$$\nabla_{n+1} \mathbf{u} = \mathbf{F}^{-1} \nabla_0 \mathbf{u}$$

Use this for B matrix

121

Implementation cont.

1. Obtain midpoint configuration (between k and k+1)

$$\frac{\partial \textbf{x}^n}{\partial \textbf{x}^{n+1/2}} = \left[\ \textbf{1} + \frac{1}{2} \frac{\partial \Delta \textbf{u}}{\partial \textbf{x}^n} \ \right]^{-1} \\ \frac{\partial \Delta \textbf{u}}{\partial \textbf{x}^{n+1/2}} = \frac{\partial \Delta \textbf{u}}{\partial \textbf{x}^n} \cdot \frac{\partial \textbf{x}^n}{\partial \textbf{x}^{n+1/2}}$$

$$\Delta \varepsilon = \operatorname{sym}(\nabla_{n+\frac{1}{2}}\Delta \mathbf{u})$$
 $\mathbf{W} = \operatorname{skew}(\nabla_{n+\frac{1}{2}}\Delta \mathbf{u})$

- 2. Rotation matrix: $R = 1 + (1 \frac{1}{2}W)^{-1}W$
- 3. Rotate stresses: $\overline{\sigma}^n = \mathbf{R} \cdot \sigma^n \cdot \mathbf{R}^T$ $\overline{\alpha}^n = \mathbf{R} \cdot \alpha^n \cdot \mathbf{R}^T$
- 4. Return mapping with $\bar{\sigma}^n, \bar{\alpha}^n$
 - This part is identical to the classical return mapping
 - Calculate stresses: $\sigma_{k+1}^{n+1}, \alpha_{k+1}^{n+1}$
 - Calculate consistent tangent operator Dalg

Implementation cont.

Internal force

$$\begin{aligned} \textbf{f}^{\text{int}} &= \sum_{\text{I}=1}^{4} \sum_{\text{K}=1}^{\text{NG}} (\textbf{B}_{\text{I}}^{\text{T}} \boldsymbol{\sigma}_{\text{k}+1}^{\text{n}+1} \big| \boldsymbol{J} \big|)_{\!\! k} \boldsymbol{\omega}_{\!\! k} \end{aligned}$$

This summation is similar to assembly (must be added to the corresponding DOFs)

Tangent stiffness matrix

$$\textbf{K}_{T} = \sum_{I=1}^{4} \sum_{J=1}^{4} \sum_{K=1}^{NG} [\textbf{B}_{I}^{T} (\textbf{D}^{alg} - \textbf{D}^{\star}) \textbf{B}_{J} \, \big| \, \textbf{J} \, \big|_{k} \, \omega_{K}$$

$$\begin{aligned} & \text{angent stiffness matrix} \\ & \textbf{K}_{T} = \sum_{I=1}^{4} \sum_{J=1}^{4} \sum_{K=1}^{NG} \begin{bmatrix} \textbf{B}_{T}^{T} (\textbf{D}^{alg} - \textbf{D}^{*}) \textbf{B}_{J} \, \big| \, \textbf{J} \, \big|_{\textbf{k}} \, \omega_{\textbf{K}} \\ \end{aligned} \end{aligned} \quad \begin{aligned} & \textbf{b}^{*} = \begin{bmatrix} -\sigma_{11} & \sigma_{11} & \sigma_{12} & 0 & -\sigma_{13} \\ \sigma_{22} & -\sigma_{22} & \sigma_{22} & -\sigma_{12} & -\sigma_{23} & 0 \\ \sigma_{33} & \sigma_{33} & -\sigma_{33} & 0 & -\sigma_{23} & -\sigma_{13} \\ -\sigma_{12} & -\sigma_{12} & 0 & -\frac{1}{2}(\sigma_{11} + \sigma_{22}) & -\frac{1}{2}\sigma_{13} & -\frac{1}{2}\sigma_{23} \\ 0 & -\sigma_{23} & -\sigma_{23} & -\frac{1}{2}\sigma_{13} & -\frac{1}{2}(\sigma_{22} + \sigma_{33}) & -\frac{1}{2}\sigma_{12} \\ -\sigma_{13} & 0 & -\sigma_{13} & -\frac{1}{2}\sigma_{23} & -\frac{1}{2}\sigma_{12} & -\frac{1}{2}(\sigma_{11} + \sigma_{33}) \end{bmatrix} \end{aligned}$$

Initial stiffness matrix

$$\boldsymbol{K}_{S} = \sum_{\mathtt{I}=1}^{4} \sum_{\mathtt{J}=1}^{4} \sum_{K=1}^{N\mathcal{G}} [\boldsymbol{B}_{\mathtt{I}}^{\mathcal{G}^{\mathsf{T}}} \boldsymbol{\Sigma} \boldsymbol{B}_{\mathtt{J}}^{\mathcal{G}} \, \Big| \boldsymbol{J} \, \Big|_{\boldsymbol{k}} \, \boldsymbol{\omega}_{\boldsymbol{K}}$$

$$[\Sigma] = \begin{bmatrix} \sigma & 0 & 0 \\ 0 & \sigma & 0 \\ 0 & 0 & \sigma \end{bmatrix}_{9\times9}$$

$$[\textbf{B}_{\text{I}}^{\mathcal{G}}] = \begin{bmatrix} N_{\text{I},1} & 0 & 0 \\ N_{\text{I},2} & 0 & 0 \\ N_{\text{I},3} & 0 & 0 \\ 0 & N_{\text{I},1} & 0 \\ 0 & N_{\text{I},2} & 0 \\ 0 & N_{\text{I},3} & 0 \\ 0 & 0 & N_{\text{I},1} \\ 0 & 0 & N_{\text{I},2} \\ 0 & 0 & N_{\text{I},3} \end{bmatrix}$$

123

Implementation cont.

Solve for incremental displacement

$$[\textbf{K}_T + \textbf{K}_S]\{\delta \textbf{d}_{k+1}\} = \{\textbf{f}^{ext}\} - \{\textbf{f}^{int}\}$$

Update displacements

$$\begin{aligned} \textbf{d}_{k+1}^{n+1} &= \textbf{d}_{k}^{n+1} + \delta \textbf{d}_{k+1} \\ \Delta \textbf{d}_{k+1} &= \Delta \textbf{d}_{k+1} + \delta \textbf{d}_{k+1} \end{aligned}$$

- When N-R iteration converges
 - Stress and history dependent variables are stored (updated) to the global array
 - Move on to the next load step

