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Finite Element Analysis of Contact Problem
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Introduction

• Contact is boundary nonlinearity

– The graph of contact force versus displacement becomes vertical

– Both displacement and contact force are unknown in the interface

• Objective of contact analysis

1. Whether two or more bodies are in contact

2. Where the location or region of contact is

3. How much contact force or pressure occurs in the interface

4. If there is a relative motion after contact in the interface

• Finite element analysis procedure for contact problem

1. Find whether a material point in the boundary of a body is in 
contact with the other body

2. If it is in contact, the corresponding contact force must be 
calculated
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Introduction

• Equilibrium of elastic system: 

– finding a displacement field that minimizes the potential energy

• Contact condition (constrained minimization)

– the potential is minimized while satisfying the contact constraint

• Convert to unconstrained optimization

– Can be solved using either the penalty method or Lagrange 
multiplier method

• Slave-master concept for contact implementation

– the nodes on the slave boundary cannot penetrate the surface 
elements on the master boundary
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Goals

• Learn the computational difficulty in boundary nonlinearity

• Understand the concept of variational inequality and its 
relation with the constrained optimization

• Learn how to impose contact constraint and friction 
constraints using penalty method

• Understand difference between Lagrange multiplier 
method and penalty method

• Learn how to integrate contact constraint with the 
structural variational equation

• Learn how to implement the contact constraints in finite 
element analysis

• Understand collocational integration



�

1D CONTACT EXAMPLES
5.2
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Contact Problem – Boundary Nonlinearity

• Contact problem is categorized as boundary nonlinearity

• Body 1 cannot penetrate Body 2 (impenetrability)

• Why nonlinear?

– Both contact boundary and contact 
stress are unknown!!!

– Abrupt change in contact force
(difficult in NR iteration)

Body 1Body 2

Contact boundary

Contact stress (compressive)

Penetration

Contact force
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Why are contact problems difficult?

• Unknown boundary
– Contact boundary is unknown a priori

– It is a part of solution

– Candidate boundary is often given

• Abrupt change in force
– Extremely discontinuous force profile

– When contact occurs, contact force 
cannot be determined from displacement

– Similar to incompressibility (Lagrange 
multiplier or penalty method)

• Discrete boundary
– In continuum, contact boundary varies smoothly

– In numerical model, contact boundary varies node to node

– Very sensitive to boundary discretization

Penetration

Contact force

Body 1

Body 2

	

Contact of a Cantilever Beam with a Rigid Block

• q = 1 kN/m, L = 1 m, EI = 105 N�m2, initial gap � = 1 mm

• Trial-and-error solution

– First assume that the deflection is smaller than the gap

– Since vN(L) > �, the assumption is wrong, the beam will be in 
contact

2 4
2 2

N N
qx qL

v (x) (x 6L 4Lx), v (L) 0.00125m
24EI 8EI

� � � � �






Cantilever Beam Contact with a Rigid Block cont.

• Trial-and-error solution cont.

– Now contact occurs. Contact in one-point (tip).

– Contact force, �, to prevent penetration

– Determine the contact force from tip displacement = gap

2

c c 5

x
v (x) (3L x), v (L)

6EI 3 10

�� ��
� � �

�

tip N c 5
v v (L) v (L) 0.00125 0.001

3 10

�
� � � � � � �
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N c

75N

v(x) v (x) v (x)

� �
� �
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Cantilever Beam Contact with a Rigid Block cont.

• Solution using contact constraint

– Treat both contact force and gap as unknown and add constraint

– When � = 0, no contact. Contact occurs when � > 0. � < 0 impossible

– Gap condition:

2 2
2 2qx x

v(x) (x 6L 4Lx) (3L x)
24EI 6EI

�
� � � � �

tipg v 0� � � �
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Cantilever Beam Contact with a Rigid Block cont.

• Solution using contact constraint cont.

– Contact condition

No penetration: g � 0

Positive contact force: � � 0

Consistency condition: �g = 0

– Lagrange multiplier method

– When � = 0N � g = 0.00025 > 0 � violate contact condition

– When � = 75N � g = 0 � satisfy contact condition

5
g 0.00025 0

3 10

�	 
� � � � �� �� �

Lagrange multiplier, �, is the contact force
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Cantilever Beam Contact with a Rigid Block cont.

