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Abstract— Computer vision is an enabling technology for
autonomous micro aerial vehicle (MAV) applications. This
paper presents an approach for the estimation of aircraft
angular rates and wind-axis angles using monocular vision.The
solution is obtained through nonlinear optimization techniques
applied to the optical flow of tracked feature points in the
image. The coupled equations of motion for an aircraft and
image-based features are developed and utilized to establish
a mathematical framework for the estimation process. The
technique is then demonstrated in simulation.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been considered
for a variety of applications. Recent progress in the develop-
ment of small-scale, fixed wing UAVs has facilitated mission
scenarios that were previously not possible. A micro aerial
vehicle (MAV) exhibits the stealth and agility to maneuver
undetected throughout complex and cluttered environments.
Autonomous navigation of such trajectories would present
an attractive capability for many envisioned tasks.

Agile autonomous flight amongst cluttered and unfore-
seen obstacles represents a challenging control task. While
a variety of miniature inertial-measurement packages have
been emerging for use in MAV applications, these units
add weight and often provide inaccurate information during
aggressive maneuvers. Alternatively, small video cameras
present a lightweight, low-power, and information-rich sen-
sor. Computer vision has been demonstrated as an enabling
technology for MAV control tasks.

Vision processing techniques allow the extraction of infor-
mation concerning both the environment as well as camera
motion. In particular, techniques that can identify and track
points of significance in successive images enable a variety
of problems to be addressed. These “feature points” are
commonly detected using the intensity gradient of the image,
and are then tracked using techniques such as template
registration, point correlation, dynamic filtering, or some
combination thereof [1], [2], [3]. Recent efforts have moved
these tracking algorithms towards real-time implementation
for images with large motion between frames for flight
control applications [2].

Tracking features between consecutive frames gives an in-
dication of the perceived motion in the image. This apparent
velocity is denoted optical flow and can be characterized by
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the gradient of the image intensity function [4]. A variety of
techniques exist for computing optical flow, including differ-
ential methods, frequency-based methods, and correlation-
based methods [5]. For the case of a fixed environment,
optical flow results solely from camera motion and can
therefore provide information related to the vehicle state.

Researchers have exploited this observation previously
for state estimation. Soatto et al. derived a form of the
Kalman filter that uses the relationship between vision-based
measurements and the motion of the camera [6], [7]. The
resulting implicit extended Kalman filter (IEKF) can be used
to recover the camera motion states. Gurfil and Rotstein
recast Soatto’s work in terms of an aircraft state-estimation
problem by incorporating aircraft dynamics into the IEKF
framework [8]. The resulting formulation partially estimated
the aircraft states but exhibited relatively slow convergence.
Improvements have been demonstrated by Webb et al. who
also used an aircraft model [9], [10]. Unfortunately, accurate
MAV models are often not available within an aggressive
flight regime where the aerodynamics are notoriously diffi-
cult to characterize.

The work presented here forgoes the use of a model-based
approach in exchange for numerical optimization techniques.
Essentially, the geometric relationship between camera mo-
tion and optical flow is utilized to solve for certain motion
parameters. A similar approach was adopted in [11] where
assumed knowledge of the translational motion was used to
linearize the optical flow expressions. The angular rates were
then determined using linear least-squares optimization.

This paper assumes no knowledge of the aircraft state.
Nonlinear optimization applied to the optical flow relation-
ships yields accurate values of the aircraft angular rates.
These estimates are then used to decouple the optical flow for
extraction of translational velocity components. No vehicle
model is required and rapidly converging estimates can be
obtained for even aggressive motions provided that enough
feature points appear within the camera field of view.

The remainder of the paper is organized as follows. Sec-
tion II develops the coupled equations of motion describing
the dynamics of the aircraft-camera system, thus forming a
mathematical basis for the remainder of the paper. Section
III details the vision-based approach to state estimation using
a nonlinear least-squares optimization technique. Finally,
Section IV discusses a demonstrative example performed in
simulation using a nonlinear aircraft model.



II. AIRCRAFT-CAMERA EQUATIONS OF MOTION

Vision-based control techniques primarily draw their sig-
nals from the focal plane. It is therefore necessary to relate
the aircraft flight dynamics to focal plane dynamics within
a unified framework. This framework will provide a general
starting point for the mathematical formulation and solution
of a variety of vision-based flight control problems [12].