Program PLAST3D.m

```
function PLAST3D(MID, PROP, ETAN, UPDATE, LTAN, NE, NDOF, XYZ, LE)
  MAIN PROGRAM COMPUTING GLOBAL STIFFNESS MATRIX RESIDUAL FORCE FOR
  PLASTIC MATERIAL MODELS
                          **********
    % Computer stress, back stress & effective plastic strain
     elseif MID == 2
       % Plasticity with finite rotation
       FAC=FAC*det(F);
        [STRESSN, ALPHAN] = rotatedStress(DEPS, STRESSN, ALPHAN);
        [STRESS, ALPHA, EP] = combhard (PROP, ETAN, DDEPS, STRESSN, ALPHAN, EPN);
     % Tangent stiffness
   if LTAN
    elseif MID == 2
     DTAN=combHardTan (PROP, ETAN, DDEPS, STRESSN, ALPHAN, EPN);
     CTAN=[-STRESS(1) STRESS(1) -STRESS(4) 0 -STRESS(6);
            STRESS(2) -STRESS(2) STRESS(2) -STRESS(4) -STRESS(5) 0;
           STRESS(3) STRESS(3) -STRESS(3) 0 -STRESS(5) -STRESS(6);
           -STRESS(4) -STRESS(4) 0 -0.5*(STRESS(1)+STRESS(2)) -0.5*STRESS(6) -0.5*STRESS(5);
           0 -STRESS(5) -STRESS(5) -0.5*STRESS(6) -0.5*(STRESS(2)+STRESS(3)) -0.5*STRESS(4);
           -STRESS(6) 0 -STRESS(6) -0.5*STRESS(5) -0.5*STRESS(4) -0.5*(STRESS(1)+STRESS(3))];
     SIG=[STRESS(1) STRESS(4) STRESS(6);
          STRESS(4) STRESS(2) STRESS(5);
          STRESS(6) STRESS(5) STRESS(3)];
     SHEAD=zeros(9);
     SHEAD(1:3,1:3) = SIG;
     SHEAD (4:6, 4:6) = SIG;
     SHEAD(7:9,7:9) = SIG;
     EKF = BM'*(DTAN+CTAN)*BM + BG'*SHEAD*BG;
                                                                                            125
```

Ex) Simple Shear Deformation

 $\begin{bmatrix} \frac{\partial \Delta \mathbf{u}}{\partial \mathbf{x}} \end{bmatrix} = \begin{bmatrix} 0 & 0.024 & 0 \\ -0.02 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

 $E=24GPa,\, v=0.2,\\ H=1.0GPa,\, \sigma_y^0=200\sqrt{3}MPa$

```
Young = 24000; nu=0.2; mu=Young/2/(1+nu); lambda=nu*Young/((1+nu)*(1-2*nu));
beta = 0; H = 1000; sY = 200*sqrt(3);
mp = [lambda mu beta H sY];
Iden=[1 1 1 0 0 0]';
D=2*mu*eye(6) + lambda*Iden*Iden';
D(4,4) = mu; D(5,5) = mu; D(6,6) = mu;
L = zeros(3,3);
stressN=[0 0 0 0 0 0]';
deps=[0 0 0 0 0 0]';
alphaN = [0 0 0 0 0 0]';
epN=0;
stressRN=stressN; alphaRN=alphaN;epRN=epN;
for i=1:15
    deps(4) = 0.004; L(1,2) = 0.024; L(2,1) = -0.02;
    [stressRN, alphaRN] = rotatedStress(L, stressRN, alphaRN);
    [stressR, alphaR, epR]=combHard(mp,D,deps,stressRN,alphaRN,epRN);
    [stress, alpha, ep]=combHard(mp,D,deps,stressN,alphaN,epN);
   X(i) = i*deps(4); Y1(i) = stress(4); Y2(i) = stressR(4);
    stressN = stress; alphaN = alpha; epN = ep;
    stressRN = stressR; alphaRN = alphaR; epRN = epR;
X = [0 X]; Y1=[0 Y1]; Y2=[0 Y2]; plot(X,Y1,X,Y2);
```

Ex) Simple Shear Deformation

stress =
$$[0 \ 0 \ 0 \ 212.9 \ 0 \ 0]^T$$

stressR = $[43.4 \ -43.4 \ 0 \ 208.2 \ 0 \ 0]^T$

127

Summary

- Finite rotation elastoplasticity is formulated using updated Lagrangian (reference frame moves with body)
- Finite rotation elastoplasticity is fundamentally identical to the classical plasticity. Only rigid-body rotation is taken into account using objective stress rate and integration
- We must use an objective stress rate to define the constitutive relation because the material response should be independent of coordinate system
- Objectivity only applies for spatial vectors and tensors
- In the finite rotation, the midpoint configuration is used to reduce errors involved in non-uniform rotation and spin
- Linearization is performed after transforming to the undeformed configuration

4.5

Finite Deformation Elastoplasticity with Hyperelasticity

129

Goals

- Understand the difference between hypoelasticity and hyperelasticity
- Learn the concept of multiplicative decomposition and intermediate configuration
- · Understand the principle of maximum dissipation
- Understand the plastic evolution in strain space and stress space
- Learn J₂ plasticity in principal stress space

Finite Deformation Plasticity

- · So far, we used small strain elastoplasticity theory
- Finite rotation has been taken care of using the deformed configuration with an objective rate
- However, still, the strain should be small enough so that the elastic and plastic strains are decomposed additively
- This is fundamental limitation of hypoelasticity
- How can we handle large strain problem?
- · On the other hand, hyperelasticity can handle large strain
- However, it is not easy to describe plastic evolution in 2nd
 P-K stress. It is given in the current configuration (Cauchy stress)
- · How can we handle it? Transformation between references

131

Intermediate Configuration

- · Let's take one step back and discuss different references
- Lee (1967) proposed that the deformation gradient can be multiplicatively decomposed

$$F(X) = F_e(X)F_p(X)$$

- Remember deformation gradient maps between deformed and undeformed configurations

$$FdX = F_e(F_pdX) = F_edx_p$$

- Instead of moving directly from Ω_0 to Ω_n , the deformation moves to an intermediate configuration (Ω_p) first and then goes to Ω_n
- The intermediate configuration is an imaginary one and can be arbitrary

Additive decomposition: $\varepsilon = \varepsilon_e + \varepsilon_p$

Intermediate Configuration cont.