• Penalty method

– Small penetration is allowed, and contact force is proportional to it

– Penetration function

– Contact force

– From 

– Gap depends on penalty parameter

� �N
1

g g
2

� � � �N = 0 when g � 0
�N = g when g > 0

N NK� � � KN: penalty parameter

tipg v 0� � � �

� �N
5

K 1
g 0.00025 g g

23 10
� � �

�



��

Cantilever Beam Contact with a Rigid Block cont.

• Penalty method cont.

– Large penalty allows small penetration

�������	
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Beam Contact with Friction

• Sequence: q is applied first, followed by the axial load P

• Assume no friction

• Frictional constraint

Stick condition:

Slip condition:

Consistency condition:

no-friction
tip

PL
u 1.0mm

EA
� �

tipt 0, u 0� �� � �

tipt 0, u 0� �� � �

tipu (t ) 0� �� �

t: tangential friction force

P=100N, �=0.5
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Beam Contact with Friction cont.

1. Trial-and-error solution

– First assume stick condition

Violate

– Next, try slip condition 

Satisfies utip > 0, therefore, valid

tip
PL tL

u 0, t P 100N
EA EA

� � � � � �

t 0� �� �
t 37.5N� �� �

tip
PL tL

u 0.625mm
EA EA

� � �
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Beam Contact with Friction cont.

2. Solution using frictional constraint (Lagrange multiplier)

– Use consistency condition

– Choose utip as a Lagrange multiplier and t-�� as a constraint

– When utip = 0, t = P, and t – �� = 62.5 > 0, violate the stick condition

– When

t = �� and the slip condition is satisfied, valid solution

tipu (t ) 0� �� �

tip tip
EA

u P u 0
L

	 
� � �� �� �
 �

tip
(P )L

u 0.625mm 0
EA

� ��
� � �
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Beam Contact with Friction cont.

3. Penalty method

– Penalize when t – �� > 0

– Slip displacement and frictional force

– When t – �� < 0 (stick), utip = 0 (no penalization)

– When t – �� > 0 (slip), penalize to stay close t = ��

– Friction force

� �T
1

t t
2

� � � �� � � ��

tip T Tu K� � KT: penalty parameter for tangential slip

tip
EA

t P u
L

� �

�	

Beam Contact with Friction cont.

• Penalty method cont.

– Tip displacement

– For large KT, 

T
tip

T

K L(P )
u

L K EA

� ��
�

�

tip
(P )L

u
EA

� ��
� tip

EA
t P u

L
� � � ��

�������	
�������� �
	� 
��������	��� !�������	�����	���
����"# ���	���� ����	

����"� ���
���� �	���

����"$ �������� �����

����"� �������� �����

����� �������� �����
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Observations

• Due to unknown contact boundary, contact point should be 
found using either direct search (trial-and-error) or 
nonlinear constraint equation

– Both methods requires iterative process to find contact boundary 
and contact force

– Contact function replace the abrupt change in contact condition 
with a smooth but highly nonlinear function

• Friction force calculation depends on the sequence of load 
application (Path-dependent)

• Friction function regularizes the discontinuous friction 
behavior to a smooth one

��

GENERAL FORMULATION OF 
CONTACT PROBLEMS

5.3
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General Contact Formulation

• Contact between a flexible body and a rigid body

• Point x � � contacts to xc � rigid surface (param �)

• How to find xc(�)

– Closest projection onto the rigid surface

c c( )� �x x

T
c c c t c( ) ( ( )) ( ) 0� � � � � � �x x e

Unit tangent vector

c,
t

c,

�

�

� �
xt

e
t x

��
�

�� ��

�

��

����������

��
%��

��

�
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Contact Formulation cont.

• Gap function

• Impenetrability condition

• Tangential slip function

T
n c c n cg ( ( )) ( )� � � �x x e

n cg 0,� � �x boundary that has a 
possibility of contact

��
�

�� ��

�

��

����������

��
%��

��

�

0 0
t c cg ( )� � � �t Parameter at the

previous contact point
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Ex) Project to a Parabola

• Projection of x={3, 1} to y = x2

• Let xc = {�, �2}T

• Projection point

• Gap

� � � � ��

�

�

�

�

x

xc en gn

y = x2

c,
t 2

c,

11

21 4

�

�

� �
� �  !