A. Problem Geometry

The geometry for the general case of an aircraft carrying
a single camera is described by the vector diagram of Fig. 1
and (1a)-(1d). The aircraft body basis,B, is fixed at the
aircraft center of gravity and is located relative to the inertial
frame,E, by the vector~R as in (1a). The camera reference
frame,C, is fixed to the aircraft at an arbitrary position and
is located relative toB by the vector~∆ as in (1b).
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Fig. 1. Geometry Exhibited by Aircraft, Camera, and a Feature Point

~R= R1ê1 +R2ê2 +R3ê3 (1a)
~∆ = ∆1b̂1 + ∆2b̂2 + ∆3b̂3 (1b)
~ξi = ξ1i ê1 + ξ2i ê2 + ξ3i ê3 (1c)

~ηi = η1i ĉ1 + η2i ĉ2 + η3i ĉ3 (1d)

The ith point-feature of the environment is denotedmi

and is located relative toE by ~ξi as in (1c). The vector
~ηi then relates the relative position ofmi with respect to
C, as described by (1d). This relative position vector can be
expressed in terms of the aircraft position and orientationvia
the coordinate transformationsTEB andTBC, which represent
simple axis rotations fromE to B andB to C, respectively.
Using (2),~R, ~∆, and~ξ are all transformed to theC basis,
thus introducing the aircraft position and orientation into the
expression for~η .

~ηi = TBCTEB(~ξi −~R)−TBC~∆ (2)

B. Focal Plane Dynamics

The perspective camera model maps the projection ofmi

to the focal plane through a transformation that is dependent
upon both the relative position,~η , and the focal length,f .
The focal length is a constant intrinsic camera parameter
that measures the distance from the origin ofC to the focal
plane along the ˆc3 axis. This axis is normal to the focal
plane. The geometry of this mapping is depicted in Fig. 2.
The projection ofmi is located on the focal plane by the
coordinatesµi and νi which are determined as in (3). The

actual mapping to an image is restricted by the field of view
such thatµ ∈ [µ,µ] andν ∈ [ν,ν].

[
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νi

]

=
f

η3i

[
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]

(3)

Inspection of Fig. 2 and the expression in (3) reveals that
µi andνi are proportional to the tangent of the bearing and
elevation tomi . Consequently, depth information is lost and
the image can be used only to locate the line of sight tomi

for a given image frame.
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f ĉ3

µi
νi

~ηi

η1i

ĉ2
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Fig. 2. Mappingmi to the Focal Plane

The velocity of mi ’s projection in the image is found
through differentiation of (3). Here, the focal plane velocities
are interpreted as the optical flow of the image sampled at
the point (µi ,νi). This quantity can be measured directly
from video data for a set ofn points given that each point
can be tracked between two image frames. A variety of
techniques discussed in the vision processing literature have
been shown to successfully detect and track feature points
through a series of images [1], [2], [3].
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C. The Coupled Equations

It is evident through inspection of (3) and (4) that(µ̇i , ν̇i)
can be described in terms of aircraft parameters through the
transformationsTEB and TBC if ~ηi is expressed as in (2).
Equation (4) indicates the necessity to differentiate~ηi . The
derivative is taken prior to the coordinate transformationwith
respect to theE reference frame. The assumption is made that
mi is static in theE-frame for each of thei feature points. The
camera is also assumed to have a fixed position relative to
B. These assumptions imply that

Ed
dt (

~ξ ) =
Bd
dt (

~∆) = 0 in (5).
Evaluation of the remaining terms yields the time derivative
of ~ηi with respect to theC frame as shown in (6) whereE~ωB

and B~ωC represent the angular velocities of theB-frame and
C-frame with respect toE andB, respectively. These angular
velocities are expressed in their respective rotating bases.

Ed
dt

(~η) =
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(
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)

−
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(
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)

−
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(

~∆
)

(5)

Cd
dt

(~η) = −
(

~̇R+ E~ωB×~∆
)

−
(

E~ωB + B~ωC
)

×~η (6)



The resulting differential equation describes the relative
position and orientation changes betweenC and the mi .
This result is expressed in terms of aircraft states following
the series of coordinate transformations shown in (7). The
dynamics of feature motion across the focal plane can now be
combined with the aircraft dynamics to form a fully-coupled
system. Coupling is accomplished through augmenting the
well-known aircraft equations of motion with (7) in state-
space representation.