- $F_p(X)$: deformation through the intermediate configuration (related to the internal plastic variables)
- F_e⁻¹(X): local, stress-free, unloaded process
- Decomposition of F(X) into the intermediate configuration followed by elastic deformation

Kirchhoff Stress - Matter of Convenience

- Kirchhoff stress $\tau = J\sigma$
 - This is different from 1st and 2nd P-K stress
 - It is defined using Cauchy stress with Jacobian effect (J = |F|)
 - When deformation is small $J\approx 1 \Rightarrow \tau\approx \sigma$
 - We assume the constitutive relation is given in terms of τ
- Why do we use different stress measure?
 - By including J into stress, we don't have to linearize it
 - We can integrate the energy form in Ω_{0}
 - But, still all integrands are defined in Ω_n

Elastic Domain and Free Energy

· Elastic domain

$$\mathsf{E} \equiv \big\{ (\tau, \mathbf{q}) \mid \mathsf{f}(\tau, \mathbf{q}) \leq 0 \big\}$$

- q: stress-like internal variables (hardening properties)
- **Isotropy**: the yield function is independent of orientation of τ and q (objectivity)
- Free energy function (similar to strain energy density)

$$\Psi = \Psi(\mathbf{b}_{e}, \boldsymbol{\xi})$$

- Elastic left C-G deformation tensor: $b_e = F_e F_e^T$
- strain-like internal variables vector: $\textbf{q}=-\frac{\partial \psi}{\partial \xi}$
- Free energy only depends on \mathbf{F}_{e} , and due to isotropy, \mathbf{b}_{e}

135

Dissipation Function

Dissipation function (ignoring thermal part)

$$D \equiv \tau : \mathbf{d} - \frac{\mathbf{d}}{\mathbf{d} t} \psi(\mathbf{b}_e, \xi) \ge 0$$

- Rate of stress work rate of free energy change
- Rate of deformation d = sym(L), where velocity gradient $L = \dot{F}F^{-1}$
- Dissipation is energy loss due to plastic deformation (irreversible)
- Rate of elastic left C-G tensor
 - We can't differentiate \mathbf{b}_e because its reference is Ω_{p}
 - Transform to Ω_0 using $\mathbf{F} = \mathbf{F}_{e}\mathbf{F}_{p}$ relation

$$\boldsymbol{b}_{e} \ = \boldsymbol{F}_{e}\boldsymbol{F}_{e}^{\mathsf{T}} \ = (\boldsymbol{F}\boldsymbol{F}_{p}^{-1})(\boldsymbol{F}_{p}^{-\mathsf{T}}\boldsymbol{F}^{\mathsf{T}}) = \boldsymbol{F}(\boldsymbol{F}_{p}^{-1}\boldsymbol{F}_{p}^{-\mathsf{T}})\boldsymbol{F}^{\mathsf{T}} \ = \boldsymbol{F}\boldsymbol{\mathcal{C}}_{p}^{-1}\boldsymbol{F}^{\mathsf{T}}$$

$$\dot{\boldsymbol{b}}_{e} = \dot{\boldsymbol{F}} \boldsymbol{\mathcal{C}}_{p}^{-1} \boldsymbol{F}^{\mathsf{T}} + \boldsymbol{F} \boldsymbol{\mathcal{C}}_{p}^{-1} \dot{\boldsymbol{F}}^{\mathsf{T}} + \boldsymbol{F} \frac{\mathsf{d}}{\mathsf{d} t} \Big(\boldsymbol{\mathcal{C}}_{p}^{-1} \Big) \boldsymbol{F}^{\mathsf{T}}$$

Rate of Elastic Left C-G Tensor

· Rate of elastic left C-G tensor cont.

$$\dot{b_e} = \dot{F} C_p^{-1} F^T + F C_p^{-1} \dot{F}^T + F \frac{d}{dt} (C_p^{-1}) F^T$$

$$\downarrow \qquad \qquad \qquad \frac{\partial v}{\partial X} |_{F_p^{-1} F_p^{-T} F^T} = \frac{\partial v}{\partial x} F F_p^{-1} F_p^{-T} F^T = L F_e F_e^T = L b_e$$

$$\downarrow \qquad \qquad \qquad \qquad C_p : plastic right C-G$$

$$\downarrow \qquad \qquad \qquad deformation tensor$$

- Lie derivative: $\mathbf{F} \frac{d}{dt} (\mathbf{C}_p^{-1}) \mathbf{F}^T = \mathbf{L}_v \mathbf{b}_e$ pulling \mathbf{b}_e back to the undeformed configuration, and after taking a time derivative, pushing forward to the current configuration (plastic deformation)
- · Thus, we have

$$\frac{\dot{\mathbf{b}}_{e} = \mathbf{L}\mathbf{b}_{e} + \mathbf{b}_{e}\mathbf{L}^{\mathsf{T}} + \mathbf{L}_{v}\mathbf{b}_{e}}{\mathsf{L}_{v}\mathbf{b}_{e}}$$
Elastic Plastic

137

Dissipation Function cont.

· Dissipation function cont.

$$\begin{split} D &= \tau : \mathbf{d} - \frac{\mathbf{d}}{\mathbf{d} t} \psi(\mathbf{b}_{e}, \xi) \\ &= \tau : \mathbf{d} - \frac{\partial \psi}{\partial \mathbf{b}^{e}} : \dot{\mathbf{b}}_{e} - \frac{\partial \psi}{\partial \xi} \cdot \dot{\xi} \\ &= \tau : \mathbf{d} - \frac{\partial \psi}{\partial \mathbf{b}^{e}} : \left(\mathbf{L} \mathbf{b}_{e} + \mathbf{b}_{e} \mathbf{L}^{T} + \mathbf{L}_{v} \mathbf{b}_{e} \right) + \mathbf{q} \cdot \dot{\xi} \\ &= \tau : \mathbf{d} - 2 \frac{\partial \psi}{\partial \mathbf{b}_{e}} \mathbf{b}_{e} : \mathbf{L} + \left(2 \frac{\partial \psi}{\partial \mathbf{b}_{e}} \mathbf{b}_{e} \right) : \left[-\frac{1}{2} (\mathbf{L}_{v} \mathbf{b}_{e}) \mathbf{b}_{e}^{-1} \right] + \mathbf{q} \cdot \dot{\xi} \\ &= \left(\tau - 2 \frac{\partial \psi}{\partial \mathbf{b}_{e}} \mathbf{b}_{e} \right) : \mathbf{d} + \left(2 \frac{\partial \psi}{\partial \mathbf{b}_{e}} \mathbf{b}_{e} \right) : \left[-\frac{1}{2} (\mathbf{L}_{v} \mathbf{b}_{e}) \mathbf{b}_{e}^{-1} \right] + \mathbf{q} \cdot \dot{\xi} \ge 0 \end{split}$$

For a symmetric matrices, A:BC = AC:B
For a symmetric S and general L, S:L = S:sym(L)

Principle of Maximum Dissipation

- Principle of Maximum Dissipation
 - For all admissible stresses and internal variables, the inequality must satisfy

$$D = \left(\tau - 2\frac{\partial \psi}{\partial \mathbf{b_e}} \mathbf{b_e}\right) : \mathbf{d} + \left(2\frac{\partial \psi}{\partial \mathbf{b_e}} \mathbf{b_e}\right) : \left[-\frac{1}{2} (\mathbf{L_v} \mathbf{b_e}) \mathbf{b_e}^{-1}\right] + \mathbf{q} \cdot \dot{\xi} \ge 0$$

- If we consider the material is elastic, then no plastic variable will change $L_v b_e = \dot{\xi} = 0$
- In order to satisfy the inequality for any d (especially $d_1 = -d_2$)

$$\tau = 2 \frac{\partial \psi}{\partial \mathbf{b_e}} \mathbf{b_e}$$
 Constitutive relation

- Total form: constitutive relation is given in terms of stress, not stress increment
- In addition, we have $\frac{\partial \psi}{\partial \mathbf{b}_{e}} = \frac{1}{2} \mathbf{\tau} \cdot \mathbf{b}_{e}^{-1}$

139

Principle of Maximum Dissipation cont.