�" #� �

x
e

x

n t 2

21

11 4

�� �
� � �  !

�" #� �
e e k

3
T

c t 2

3 2
( ) ( ( )) ( ) 0

1 4

� � � �
� � � � � � � �

� �
x x e

�c = 1.29

xc = {1.29, 1.66}

2
T c c

n c n 2
c

6 1
g ( ) 1.83

1 4

�� � � �
� � � �

� �
x x e
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Variational Inequality

• Governing equation

• Contact conditions (small deformation)

• Contact set � (convex)

b

g

s s

0

0

�$ % � � � �
&

� � � 
&' � � �"

f x

u x

n f x

'

T
n n

n c
T

n n n

g 0

0

( g ) 0

�� �
&

' � � �!
&' � � #

u e

x

u e

( )g
1 N T

n n c[H ( )] 0 and g 0 on
�

� � � � � � �w w w e�

satisfies all kinematic constraints (displacement conditions)
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Variational Inequality cont.

• Variational equation with � = w – u (i.e., w is arbitrary)

s
c

ij ij ij,j i i ij j i i( )d (w u )d n (w u )d
� � � *�
' + � � � � ' � � � ' � �,, ,, ,w u

b s s
ij,j i ij j if ( ), n f ( )' � � � � ' � � �x x

c
ij ij ij j i i( )d ( ) n (w u )d

� �
' + � � � � � ' � �,, ,w u w u�

c c

c

c

ij j i i n n n

n n n n n

n n n

n (w u )d (w u )d

(w g u g )d

(w g )d 0

� �

�

�

' � � � ' � �

� ' � � � �

� ' � � �

, ,
,
,

Since it is arbitrary, we 
don’t know the value, but 
it is non-negative

ij ij( )d ( ),
�
' + � � � � - �,, w u w u w ��

Variational inequality for contact problem
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Illustration of Projection

• If the solution u’ is out of set �, 
it is projected to u on �

• Beam deflection example
(rigid block with initial gap of 1mm)

• v’(x): beam deflection without rigid block

– Contact condition is violated (penetration to the block)

• v(x): projection of v’(x) onto convex set �
– by applying the contact force

� ��� ��� ��� ��	 �

�

���

��	

���

������

v(x)

v'(x)

�����������

v. � �

a( , ) ( ),� � � - �u w u w u w ��
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Variational Inequality cont.

• For large deformation problem

• Variational inequality is not easy to solve directly

• We will show that V.I. is equivalent to constrained 
optimization of total potential energy

• The constraint will be imposed using either penalty method 
or Lagrange multiplier method

( )g
1 N T

c c n c[H ( )] 0 and ( ( )) 0 on .
�

� � � � � � � �w w x x e�

�	

Potential Energy and Directional Derivative

• Potential energy

• Directional derivative

• Directional derivative of potential energy

• For variational inequality

1
2

( ) a( , ) ( )/ � �u u u u�

d
d 0

d 1
d 2 0
1 1
2 2

( )

a( , ) ( )

a( , ) a( , ) ( )

a( , ) ( )

0 0�

0 0�

/ � 01 23 4
1 2� � 0 � 0 � � 03 4

� � �

� �

u v

u v u v u v

u v v u u

u v u

�

�
�

D ( ), a( , ) ( )/ � �u v u v v�

a( , ) ( ) D ( ), 0,� � � 5 / � � - �u w u w u u w u w ��
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Equivalence

• V.I. is equivalent to constrained optimization

– For arbitrary w � �

• Thus, /(u) is the smallest potential energy in �

– Unique solution if and only if /(w) is a convex function and set � is 
closed convex

1 1
2 2

1 1
2 2

1
2

( ) ( ) a( , ) ( ) a( , ) ( ) a( , ) a( , )

a( , ) ( ) a( , ) a( , ) a( , )

D ( ), a( , )

/ � / � � � � � � � �

� � � � � � �

� / � � � �

w u w w w u u u u w u u w u

u w u w u w w u w u u

u w u w u w u

� �

�

( ) ( ) D ( ),� / � / � / � - �w u u w u w �

non-negative

1
2

( ) min ( ) min a( , ) ( )
� �

1 2/ � / � �3 4w w
u w w w w

� �
�
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Constrained Optimization