~̇η = −TBC

(

TEB~̇R+ E~ωB×~∆
)

−
(

TBC
E~ωB + B~ωC

)

×~η (7)

Alternatively, the feature point dynamics can be rewritten
in terms of(µi ,νi) using (4). Substitution yields a set of two
differential equations that could augment the aircraft system
as an equivalent form of (7). This form is more useful in
the sense that the coupled dynamics are now represented in
terms of the measurable focal-plane coordinates.

III. STATE ESTIMATION

The general expression for the focal plane velocities of a
feature point is given by (4). The developments of Section
II-C allow this general expression to be rewritten in terms of
aircraft states. First, the assumption is made that the camera
has fixed position and orientation at the origin ofB and hence
~∆ = ~̇∆ = B~ωC =~0.

In addition,TBC is chosen such that the camera axis, ˆc3,
coincides with the body x-axis,̂b1. This configuration has
the camera pointed directly out the nose of the aircraft. The
transformation is given by (8).

TBC =





0 0 1
0 −1 0
1 0 0



 (8)

These simplifying assumptions do not affect the generality
of the following analysis but facilitate clarity. After substi-
tution of (2), (3) and (7) into (4), the focal plane velocities
take on the form shown by (9) for an aircraft [12]. This
form relates(µ̇i , ν̇i) in terms of (µi ,νi), the aircraft body-
axis velocities and rates,(u,v,w, p,q, r), and the range tomi ,
η3i .
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(9)

The assumption is also made that the camera is calibrated.
Therefore the focal length,f , is a known parameter and can
be normalized tof = 1.

Given the measured focal-plane position and velocity
of mi ’s projection, the remaining unknown terms in (9)
consist of the three aircraft translational velocity compo-
nents {u, v, w}, the three aircraft angular velocity com-
ponents{p, q, r}, and the range component{η3i} of the
feature’s relative position vector. Thus there are only two

equations in six unknowns; however, tracking an additional
feature point,m(i+1), introduces only a single additional
unknown,η3(i+1), while providing two additional equations.
The translational velocities and angular rates are common to
the new expressions because them(i+1) is tracked relative
to the same reference frame asmi . Therefore, trackingn
features gives 2n equations in 6+n unknowns. Consequently,
the system is completely determined forn≥ 6.

A. Angular Rates

The observed relationship between aircraft states and
measured focal plane data is exploited using a nonlinear
least-squares routine. A cost function is formulated using
a vector-valued function,~J(~x), which relates each of the
n measured focal-plane velocities to the theoretical values
determined by the unknown aircraft states and feature ranges
through (9). This function is expressed as in (10).
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(10)

where

~x =
[

u v w p q r η31 · · · η3n

]T

The estimated vector,̂~x, is found through solving the opti-
mization problem posed in (11) that minimizes the magnitude
of the cost function.

~̂x = arg min
x∈R(6+n)

1
2
‖ ~J(~x) ‖2 (11)

The focal-plane velocities are linear in the aircraft trans-
lational and angular velocities for the case of known 3-D
feature-point locations as shown by (9). When these 3-D
locations are not available, as considered here, a nonlinearity
is introduced into the expressions through the unknown range
to each feature point,η3i . This nonlinearity appears in (9) as
an inverse relationship that scales the terms associated with
aircraft translational velocity. Essentially, the value of η3i

associated withmi determines the contribution of the aircraft
translational velocities to the total optical flow at (µi ,νi ).
Inspection of (9) verifies that feature points corresponding
to distantmi will exhibit optical flow dominated by aircraft
orientation changes while nearbymi will be dominated by
aircraft translational motion.

The composition of the optical flow at (µi,νi ) resulting
from translational and angular velocity components affects
the accuracy of the optimization in (11). This issue deals with
the well-known requirement for sufficient parallax in vision-
based estimation problems [13]. Parallax refers to perceived
motion resulting from a change in observer position. The
optical flow due to each of the translational velocities induces
greater parallax whenmi corresponds to a feature at close
range; however, previous discussion indicates that the optical



flow induced by angular motion might be poorly scaled in
this case. This observation suggests that the accuracy of the
state estimates could be improved through selective inclusion
of feature points in the optimization. A tradeoff is presentin
that nearby points exhibiting large parallax must be balanced
with distant points that allow adequate representation of the
angular motion of the vehicle.