Reduced dissipation function

$$\left(2\frac{\partial \psi}{\partial \boldsymbol{b_e}}\boldsymbol{b_e}\right): \left[-\frac{1}{2}(\boldsymbol{L_v}\boldsymbol{b_e})\boldsymbol{b_e}^{-1}\right] + \boldsymbol{q} \cdot \dot{\boldsymbol{\xi}} \geq 0$$

$$\Rightarrow \left[\tau : \left[-\frac{1}{2} (\mathsf{L}_{\mathsf{V}} \mathsf{b}_{e}) \mathsf{b}_{e}^{-1} \right] + \mathbf{q} \cdot \dot{\xi} \geq 0 \right]$$

Plastic dissipation

- Principle of Maximum Dissipation
 - Plastic deformation occurs in the direction that maximizes D
 - In classical associative plasticity

$$D = \sigma : \dot{\boldsymbol{\epsilon}}_p + \boldsymbol{q} \cdot \dot{\boldsymbol{\xi}} \geq 0$$

$$\epsilon_{p} \parallel \frac{\partial f}{\partial \sigma} \quad \Rightarrow \quad \dot{\epsilon}_{p} = \dot{\gamma} \frac{\partial f}{\partial \sigma}$$

Principle of Maximum Dissipation cont.

- Principle of Maximum Dissipation cont.
 - For given rates $\{L_v b_e, \dot{\xi}\}$, state variables $\{\tau, \textbf{q}\}$ maximize the dissipation function D

$$D = \left(\tau - \tau^{\star}\right) : \left[-\frac{1}{2} (L_{\nu} b_{e}) b_{e}^{-1} \right] + \left(\boldsymbol{q} - \boldsymbol{q}^{\star}\right) \cdot \dot{\boldsymbol{\xi}} \geq 0, \quad \forall \left\{\tau^{\star}, \boldsymbol{q}^{\star}\right\} \in \boldsymbol{E}$$

- For classical variational inequality, the dissipation inequality satisfies if and only if the coefficients are in the normal direction of the elastic domain (defined by yield function)
- · Geometric interpretation
 - All τ^* should reside inside of E
 - Thus, the angle θ should be greater than or equal to 90°
 - In order to satisfy for all τ^* , $-\frac{1}{2}(L_v b_e) b_e^{-1}$ should be normal to yield surface

141

Principle of Maximum Dissipation cont.

· Evolution equations for multiplicative decomposition

$$-\frac{1}{2}L_{v}\mathbf{b}_{e} = \dot{\gamma}\frac{\partial f(\tau,\mathbf{q})}{\partial \tau}\mathbf{b}_{e}$$

$$\dot{\boldsymbol{\xi}} = \dot{\boldsymbol{\gamma}} \frac{\partial f(\boldsymbol{\tau}, \boldsymbol{q})}{\partial \boldsymbol{q}}$$

$$\dot{\gamma} \geq 0$$
, $f(\tau, \mathbf{q}) \leq 0$, $\dot{\gamma} f(\tau, \mathbf{q}) = 0$.

- Plastic evolution is still in a rate form
- Stress is hyperelastic (total form)
- Plastic evolution is given in terms of strain (b_e and ξ)
- We need to integrate these equations

Time Integration

- Given: $\{F^n b_e^n \xi^n\}$ and Δu
- · Relative deformation gradient

$$\textbf{f(x)} = \frac{\partial \textbf{x}^{n+1}}{\partial \textbf{x}^n} = \textbf{1} + \nabla_n \Delta \textbf{u}$$

$$\mathbf{F}^{n+1} = \mathbf{f} \cdot \mathbf{F}^n$$

$$\dot{\boldsymbol{f}} = \frac{\partial \dot{\boldsymbol{u}}}{\partial \boldsymbol{x}^n} = \frac{\partial \dot{\boldsymbol{u}}}{\partial \boldsymbol{x}^{n+1}} \frac{\partial \boldsymbol{x}^{n+1}}{\partial \boldsymbol{x}^n} = \boldsymbol{L}\boldsymbol{f}$$

First-order evolution equations

$$\dot{\mathbf{b}_{e}} = \left[\mathbf{L} \mathbf{b}_{e} + \mathbf{b}_{e} \mathbf{L}^{\mathsf{T}} \right] - 2\dot{\gamma} \frac{\partial f(\tau, \mathbf{q})}{\partial \tau} \mathbf{b}_{e}$$

$$\dot{\boldsymbol{\xi}} = \dot{\boldsymbol{\gamma}} \frac{\partial \, \boldsymbol{f}(\boldsymbol{\tau}, \boldsymbol{q})}{\partial \boldsymbol{q}}$$

$$\dot{\gamma} \geq 0$$
, $f(\tau, \mathbf{q}) \leq 0$, $\dot{\gamma} f(\tau, \mathbf{q}) = 0$

Initial conditions

$$\{f,b_{e},\xi\}\Big|_{t=t_{n}}=\{1,b_{e}^{n},\xi^{n}\}$$

Strain-based evolution

143

Time Integration cont.

· Constitutive law

$$\tau = 2 \frac{\partial \psi}{\partial \mathbf{b_e}} \mathbf{b_e}$$
 $\mathbf{q} = -\frac{\partial \psi(\mathbf{b_e}, \xi)}{\partial \xi}$

- The constitutive relation is hyperelastic
- Once \mathbf{b}_e is found, stress can be calculated by differentiating the free energy function. Same for the internal variables
- Elastic predictor (no plastic flow)
 - Similar to classical plasticity, we will use elastic predictor and plastic corrector algorithm
 - For given incremental displacement, eliminate plastic flow and push the elastic, left C-G tensor forward to the current configuration

$$\boldsymbol{f}^{\text{tr}} = \boldsymbol{f} \implies \boldsymbol{F}_{e}^{\text{tr}} = \boldsymbol{f} \cdot \boldsymbol{F}_{e}^{n} \quad \boldsymbol{F}_{p}^{\text{tr}} = \boldsymbol{F}_{p}^{n}$$

Time Integration cont.