• PMPE minimizes the potential energy in the kinematically
admissible space

• Contact problem minimizes the same potential energy in 
the contact constraint set �

• The constrained optimization problem can be converted 
into unconstrained optimization problem using the penalty 
method or Lagrange multiplier method

– If gn < 0, penalize /(u) using

( )g
1 N T

c n c[H ( )] 0 and ( ) 0 on
�

� � � � � � �w w x x e�

n cg 0 on� �

penalty parameter

C C

2 2
n n t t

1 1
P g d g d

2 2� �
� 6 � � 6 �, ,
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Constrained Optimization cont.

• Penalized unconstrained optimization problem

( ) min ( ) min ( ) P( )
� �

/ � / � / �1 23 4
w w

u w w w
� �

constrained unconstrained

Solution space w/o contact �

�

uNoContact

u

Contact
force
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Ex) Beam Deflection with Rigid Block

• q = 1 kN/m, L = 1 m, EI = 105 N�m2, initial gap � = 1 mm

• Assumed deflection: 

• Penalty function: 

• Penalized potential energy

2 3 4
2 3 4v(x) a x a x a x� � �

21
n n2

P g� 6 n tip 2 3 4g v a a a� � � � � � � �

L L2 2
a ,xx n n0 0

1 1
P EI(v ) dx qvdx g

2 2
/ � / � � � � 6, ,
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Ex) Beam Deflection with Rigid Block

• Stationary condition

• Penetration: a2 + a3 + a4 ���
• Contact force: �6ngn

a

i

0
a

7/
�

7

1
n3n n n 2

1
n n n 3 n4

144 1
4n n n n5 5

q4EI 6EI 8EI a

6EI 12EI 18EI a q

a8EI 18EI EI q

� �� 6 �1 2� 6 � 6 � 6 � �
& &8 9 & &� 6 � 6 � 6 � � 6 � !  !8 9

& & & &8 9� 6 � 6 � 6 � 6 �" #3 4 " #

� �!����
"!#!$ � # !� !� !� � � �#!�����%$& '���!���(�#� �

%)&
���� �������� ��������� �������� �������� �����
���� �������� ��������� �������� �������� �	��	
���� �������� ��������� �������� ���	���� �����
���	 �������� ��������� �������� �������� ���
�
���
 �������� ��������� �������� �������	 �����

*#+ �,!�+ �������� ��������� �������� ��� �����
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Variational Equation

• Structural Equilibrium

• Variational equation

( ; ) P( ; ) 0�/ � � �u u u u a( , ) ( ) P( ; ) 0� � � �u u u u u�

need to express in terms
of u and �

C C
n n n t t t

N T

P( ; ) g g d g g d b( , )

b ( , ) b ( , ),

� �
� � 6 � � 6 � �, ,u u u u

u u u u

a( , ) b( , ) ( ),� � - �u u u u u u� �
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Frictionless Contact Formulation

• Variation of the normal gap

• Normal contact form

T
n c ng ( ( ))� � �x x e T

n ng � u e

c

T
N n nb ( , ) g d

�
� 6 �,u u u e

��

Linearization

• It is clear that bN is independent of energy form

– The same bN can be used for elastic or plastic problem

• It is nonlinear with respect to u (need linearization)

• Increment of gap function

– We assume that the contact boundary is straight line :en = 0

– This is true for linear finite elements

T T T
n c n n c ng ( ( )) ( ( ))1 2: � : � � � : � � � :3 4x x e u e x x e

n t

c n

:
�
e e

x x e

�
�

T
n ng ( ; ): : � :u u u e

Rigid surface
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Linearization cont.

• Linearization of contact form

• N-R iteration

c

T
N nb ( , ) g d

��
� 6 �,u u u e

c

* T T
N n nb ( ; , ) d

�
: � 6 : �,u u u u e e u

* *
N Na ( ; , ) b ( ; , ) ( ) a( , ) b ( , ),: � : � � � - �u u u u u u u u u u u u� �

�	

Ex) Frictionless Contact of a Block

• Calculate displacement, penetration and contact force at 
the contact interface. 