Defining a selection strategy to meet these criteria is
problematic due to the unknown range value to each point,
η3i ; however, the relationships exhibited in (9) coupled with
generalized behavior can yield a policy to select features
that are likely to achieve the desired balance. For example,
(9) shows that the translational velocities have a greater
contribution to the optical flow at large radial distance from
the image center. Further,u causes points to spread radially
from the direction of velocity. The velocitiesv andw cause
horizontal and vertical motion, respectively, for the given
choice ofTBC. The roll rate,p, induces a “swirling” motion
about the axis of rotation that increases in magnitude with
radial distance from this axis. Finally,q andr cause vertical
and horizontal motion, respectively.

Based on these observations, areas of the image are defined
from which feature-point selection is desired. Points are
restricted radially in the image to an annulus such that
sufficient parallax is exhibited without choosing points that
are likely to dominate the optical flow. Further, points are
selected within this annulus from angular regions centered
about the equidistant lines from the horizontal and vertical
axes (i.e. along the diagonals). This restriction avoids the
ambiguity resulting from similar focal-plane motions induced
by {v,w} and{q,r}. These regions are depicted in Fig. 3.

Fig. 3. Image Regions for Feature-Point Selection (shaded)

Despite these efforts to condition the optimization, esti-
mation of the translational velocities remains problematic.
The inverse scaling onη3i for these states in (9) implies a
nonunique solution for the set of unknowns,{u, v, w, η3i}.
Therefore the total translational velocity can only be deter-
mined up to a scaling constant using this procedure. This
phenomenon is well documented in the literature [6], [7],
[8], [13]. Moreover, another difficulty arises in that the scale
difference betweenu and{v,w} is typically large for fixed-
wing aircraft. So while the optimization procedure is capable
of determining accurate estimates for the aircraft angular
velocities, further analysis is required to obtain reasonable
velocity estimates.

B. Aerodynamic Angles

Although the nonlinear estimation of Section III-A yielded
only a subset of the desired estimates, the information that
was obtained can be used to extract further details from the
raw image sequence. Specifically, the focal-plane velocities
described by (9) can be decomposed into two components:
one resulting from aircraft orientation changes and the other
resulting from aircraft translation [14]. This additionalinfor-
mation is then used to estimate the aircraft angle of attack,α,
and angle of sideslip,β . These aerodynamic angles describe
the orientation of the velocity vector with respect to the
aircraft body x-axis,b̂1, and therefore relate the side and
vertical velocity components,v andw.

Computation of the decoupled optical flow is possible
for the measured focal plane positions and velocities if
reasonable estimates for the angular rates are available re-
sulting from the analysis of Section III-A. The optical flow
component due to aircraft rotation is found as in (12).

[

µ̇Ri
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= f

[

νi (1+ µi
2) µiνi

−µi µiνi (1+ νi
2)

]
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p
q
r


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The optical flow component due to translational motion
cannot be found explicitly from (9) due to the ambiguity
between the linear aircraft velocities and the range to each
individual feature. The result of (12) is therefore used to
determine this remaining translational component, as in (13).

[

µ̇Ti

ν̇Ti

]

=

[

µ̇i − µ̇Ri

ν̇i − ν̇Ri

]

(13)

The translational optical flow vectors will all radiate from
a singular point in the image plane which is commonly
denoted the focus of expansion (FOE). The FOE has zero
translational optical flow and can be interpreted as the focal-
plane projection of the direction of translational motion [15].
The concept is depicted in Fig. 4 where the FOE is located
at focal coordinates of(µF ,νF).

(µF ,νF )

Fig. 4. Approximating the FOE using Decoupled Optical Flow

An approximation for the FOE location is found by
extending the translational optical-flow vectors and seeking
the common point of intersection. Usingn feature points
results in a system ofn equations in 2 unknowns. To
account for possible measurement error, a linear least-squares
optimization is used as in (14).
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Once an approximation is found for the FOE, estimates
of α and β are straightforward to compute. The camera
model of (3) gives directional information in the form of
tangent to line of sight. Therefore,α andβ are found from
the coordinates of the FOE using (16a) and (16b).