· Elastic predictor cont.

$$\boldsymbol{b}_{e}^{\text{tr}} = \boldsymbol{F}_{e}^{\text{tr}} \cdot \boldsymbol{F}_{e}^{\text{trT}} = \boldsymbol{f} \cdot \boldsymbol{F}_{e}^{\text{n}} \cdot \boldsymbol{F}_{e}^{\text{nT}} \cdot \boldsymbol{f}^{\text{T}} = \boldsymbol{f} \boldsymbol{b}_{e}^{\text{n}} \boldsymbol{f}^{\text{T}}$$

$$\mathbf{f}^{\mathsf{tr}} = \mathbf{f} \quad \mathbf{b}_{e}^{\mathsf{tr}} = \mathbf{f} \mathbf{b}_{e}^{\mathsf{n}} \mathbf{f}^{\mathsf{T}} \quad \xi^{\mathsf{tr}} = \xi^{\mathsf{n}}$$

· Check for yield status

$$\boldsymbol{\tau}^{\text{tr}} = 2 \frac{\partial \boldsymbol{\psi}}{\partial \boldsymbol{b}_{e}^{\text{tr}}} \boldsymbol{b}_{e}^{\text{tr}} \qquad \qquad \boldsymbol{q}^{\text{tr}} = - \frac{\partial \boldsymbol{\psi}(\boldsymbol{b}_{e}^{\text{tr}}, \boldsymbol{\xi}^{\text{tr}})}{\partial \boldsymbol{\xi}^{\text{tr}}}$$

- If $\tau^{tr} < f$, trial state is final state and stop

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

145

Time Integration cont.

- · Plastic corrector (in the fixed current configuration)
 - The solution of $\dot{y} = Ay$ is $y = y_0 exp(At)$

$$\begin{aligned} \mathbf{b}_{e}^{\mathsf{n}+1} &= \mathbf{b}_{e}^{\mathsf{tr}} \exp \left[-2\Delta \gamma \frac{\partial f(\tau^{e}, \mathbf{q})}{\partial \tau} \right] \\ \xi^{\mathsf{n}+1} &= \xi^{\mathsf{tr}} + \Delta \gamma \frac{\partial f(\tau^{e}, \mathbf{q})}{\partial \mathbf{q}} \\ \Delta \gamma &\geq 0, \quad f(\tau, \mathbf{q}) \leq 0, \quad \Delta \gamma f(\tau, \mathbf{q}) = 0 \end{aligned}$$

 $\Delta \gamma = \dot{\gamma} \Delta t$

- First-order accuracy and unconditional stability
- return-mapping algorithms for the left Cauchy-Green tensor

Spectral Decomposition

- Objective: want to get a similar return mapping algorithm with classical plasticity
- Return-mapping algorithm for principal Kirchhoff stress
- For isotropic material, the principal direction of τ is parallel to that of \mathbf{b}_e
- · Spectral decomposition

$$\boldsymbol{b}_{e} \, = \, \sum_{i=1}^{3} \lambda_{i}^{2} \, \boldsymbol{\hat{n}}^{i} \, \otimes \boldsymbol{\hat{n}}^{i} \qquad \qquad \boldsymbol{\tau} \, = \, \sum_{i=1}^{3} \tau_{pi} \, \boldsymbol{\hat{n}}^{i} \, \otimes \boldsymbol{\hat{n}}^{i}$$

 $\mathbf{b}_{e}^{\mathsf{n}+1} = \mathbf{b}_{e}^{\mathsf{tr}} \exp \left[\cdots \right]$

 λ_i : principal stretch

 $\tau_{\mathsf{p}i}$: principal Kirchhoff stress

 $\hat{\mathbf{n}}^{i}$: spatial eigenvector

 \hat{N}^i : material eigenvector

b_e and b_e^{tr} have the same eigenvectors!!

Do you remember that $\eta // \eta^{tr}$ in classical plasticity?

147

Return Mapping in Principal Stress Space

- Principal stress vector $\tau_p = [\tau_{p1}, \tau_{p2}, \tau_{p3}]^T$
- · Logarithmic elastic principal strain vector

$$\mathbf{e} = [\mathbf{e}_1 \quad \mathbf{e}_2 \quad \mathbf{e}_3]^T = [\log \lambda_1 \quad \log \lambda_2 \quad \log \lambda_3]^T$$

Good for large elastic strain

Free energy for J₂ plasticity

$$\psi(\mathbf{e}, \xi) = \frac{1}{2}\lambda[\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3]^2 + \mu[\mathbf{e}_1^2 + \mathbf{e}_2^2 + \mathbf{e}_3^2] + \hat{K}(\xi)$$

· Constitutive relation in principal space

$$au_{p} = rac{\partial \psi}{\partial oldsymbol{e}} = oldsymbol{c}^{oldsymbol{e}} \cdot oldsymbol{e}$$

$$\mathbf{c}^e = (\lambda + \frac{2}{3}\mu)\mathbf{\hat{1}} \otimes \mathbf{\hat{1}} + 2\mu\mathbf{1}_{dev}$$

$$\hat{1} = [1, 1, 1]^T$$
 $\mathbf{1}_{dev} = \mathbf{1} - \frac{1}{3}(\hat{1} \otimes \hat{1})$

- Linear relation between principal Kirchhoff stress and logarithmic elastic principal strain

Return Mapping in Principal Stress Space cont.

• Take log on return mapping for b_e and pre-multiply with c^e

$$\begin{split} \textbf{b}_{e} &= \sum_{i=1}^{3} \lambda_{i}^{2} \, \hat{\textbf{n}}^{i} \otimes \hat{\textbf{n}}^{i} & \Rightarrow \quad log(\textbf{b}_{e}) = \sum_{i=1}^{3} 2 log(\lambda_{i}) \hat{\textbf{n}}^{i} \otimes \hat{\textbf{n}}^{i} = \sum_{i=1}^{3} 2 e_{i} \, \hat{\textbf{n}}^{i} \otimes \hat{\textbf{n}}^{i} \\ \textbf{b}_{e}^{n+1} &= \textbf{b}_{e}^{tr} \, exp \bigg[-2 \Delta \gamma \, \frac{\partial f(\tau^{e}, \textbf{q})}{\partial \tau} \bigg] \\ & \Rightarrow \quad log(\textbf{b}_{e}^{n+1}) = log(\textbf{b}_{e}^{tr}) + log \, exp \bigg[-2 \Delta \gamma \, \frac{\partial f(\tau, \textbf{q})}{\partial \tau} \bigg] \\ & \qquad \qquad f(\tau, \textbf{q}) = \hat{f}(\tau_{p}, \textbf{q}) \ \Rightarrow \quad \frac{\partial f}{\partial \tau} = \sum_{i=1}^{3} \frac{\partial \hat{f}}{\partial \tau_{pi}} \hat{\textbf{n}}^{i} \otimes \hat{\textbf{n}}^{i} \\ & \Rightarrow \quad 2 \textbf{e}^{n+1} = 2 \textbf{e}^{tr} - 2 \Delta \gamma \, \frac{\partial \hat{f}(\tau_{p}, \textbf{q})}{\partial \tau_{p}} \\ & \Rightarrow \quad \textbf{c}^{e} \cdot \textbf{e}^{n+1} = \textbf{c}^{e} \cdot \textbf{e}^{tr} - \Delta \gamma \textbf{c}^{e} \cdot \frac{\partial \hat{f}(\tau_{p}, \textbf{q})}{\partial \tau_{-}} \end{split}$$

149

Return Mapping in Principal Stress Space cont.