• EA = 105N, ; = 0, q = 1.0kN/m, plane strain 

• Plane strain: 

• Contact boundary:

• Gap function: 

• Contact form: 

• Penalized potential energy

x

y q

Rigid body

Elastic 
body

0 1

Contact 
boundaryT

x y{u , u }�u T
x y{u , u }�u

T
n {0, 1}�e

T T
c c c yx, { ,0} , { ,u }� � � � � �x x

T
n c n yg ( ) u� � �x x e

1

N n y y y 00
b ( , ) u u dx

�
� 6 ,u u

1 1T 2
y n ny 1A 0 0 y 1

1 1
P dA ( q)u dx g dx

2 2� �
/ � � � � � 6,, , ,D+ +
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Ex) Frictionless Contact of a Block

• From ; = 0, D becomes a diagonal matrix, decoupled x & y

• Since load is only y-direction, +xx = <xy = 0

• Linear displacement in y-direction

• Penalized potential

– Need to satisfy for arbitrary 

y 0 1 y 0 1u a a y u a a y� � � �

1 1

1 1 0 1 n 0 0A 0 0
P Ea a dA ( q)(a a )dx a a dx 0/ � � � � � � 6 �,, , ,

0 1a , a

0 1
n

q q
a , a

EA
� � � �

6

y
n

q q
u y, 0 y 1

EA
� � � � �

6

n n n y y 0
g u q

�
�6 � �6 �

As 6n increases,
penetration decreases but
contact force remains constant
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Frictional Contact Formulation

• frictional contact depends on load history

• Frictional interface law – regularization of Coulomb law

• Friction form

��6���

��

6�

C
T t t tb ( , ) g g d

�
� 6 �,u u

0 T
t c tg � � � ;t u e

c

T
T t t tb ( , ) g d

�
� 6 ; �,u u u e

T
n c,

T
t c,

T
n c,

2
n

0

c g

c

��

��

���

= �

> �

< �

� � =

; �

e x

e x

e x

t

t t
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Friction Force

• During stick condition, fT = 6tgt (6t: regularization param.)

• When slip occurs, 

• Modified friction form

t t n ng g6 � �6

t t n ng g6 � ��6

c

c

T
t t t t t n n

T T
n t n t

g d , if g g
b ( , )

sgn(g ) g d , otherwise.

�

�

�6 ; � 6 � �6
&�  
��6 ; �&"

,
,

u e
u u

u e
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Linearization of Stick Form

• Increment of slip

• Increment of tangential vector

• Incremental slip form for the stick condition

0 T
t c tg ( ; ): : � :� � ; :u u t e u

T
t 3 n n t( )

c

=
: � � � : � :e e e e e u

� �

c

c

c

* 2 T T
T t t t

T T Tt
t n t t n

2 T Tt
t n t t2

b ( ; , ) d

g
( ) d

c
g

( 2 )g d
c

�

�

�

: � 6 ; : �

=;
�6 � : �

;
�6 < � => � > : �

,

,

,

u u u u e e u

u e e e e u

t t u e e u
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Linearization of Slip Form

• Parameter for slip condition: 

• Friction form:

• Linearized slip form (not symmetric!!)

t n tsgn(g ).6 � ��6

c

T
T t n tb ( ) g d

�
� 6 ; �,u,u u e

� �

c

c

c

* T T
T t t n

T T Tn
t n t t n

2 T Tn
t n t t2

b ( ; , ) d

g
( ) d

c
g

( 2 )g d
c

�

�

�

: � 6 ; : �

=;
�6 � : �

;
�6 < � => � > : �

,

,

,

u u u u e e u

u e e e e u

t t u e e u
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Ex) Frictional Slip of a Cantilever Beam

• Distributed load q � axial load P, 6t = 106, � = 0.5

• Contact force: Fc = –6ngn = 75N

• Penalized potential energy (axial alone)

P=100N

L 2 2
a ,x t t0

x L

1
EA(u ) dx Pu(L) g

2 �

/ � � � 6,
L

a ,x ,x t t t x L0
EAu u dx Pu(L) g g 0, u

�
/ � � � 6 � - �, �
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Ex) Frictional Slip of a Cantilever Beam