α = − tan−1
(

1
f

µF

)

(16a)

β = tan−1
(

1
f

νF

)

(16b)

While α and β are often sufficient for flight control
applications, the aerodynamic relationship between these
angles and{u, v, w} can be used to form estimates of the
translational velocities. This relationship is shown in (17a)
- (17c), whereVT represents the total vehicle velocity.

tan(α) =
w
u

(17a)

sin(β ) =
v

VT
(17b)

VT =
√

u2 +v2+w2 (17c)

The application of (17a) - (17c) leaves one variable
undetermined. Therefore, approximations ofv and w are
computed using the assumptions described by (18). Essen-
tially, the forward velocity component,u, is approximated as
the total velocity,VT . This approximation is reasonable for
an aircraft in flight. The approximated trim velocity,VTtrim ,
is used as the total velocity. This approximated trim velocity
is chosen using known correlation to a throttle setting.

Equation (17c) is also used to help refine the estimate
of u from the assumed constant value. These assumptions
will affect the estimates ofv andw only slightly with more
significant error appearing in the estimate foru.

u≈VT ≈VTtrim (18)

IV. EXAMPLE

A. Simulation

Aircraft states are estimated using simulated data to
demonstrate the technique. Specifically, a high-fidelity non-
linear model of an F-16 is simulated to fly through a region of
obstacles [16]. A camera is mounted at the center of gravity
of this aircraft, which is the origin of theB-basis, and aligned
along the nose. The environment is constructed to provide

an idealistic uniform spacing of feature points along a 3-D
grid. As such, at least 24 feature points are visible and can
tracked in each image frame throughout the simulation.

The flight condition is chosen as trim for straight and
level flight at sea level. The airspeed is 600ft/secfor which
the angle of attack is 1.5625deg. Doublets are commanded
to elevator, aileron, and rudder control surfaces to generate
maneuvers away from this trim condition.

The optimization routine solves for the 6 unknown aircraft
states using the 48 equations associated with the 24 feature
points. The initial conditions for these states are randomly
chosen to mimic a situation in which no inertial measure-
ments are available. Each successive estimate is then used to
start the optimization at the next instant in time.

Also, the range to each feature point is estimated by
the optimization procedure. The initial condition for the
routine is a scaled constant. The range obviously changes as
the aircraft approaches the feature point; consequently, the
estimated range is not used to start the optimization for the
next instant in time. The simulation actually uses this same
constant as the initial condition of range for the optimization
at all points in time.

B. Estimates from Optical Flow

The aircraft states are estimated through the optimization
of (11). This procedure directly uses the optical flow of
feature points to compute the states. The resulting estimates
indicate the aircraft states throughout the maneuvers.

The estimates of body-axis translational velocities, as
shown in Fig. 5, show varying levels of accuracy. The side
and vertical components,v and w, exhibit the correct trend
but have incorrect magnitude. The forward component,u,
tracks especially poorly.
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Fig. 5. Body Axis Velocities (solid) and Estimates (dashed)

The estimates of body-axis angular velocities, as shown
in Fig. 6, are quite accurate. Each of those parameters is
estimated to high accuracy for both large and small values
during the maneuver.

C. Estimates from Decoupled Optical Flow

The states are also estimated using the decoupled optical
flow which separates rotational and translational components.
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Fig. 6. Body Axis Angular Rates (solid) and Estimates (dashed)

The procedure involves extending the vectors associated
with the translational optic flow and computing a common
intersection point to approximate the FOE. The coordinates
of this FOE,(µF ,νF), are substituted into (16a) and (16b)
to calculate estimates ofα andβ .

The resulting estimates of angle of attack and angle of
sideslip, as shown in Fig. 6, are excellent representationsof
the aircraft. Each estimate is nearly indistinguishable from
the truth values throughout the maneuvering.
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Fig. 7. Aerodynamic Angles (solid) and Estimates (dashed)

Finally, the estimates angles from Fig. 7 are used to
improve the estimates of the translational velocities. The
solutions to (17a)-(17c) are generated using the assumption
of (18). The resulting velocity estimates, as shown in Fig. 8,
are vastly improved from those in Fig. 5. Only minor errors
remain in the vertical and side components while the forward
component remains somewhat erroneous due to its sensitivity
to the assumption of (18).

V. CONCLUSION

This paper has presented a technique for partial aircraft
state estimation using vision as a sensor. Optical flow is
used to compute accurate estimates of the aircraft body
axis angular rates as well as the aerodynamic angles that
determine the orientation of the velocity vector. Development
of this purely visual technique is a step towards using vision
for flight control in complex and cluttered environments.
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