· Plastic evolution in principal stress space

$$\begin{split} \boldsymbol{\tau}_{p} &= \boldsymbol{\tau}_{p}^{tr} - \Delta \gamma \, \boldsymbol{c}^{\boldsymbol{e}} \cdot \frac{\partial \boldsymbol{\hat{f}}(\boldsymbol{\tau}_{p}, \boldsymbol{q})}{\partial \boldsymbol{\tau}_{p}} \\ \boldsymbol{\xi}^{n+1} &= \boldsymbol{\xi}^{n} + \Delta \gamma \, \frac{\partial \boldsymbol{\hat{f}}(\boldsymbol{\tau}_{p}, \boldsymbol{q})}{\partial \boldsymbol{q}} \\ \Delta \gamma &\geq 0, \quad \boldsymbol{\hat{f}}(\boldsymbol{\tau}_{p}, \boldsymbol{q}) \leq 0, \quad \Delta \gamma \, \boldsymbol{\hat{f}}(\boldsymbol{\tau}_{p}, \boldsymbol{q}) = 0 \end{split}$$

- Fundamentally the same with classical plasticity: Classical plasticity [$\sigma(6\times1)$ and $C(6\times6)$], but here [$\tau_p(3\times1)$ and $C(6\times6)$]
- During the plastic evolution, the principal direction remains constant (fixed current configuration)
- Only principal stresses change

Return Mapping Algorithm

· Deviatoric principal stress

$$\mathbf{s} = \mathbf{\tau}_{p} - \frac{1}{3} (\mathbf{\tau}_{p} \cdot \mathbf{\hat{1}}) \mathbf{\hat{1}} = \mathbf{1}_{dev} \cdot \mathbf{\tau}_{p}$$

Yield function

$$f(\eta, e_p) = \|\eta\| - \sqrt{\frac{2}{3}}\kappa(e_p) \le 0$$

· Return mapping

$$\begin{split} & \boldsymbol{\tau}_p^{\text{tr}} = \boldsymbol{c}^{\boldsymbol{e}} \cdot \boldsymbol{e}^{\text{tr}} \\ & \boldsymbol{\tau}_p^{\text{n+1}} = \boldsymbol{\tau}_p^{\text{tr}} - 2\mu\Delta\gamma\boldsymbol{N} \\ & \boldsymbol{\alpha}^{\text{n+1}} = \boldsymbol{\alpha}^{\text{tr}} + \Delta\gamma\boldsymbol{H}_{\!\alpha}\boldsymbol{N} \\ & \boldsymbol{e}_p^{\text{n+1}} = \boldsymbol{e}_p^{\text{tr}} + \sqrt{\frac{2}{3}}\Delta\gamma \end{split}$$

$$\begin{split} & \eta = \boldsymbol{s} - \boldsymbol{\alpha} \\ & \boldsymbol{e}_p = \int_0^t \sqrt{\frac{2}{3}} \left\| \dot{\boldsymbol{e}}_p(t) \right\| dt \end{split}$$

$$e_p^{tr} = e_p^n$$

$$N = \frac{\eta^{n+1}}{\|\eta^{n+1}\|} = \frac{\eta^{tr}}{\|\eta^{tr}\|}$$

Identical to the classical plasticity

151

Return Mapping Algorithm cont.

Plastic consistency parameter

$$f(\eta^{n+1}, e_p^{n+1}) = \|\eta^{n+1}\| - \sqrt{\frac{2}{3}}\kappa(e_p^{n+1})$$
$$= \|\eta^{tr}\| - (2\mu + H_{\alpha})\Delta\gamma - \sqrt{\frac{2}{3}}\kappa(e_p^{n+1}) = 0$$

- Solve for $\Delta \gamma$ using N-R iteration, or directly for linear hardening
- Derivative $\frac{\partial f}{\partial \Delta \gamma} = -(2\mu + H_{\alpha} + \sqrt{\frac{2}{3}}H_{\alpha,e_p}\Delta \gamma + \frac{2}{3}\kappa_{,e_p}) = -\frac{1}{A}$
- Recovery
 - Once return mapping converged, recover stress and strain

$$\begin{aligned} & \boldsymbol{\tau^{n+1}} = \sum_{i=1}^{3} \tau_{pi}^{n+1} \, \boldsymbol{\hat{n}}^{i} \otimes \boldsymbol{\hat{n}}^{i} = \sum_{i=1}^{3} \tau_{pi}^{n+1} \, \boldsymbol{m}^{i} \\ & \boldsymbol{b_{e}^{n+1}} = \sum_{i=1}^{3} exp(2e_{i}^{n+1})\boldsymbol{m}^{i} \qquad \boldsymbol{e^{n+1}} = \boldsymbol{e^{tr}} - \Delta \gamma \boldsymbol{N} \end{aligned}$$

Ex) Incompressible Elastic Cube

- Elastic deformation: $x_1 = \alpha X_1$, $x_2 = \beta X_2$, $x_3 = \beta X_3$
- · Deformation gradient

$$\mathbf{F} = \begin{bmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \beta \end{bmatrix}, \quad \mathbf{b} = \mathbf{F}\mathbf{F}^{\mathsf{T}} = \begin{bmatrix} \alpha^2 & 0 & 0 \\ 0 & \beta^2 & 0 \\ 0 & 0 & \beta^2 \end{bmatrix}$$

- Incompressibility: $det(\mathbf{F})=1$ $\beta = 1/\sqrt{\alpha}$
- Eigenvalues and eigenvectors:

$$\begin{split} & \lambda_1 = \alpha^2, & \quad \boldsymbol{n}^1 = [1 \quad 0 \quad 0]^T \\ & \lambda_2 = \alpha^{-1}, & \quad \boldsymbol{n}^2 = [0 \quad 1 \quad 0]^T \\ & \lambda_3 = \alpha^{-1}, & \quad \boldsymbol{n}^3 = [0 \quad 0 \quad 1]^T \end{split}$$

Logarithmic stretches:

$$e = \{2\log \alpha - \log \alpha - \log \alpha\}^T$$

153

Ex) Incompressible Elastic Cube

Stress-strain relation (principal space)

$$\tau^{p} = \begin{bmatrix} \lambda + 2\mu & \lambda & \lambda \\ \lambda & \lambda + 2\mu & \lambda \\ \lambda & \lambda & \lambda + 2\mu \end{bmatrix} \begin{bmatrix} 2\log\alpha \\ -\log\alpha \\ -\log\alpha \end{bmatrix} = \begin{bmatrix} 4\mu\log\alpha \\ -2\mu\log\alpha \\ -2\mu\log\alpha \end{bmatrix}$$

Kirchhoff stress

$$\tau = \sum_{i=1}^{3} \tau_i^p \mathbf{n}^i \otimes \mathbf{n}^i = 2\mu \log \alpha \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Consistent Tangent Operator