• Linear axial displacement field: u(x) = a0 + a1x

• Tangential slip in terms of displacement

– Parametric coordinate � has an origin at x = L, and it has the same 
length as the x-coordinate

• Assume the stick condition:

1 ,x 1 ,x 1u(0) 0 u(x) a x u a u a� � � � �

0
c, 1� � � �x t t 0

c 0� � t c 1g u(L) a� � � �

t t n ng g6 � �6

1 1 t 1 1a (EAa a P) 0, a� 6 � � - � �

5

t

Px
u(x) 9.09 10 x

EA
�� � �

� 6

t t n ng 90.9 37.5 g6 � � � �6 The assumption is violated!!
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Ex) Frictional Slip of a Cantilever Beam

• Assume the slip condition:

– With contact force = 70N, 

L

a ,x ,x n t n t x L0
EAu u dx Pu(L) sgn(g )g g 0, u

�
/ � � � �6 � - �, �

n ng 37.5N��6 �

1 1 1a (EAa P 37.5) 0, a� � � - � �
5

1a 62.5 10�� �

tipu 0.625mm�
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FINITE ELEMENT 
FORMULATION OF 
CONTACT PROBLEMS

5.4

�	

Finite Element Formulation

• Slave-Master contact

– The rigid body has fixed or prescribed displacement

– Point x is projected onto the piecewise linear segments of the 
rigid body with xc (� = �c) as the projected point

– Unit normal and tangent vectors
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��������	�
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����	�
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L

�
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x x
e e e e
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Finite Element Formulation cont.

• Parameter at contact point

• Gap function

• Penalty function

– Note: we don’t actually integrate the penalty function. We simply 
added the integrand at all contact node

– This is called collocation (a kind of integration)

– In collocation, the integrand is function value × weight

T
c 1 t

1
( )

L
� � �x x e

T
n 1 ng ( ) 0� � �x x e Impenetrability condition

� �
NC

2

II 1

1
P g

2 �
�

� 6?
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Finite Element Formulation cont.

• Contact form (normal)

– (6gn): contact force, proportional to the violation

– Contact form is a virtual work done by contact force through 
normal virtual displacement

• Linearization

� �
NC

T T c
N n n I

I 1

b ( , ) g { } { }
�

�
� 6 �?u u d e d f

T T
n n n n ng H( g ) H( g )

�
: � � : � � :e u e d

� � � �
NC NC

* T T T T
N n n n n n nI I

I 1 I 1
T

c

b ( ; , ) H( g ) { } H( g ) { }

{ } [ ]{ }
� �

: � 6 � : � 6 � :

� :

? ?u u u d e e d d e e d

d K d

Contact stiffness

Heaviside step function
H(x) = 1 if x > 0

= 0 otherwise
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Finite Element Formulation cont.

• Global finite element matrix equation for increment

– Since the contact forms are independent of constitutive relation, 
the above equation can be applied for different materials

• A similar approach can be used for flexible-flexible body 
contact 

– One body being selected as a slave and the other as a master

• Computational challenge in finding contact points
(for example, out of 10,000 possible master segments, how 
can we find the one that will actually in contact?)

T T ext int c
T c{ } [ ]{ } { } { }� : � � �d K K d d f f f
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Finite Element Formulation cont.

• Frictional slip

• Friction force and tangent stiffness (stick condition)

• Friction force and tangent stiffness (slip condition)

0 0
t c cg l ( )� � � �

c
t t t tg� �6f e

c
t n t n t t t n nsgn(g )g , if g g� �6 6 � �6f e

c T
t t t t� 6k e e

c T
t n t t nsgn(g )� �6k e e
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CONTACT ANALYSIS 
PROCEDURE AND MODELING 
ISSUES

5.6

��

Types of Contact Interface

• Weld contact
– A slave node is bonded to the master segment (no relative motion)

– Conceptually same with rigid-link or MPC

– For contact purpose, it allows a slight elastic deformation

– Decompose forces in normal and tangential directions

• Rough contact
– Similar to weld, but the contact can be separated

• Stick contact
– The relative motion is within an elastic deformation

– Tangent stiffness is symmetric,

• Slip contact
– The relative motion is governed by Coulomb friction model

– Tangent stiffness become unsymmetric
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Contact Search

• Easiest case
– User can specify which slave node will contact with which master 

segment

– This is only possible when deformation is small and no relative 
motion exists in the contact surface

– Slave and master nodes are often located at the same position and 
connected by a compression-only spring (node-to-node contact)

– Works for very limited cases

• General case
– User does not know which slave node will contact with which 

master segment

– But, user can specify candidates

– Then, the contact algorithm searches for contacting master 
segment for each slave node

– Time consuming process, because this needs to be done at every 
iteration

��

Contact Search cont.

Node-to-surface 
contact search

Surface-to-surface 
contact search
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Slave-Master Contact

• Theoretically, there is no need to distinguish Body 1 from Body 2

• However, the distinction is often made for numerical convenience

• One body is called a slave body, while the other body is called a 
master body

• Contact condition: the slave body cannot penetrate into the master 
body

• The master body can penetrate into the slave body (physically not 
possible, but numerically it’s not checked)

Slave
Master

�	

Slave-Master Contact cont.

• Contact condition between a slave node and a master segment

• In 2D, contact pair is often given in terms of {x, x1, x2}

• Slave node x is projected onto the piecewise linear segments of the 
master segment with xc (� = �c) as the projected point

• Gap:

• g > 0: no contact

• g < 0: contact
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Contact Formulation (Two-Step Procedure)

1. Search nodes/segments that violate contact constraint

2. Apply contact force for the violated nodes/segments 
(contact force)

Contact force

Violated nodesBody 1

Body 2

Contact candidates

��

Contact Tolerance and Load Increment

• Contact tolerance

– Minimum distance to search for contact (1% of element length)

• Load increment and contact detection

– Too large load increment may miss contact detection

Out of
contact

Within
tolerance

Out of
contact
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Contact Force

• For those contacting pairs, penetration needs to be 
corrected by applying a force (contact force)

• More penetration needs more force

• Penalty-based contact force (compression-only spring)

• Penalty parameter (Kn): Contact stiffness
– It allows a small penetration (g < 0)

– It depends on material stiffness

– The bigger Kn, the less allowed penetration

�
���� ��

g < 0

FC

C nF K g� �

��

Contact Stiffness

• Contact stiffness depends on the material stiffness of 
contacting two bodies

• Large contact stiffness reduces penetration, but can 
cause problem in convergence

• Proper contact stiffness can be determined from allowed 
penetration (need experience)

• Normally expressed as a scalar multiple of material’s 
elastic modulus

• Start with small initial SF and increase it gradually until 
reasonable penetration

nK SF E SF 1.0� % �
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Lagrange Multiplier Method

• In penalty method, the contact force is calculated from penetration

– Contact force is a function of deformation

• Lagrange multiplier method can impose contact condition exactly

– Contact force is a Lagrange multiplier to impose impenetrability condition

– Contact force is an independent variable

• Complimentary condition

• Stiffness matrix is positive semi-definite

• Contact force is applied in the normal direction to the master segment

C

C

g 0 F 0 contact

g 0 F 0 no contact

� � �

� � �CF g 0� �

T
C

K A d F

F 0A 0

1 2 � � � �
� !  !8 9
" #" #3 4
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Observations

• Contact force is an internal force at the interface
– Newton’s 3rd law: equal and opposite forces act on interface

• Due to discretization, force distribution can be different, 
but the resultants should be the same

pC1 pC2

F

qC1 qC2 qC2

F

p qN N

ci ci
i=1 i=1

p q� �? ?F
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Contact Formulation

• Add contact force as an external force

• Ex) Linear elastic materials

• Contact force depends on 
displacement (nonlinear, unknown)

pC1 pC2

F

qC1 qC2 qC2

F

C[K]{d} {F} {F (d)}� �
Contact 

force
Internal 

force
External 

force

C C[K K ]{ d} {F} {F (d)} [K]{d}� : � � �

C
C

F
[K ]

d

71 2
� 8 973 4

Contact stiffness

Tangent stiffness Residual
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Friction Force

• So far, contact force is applied to the normal direction
– It is independent of load history (potential problem)

• Friction force is produced by a relative motion in the 
interface
– Friction force is applied to the parallel direction

– It depends on load history (path dependent)

• Coulomb friction model
Body 1

Contact force

Friction force

f C

C

F F Stick

F Slip

� �

� �

Relative 
motion

Friction 
force
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Friction Force cont.