Relation b/w material and spatial tangent operators

$$\begin{split} \textbf{D} &= \frac{\partial \textbf{S}}{\partial \textbf{E}} \\ &\Rightarrow \quad \boldsymbol{\bar{\textbf{E}}} : \textbf{D} : \Delta \textbf{E} = [\textbf{F}^{T} \boldsymbol{\epsilon}(\boldsymbol{\bar{\textbf{u}}}) \textbf{F}] : \textbf{D} : [\textbf{F}^{T} \boldsymbol{\epsilon}(\Delta \textbf{u}) \textbf{F}] = \boldsymbol{\epsilon}(\boldsymbol{\bar{\textbf{u}}}) : \textbf{c} : \boldsymbol{\epsilon}(\Delta \textbf{u}) \\ c_{ijkl} &= F_{ir} F_{js} F_{km} F_{ln} D_{rsmn} \\ &= F_{ir} F_{js} F_{km} F_{ln} \frac{\partial S_{rs}}{\partial E_{mn}} \end{split}$$

- $F_{ir}F_{js}$: transform stress to material frame τ = FSF^T
- $F_{km}F_{ln}$: differentiate w.r.t. E and then transform to spatial frame

• But,
$$c_{ijkl} \neq \frac{\partial \tau_{ij}}{\partial \epsilon_{kl}}$$

$$\frac{\partial w}{\partial \epsilon} = F \frac{\partial w}{\partial E} F^T$$

- Let $\boldsymbol{\tau}^{n+1} = \sum\nolimits_{i=1}^{3} \tau_{pi}^{n+1} \, \boldsymbol{m}^{i}$
- We want $c = \partial \tau / \partial \epsilon$, but we have

$$\frac{\partial \tau_p}{\partial \textbf{e}} = \textbf{c}^{\text{alg}} = \textbf{c}^{\textbf{e}} - 4\mu^2 \textbf{A} \textbf{N} \otimes \textbf{N} - \frac{4\mu^2 \Delta \gamma}{\left\| \boldsymbol{\eta}^{\text{tr}} \right\|} [\textbf{1}_{\text{dev}} - \textbf{N} \otimes \textbf{N}]$$

155

Consistent Tangent Operator cont.

- How to obtain $c=\partial \tau/\partial \epsilon$ using $c^{\alpha lg}=\partial \tau_p/\partial e$?
- Remember $\partial \tau_p/\partial e$ contains all plasticity
- Since intermediate frame is reference, we have to use F_e
- Start from stress expression

$$\begin{split} \boldsymbol{\tau}^{n+1} &= \sum\nolimits_{i=1}^{3} \tau_{pi}^{n+1} \, \boldsymbol{m}^{i} \\ \boldsymbol{c} &= \frac{\partial \boldsymbol{\tau}}{\partial \boldsymbol{\epsilon}} = \frac{\partial}{\partial \boldsymbol{\epsilon}} \Bigg(\sum_{i=1}^{3} \tau_{pi}^{n+1} \, \boldsymbol{m}^{i} \, \Bigg) = \sum_{i=1}^{3} \Bigg[\frac{\partial \tau_{pi}^{n+1}}{\partial \boldsymbol{\epsilon}} \otimes \boldsymbol{m}^{i} + \tau_{pi}^{n+1} \, \frac{\partial \boldsymbol{m}^{i}}{\partial \boldsymbol{\epsilon}} \, \Bigg] \end{split}$$

$$\boldsymbol{c} = \sum_{i=1}^{3} \left[\sum_{j=1}^{3} \frac{\partial \tau_{pi}^{n+1}}{\partial \boldsymbol{e}_{j}^{\dagger r}} \frac{\partial \boldsymbol{e}_{j}^{\dagger r}}{\partial \boldsymbol{\epsilon}} \otimes \boldsymbol{m}^{i} + \tau_{pi}^{n+1} \frac{\partial \boldsymbol{m}^{i}}{\partial \boldsymbol{\epsilon}} \right]$$

$$\uparrow \qquad \uparrow \qquad \qquad \uparrow \\
(1) \quad (2) \qquad \qquad (3)$$

Consistent Tangent Operator cont.

(1)
$$\frac{\partial \tau_p}{\partial e^{tr}} = c^{\alpha lg}$$

consistent tangent operator in principal stress Same as classical return mapping (3×3)

(2)
$$\frac{\partial e_{j}^{tr}}{\partial \varepsilon} = 2\mathbf{F}_{e} \frac{\partial e_{j}^{tr}}{\partial \mathbf{C}_{e}} \mathbf{F}_{e}^{T} = \mathbf{m}^{j}$$

These are elastic

(3)
$$\frac{\partial \mathbf{m}^{i}}{\partial \varepsilon} = 2\mathbf{F}_{e} \frac{\partial \mathbf{m}^{i}}{\partial \mathbf{C}_{e}} \mathbf{F}_{e}^{\mathsf{T}} = 2\hat{\mathbf{c}}^{i}$$

Using (1), (2), and (3),

$$\boldsymbol{c} = \frac{\partial \tau}{\partial \boldsymbol{\epsilon}} = \sum_{i=1}^{3} \sum_{j=1}^{3} c_{ij}^{alg} \boldsymbol{m}^{i} \otimes \boldsymbol{m}^{j} + \sum_{i=1}^{3} 2 \tau_{pi} \boldsymbol{\hat{c}}^{i}$$

157

Incremental Variational Principle

Energy form (nonlinear)

$$\begin{split} \alpha(^{n}\xi; \boldsymbol{u}, \overline{\boldsymbol{u}}) &= \iint_{\Omega_{n}} \boldsymbol{\sigma} : \epsilon(\overline{\boldsymbol{u}}) d\Omega = \iint_{\Omega_{0}} \boldsymbol{\sigma} : \epsilon(\overline{\boldsymbol{u}}) \boldsymbol{J} d\Omega \\ &= \iint_{\Omega_{0}} \boldsymbol{\tau} : \epsilon(\overline{\boldsymbol{u}}) d\Omega \end{split}$$

Linearization

$$a^*({}^{\mathsf{n}}\xi, {}^{\mathsf{n}}\mathsf{b}^{\mathsf{e}}, \mathsf{u}; \Delta \mathsf{u}, \overline{\mathsf{u}}) \equiv \iint_{{}^{\mathsf{O}}\Omega} \left[\varepsilon(\overline{\mathsf{u}}) : \mathbf{c} : \varepsilon(\Delta \mathsf{u}) + \tau : \eta(\Delta \mathsf{u}, \overline{\mathsf{u}}) \right] d\Omega$$

· N-R iteration

$$\alpha^*({}^n\xi,{}^{n+1}\mathbf{u}^{k+1};\Delta\mathbf{u}^{k+1},\overline{\mathbf{u}})=\ell(\overline{\mathbf{u}})-\alpha({}^n\xi;{}^{n+1}\mathbf{u}^k,\overline{\mathbf{u}}),\quad\forall\overline{\mathbf{u}}\in\mathbb{Z}$$