• Coulomb friction force is indeterminate when two bodies 
are stick (no unique determination of friction force)

• In reality, there is a small elastic deformation before slip

• Regularized friction model

– Similar to elasto-perfectly-plastic model

f t

C

F K s Stick

F Slip

�

� �

Relative 
motion

Friction 
force

�FC

Kt

Kt: tangential stiffness
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Tangential Stiffness

• Tangential stiffness determines the stick case

• It is related to shear strength of the material

• Contact surface with a large Kt behaves like a rigid body

• Small Kt elongate elastic stick condition too much (inaccurate)

Relative 
motion

Friction 
force

�FC
Kt

f t

C

F K s Stick

F Slip

�

� �

tK SF E SF 0.5� % �
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Selection of Master and Slave

• Contact constraint
– A slave node CANNOT penetrate the master segment

– A master node CAN penetrate the slave segment

– There is not much difference in a fine mesh, but the results can 
be quite different in a coarse mesh

• How to choose master and slave
– Rigid surface to a master

– Convex surface to a slave

– Fine mesh to a slave

Slave

Master

Master

Slave

��

Selection of Master and Slave

• How to prevent penetration?

– Can define master-slave pair twice by changing the role

– Some surface-to-surface contact algorithms use this

– Careful in defining master-slave pairs

Master-slave pair 1Master-slave pair 2
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Flexible or Rigid Bodies?

• Flexible-Flexible Contact
– Body1 and Body2 have a similar stiffness and both can deform

• Flexible-Rigid Contact
– Stiffness of Body2 is significantly larger than that of Body1

– Body2 can be assumed to be a rigid body 
(no deformation but can move)

– Rubber contacting to steel

• Why not flexible-flexible?
– When two bodies have a large difference in 

stiffness, the matrix becomes ill-conditioned

– Enough to model contacting surface only for Body2

• Friction in the interface
– Friction makes the contact analysis path-dependent

– Careful in the order of load application

7

7

10

10

1

1

1 2
8 9
8 9
8 9
8 9
8 93 4
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Effect of discretization

• Contact stress (pressure) is 
high on the edge

• Contact stress is sensitive 
to discretization

Slave body

Uniform pressure

Non-uniform 
contact stress
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Rigid-Body Motion

• Contact constraint is different from displacement BC

– Contact force is proportional to the penetration amount

– A slave body between two rigid-bodies can either fly out or 
oscillate between two surfaces

– Always better to remove rigid-body motion without contact

Rigid master

Rigid master

Rigid master

Rigid master
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Rigid-Body Motion

• When a body has rigid-body motion, an initial gap can 
cause singular matrix (infinite/very large displacements)

• Same is true for initial overlap

Rigid master Rigid master



��

Rigid-Body Motion

• Removing rigid-body motion

– A small, artificial bar elements can be used to remove rigid-body 
motion without affecting analysis results much

Contact stress 
at bushing due to 
shaft bending

��

Convergence Difficulty at a Corner

• Convergence iteration is stable when a variable (force) 
varies smoothly

• The slope of finite elements are discontinuous along the 
curved surface

• This can cause oscillation in residual force (not converging)

• Need to make the corner smooth using either higher-
order elements or many linear elements
– About 10 elements in 90 degrees, or use higher-order elements
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Curved Contact Surface

• Curved surface

– Contact pressure is VERY sensitive to the curvature

– Linear elements often yield unsmooth contact pressure 
distribution

– Less quadratic elements is better than many linear elements

Linear elements Quadratic elements

�	

Summary

• Contact condition is a rough boundary nonlinearity due to 
discontinuous contact force and unknown contact region

– Both force and displacement on the contact boundary are unknown

– Contact search is necessary at each iteration

• Penalty method or Lagrange multiplier method can be used to 
represent the contact constraint

– Penalty method allows a small penetration, but easy to implement

– Lagrange multiplier method can impose contact condition accurately, but 
requires additional variables and the matrix become positive semi-definite

• Numerically, slave-master concept is used along with collocation 
integration (at slave nodes)

• Friction makes the contact problem path-dependent

• Discrete boundary and rigid-body motion makes the contact problem 
difficult to solve