MATLAB Code MULPLAST

```
function [stress, b, alpha, ep]=mulPlast(mp,D,L,b,alpha,ep)
%mp = [lambda, mu, beta, H, Y0];
%D = elasticity matrix b/w prin stress & log prin stretch (3x3)
%L = [dui/dxj] velocity gradient
%b = elastic left C-G deformation vector (6x1)
%alpha = principal back stress (3x1)
%ep = effective plastic strain
EPS=1E-12;
Iden = [1 1 1]'; two3 = 2/3; stwo3=sqrt(two3); %constants
mu=mp(2); beta=mp(3); H=mp(4); Y0=mp(5);
                                                %material properties
ftol = Y0*1E-6;
                                                %tolerance for yield
R = inv(eye(3)-L);
                                                %inc. deformation gradient
bm=[b(1) b(4) b(6);b(4) b(2) b(5);b(6) b(5) b(3)];
bm = R*bm*R';
                                                %trial elastic left C-G
b=[bm(1,1) bm(2,2) bm(3,3) bm(1,2) bm(2,3) bm(1,3)]';
                                                %eigenvalues
[\sim,P]=eig(bm);
eigen=sort(real([P(1,1) P(2,2) P(3,3)]))';
                                                     %principal stretch
% Duplicated eigenvalues
TMP=-1;
for I=1:2
  if abs(eigen(1)-eigen(3)) < EPS
    eigen(I) = eigen(I) + TMP * EPS;
    TMP = -TMP;
  end
end
if abs(eigen(1) - eigen(2)) < EPS; eigen(2) = eigen(2) + EPS; end;
if abs(eigen(2)-eigen(3)) < EPS; eigen(2) = eigen(2) + EPS; end;
% EIGENVECTOR MATRIX N*N' = M(6,*)
M=zeros(6,3);
                                                %eigenvector matrices
```

```
for K=1:3
  KB=1+mod(K,3);
  KC=1+mod(KB,3);
  EA=eigen(K);
 EB=eigen(KB);
 EC=eigen(KC);
 D1=EB-EA:
 D2=EC-EA;
 DA = 1 / (D1 * D2);
 M(1,K) = ((b(1)-EB)*(b(1)-EC)+b(4)*b(4)+b(6)*b(6))*DA;
 M(2,K) = ((b(2)-EB)*(b(2)-EC)+b(4)*b(4)+b(5)*b(5))*DA;
 M(3,K) = ((b(3)-EB)*(b(3)-EC)+b(5)*b(5)+b(6)*b(6))*DA;
  M(4,K) = (b(4)*(b(1)-EB+b(2)-EC)+b(5)*b(6))*DA;
  M(5,K) = (b(5)*(b(2)-EB+b(3)-EC)+b(4)*b(6))*DA;
 M(6,K) = (b(6)*(b(3)-EB+b(1)-EC)+b(4)*b(5))*DA;
end
eigen=sort(real([P(1,1) P(2,2) P(3,3)]))';
                                               %principal stretch
deps = 0.5*log(eigen);
                                               %logarithmic
sigtr = D*deps;
                                               %trial principal stress
                                               %shifted stress
eta = sigtr - alpha - sum(sigtr)*Iden/3;
etat = norm(eta);
                                                %norm of eta
fyld = etat - stwo3*(Y0+(1-beta)*H*ep);
                                               %trial yield function
if fyld < ftol
                                                %vield test
  sig = sigtr;
                                                %trial states are final
                                               %stress (6x1)
  stress = M*sig;
  gamma = fyld/(2*mu + two3*H);
                                               %plastic consistency param
                                               %updated eff. plastic strain
   ep = ep + gamma*stwo3;
   N = eta/etat;
                                               %unit vector normal to f
   deps = deps - gamma*N;
                                               %updated elastic strain
   sig = sigtr - 2*mu*gamma*N;
                                                %updated stress
   alpha = alpha + two3*beta*H*gamma*N;
                                               %updated back stress
                                               %stress (6x1)
   stress = M*siq;
   b = M*exp(2*deps);
                                               %updated elastic left C-G
                                                                                               160
```

Ex) Shear Deformation of a Square

```
Young = 24000; nu=0.2; mu=Young/2/(1+nu); lambda=nu*Young/((1+nu)*(1-2*nu));
beta = 0; H = 1000; sY = 200*sqrt(3);
mp = [lambda mu beta H sY];
Iden=[1 1 1 0 0 0]';
D=2*mu*eye(6) + lambda*Iden*Iden';
D(4,4) = mu; D(5,5) = mu; D(6,6) = mu;
                                                           200
                                                         Shear stress (MPa)
Iden=[1 1 1]';
DM=2*mu*eye(3) + lambda*Iden*Iden';
                                                           150
L = zeros(3,3);
stressN=[0 0 0 0 0 0]';
                                                           100
deps=[0 0 0 0 0 0]';
alphaN = [0 0 0 0 0 0]';
                                                                                    Small strain
epN=0;
                                                                              ..... Finite rotation
                                                            50
stressRN=stressN; alphaRN=alphaN;epRN=epN;
                                                                               - - · Large strain
bMN=[1 1 1 0 0 0]';
alphaMN = [0 0 0]';
                                                                       0.02
                                                                             0.03
                                                                                  0.04
                                                                                        0.05 0.06
epMN=0;
                                                                           Shear strain
for i=1:15
    deps(4) = 0.004; L(1,2) = 0.024; L(2,1) = -0.02;
    [stressRN, alphaRN] = rotatedStress(L, stressRN, alphaRN);
    [stressR, alphaR, epR]=combHard(mp,D,deps,stressRN,alphaRN,epRN);
    [stress, alpha, ep]=combHard(mp,D,deps,stressN,alphaN,epN);
    [stressM, bM, alphaM, epM]=mulPlast(mp,DM,L,bMN,alphaMN,epMN);
    X(i)=i*deps(4);Y1(i)=stress(4);Y2(i)=stressR(4);Y3(i)=stressM(4);
    stressN = stress; alphaN = alpha; epN = ep;
    stressRN = stressR; alphaRN = alphaR; epRN = epR;
    bMN=bM; alphaMN = alphaM; epMN = epM;
end
X = [0 X]; Y1=[0 Y1]; Y2=[0 Y2]; Y3 = [0 Y3]; plot(X,Y1,X,Y2,X,Y3);
```

161

Summary

- In multiplicative decomposition, the effect of plasticity is modeled by intermediate configuration
- The total form stress-strain relation is given by hyperelasticity between intermediate and current config.
- We studied principle of max dissipation to derive constitutive relation and plastic evolution
- Similar to classical plasticity, the return mapping algorithm is used in principal Kirchhoff stress and principal logarithmic elastic strain
- It is assumed that the principal direction is fixed during plastic return mapping