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Abstract— Computer vision is an enabling technology for the gradient of the image intensity function [4]. A varietly o
autonomous micro aerial vehicle (MAV) applications. This techniques exist for computing optical flow, including diff
paper presents an approach for the estimation of aircraft  gntia| methods, frequency-based methods, and correlation

angular rates and wind-axis angles using monocular visioriThe . .
solution is obtained through nonlinear optimization techriques based methods [5]. For the case of a fixed environment,

applied to the optical flow of tracked feature points in the Optical flow results solely from camera motion and can
image. The coupled equations of motion for an aircraft and therefore provide information related to the vehicle state

image-based features are developed and utilized to estasti ) ) ) .
a mathematical framework for the estimation process. The  Researchers have exploited this observation previously

technique is then demonstrated in simulation. for state estimation. Soatto et al. derived a form of the
Kalman filter that uses the relationship between visioretlas
l. INTRODUCTION measurements and the motion of the camera [6], [7]. The
Unmanned aerial vehicles (UAVs) have been consideredsulting implicit extended Kalman filter (IEKF) can be used
for a variety of applications. Recent progress in the dgveloto recover the camera motion states. Gurfil and Rotstein
ment of small-scale, fixed wing UAVs has facilitated missiortecast Soatto’s work in terms of an aircraft state-estiomati
scenarios that were previously not possible. A micro aerigdroblem by incorporating aircraft dynamics into the IEKF
vehicle (MAV) exhibits the stealth and agility to maneuveframework [8]. The resulting formulation partially estited
undetected throughout complex and cluttered environmentge aircraft states but exhibited relatively slow converge
Autonomous navigation of such trajectories would preseninprovements have been demonstrated by Webb et al. who
an attractive capability for many envisioned tasks. also used an aircraft model [9], [10]. Unfortunately, acter
Agile autonomous flight amongst cluttered and unforemAV models are often not available within an aggressive

seen obstacles represents a challenging control taskeWhilight regime where the aerodynamics are notoriously diffi-
a variety of miniature inertial-measurement packages hayglt to characterize.

been emerging for use in MAV applications, these units
add weight and often provide inaccurate information durin

aggressive maneuvers. Alternatively, small video camer il th ic relationshio b
present a lightweight, low-power, and information-ricimse Essentially, the geometric relationship between camera mo

sor. Computer vision has been demonstrated as an enablmaq and optical flow is utilized to solve for certain motion
technology for MAV control tasks parameters. A similar approach was adopted in [11] where

Vision processing techniques allow the extraction of inforassumed knowledge of the translational motion was used to

mation concerning both the environment as well as camepﬁearc'jze the_opgcal _flovvllexprelssmns. The angular rateewe
motion. In particular, techniques that can identify anakra then determined using linear least-squares optimization.

points of significance in successive images enable a varietyThis paper assumes no knowledge of the aircraft state.
of problems to be addressed. These “feature points” argonlinear optimization applied to the optical flow relation

commonly detected using the intensity gradient of the imagehips yields accurate values of the aircraft angular rates.
and are then tracked using techniques such as templdatRese estimates are then used to decouple the optical flow for
registration, point correlation, dynamic filtering, or sem extraction of translational velocity components. No véhic

combination thereof [1], [2], [3]. Recent efforts have mdve model is required and rapidly converging estimates can be
these tracking algorithms towards real-time implemeatati obtained for even aggressive motions provided that enough

for images with large motion between frames for flightfeature points appear within the camera field of view.
control applications [2].

Tracking features between consecutive frames gives an in_Thedrem?lnderhof the ;l)ager IS o_rgamzfed as fol(ljows._s_ec—
dication of the perceived motion in the image. This appareﬁ'f’n Il develops the coupled equations of motion describing

velocity is denoted optical flow and can be characterized bfze dynan_ucs of the a|rcraft-cam(_ara system, thus form'”g a
athematical basis for the remainder of the paper. Section
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J. Kehoe, R. Causey, and A. Arvai are Graduate Students iDépart- g nonlinear least-squares optimization technique. Kinall
ment of Mechanical and Aerospace Engineering Secti IV di d . | f di
R. Lind is an Assistant Professor in the Department of Meidahrand ection Iscusses a demonstrative example performed in

Aerospace Engineering simulation using a nonlinear aircraft model.

The work presented here forgoes the use of a model-based
proach in exchange for numerical optimization techrsque



1. AIRCRAFT-CAMERA EQUATIONS OF MOTION  actual mapping to an image is restricted by the field of view

Vision-based control techniques primarily draw their sigSUch thatu € [u, 7] andv € [v, ],
nals from the focal plane. It is therefore necessary to eelat

the aircraft flight dynamics to focal plane dynamics within [ “_i ] = f [ it } (3)
a unified framework. This framework will provide a general Vi N3 [ N2
starting point for the mathematical formulation and salnti Inspection of Fig. 2 and the expression in (3) reveals that

of a variety of vision-based flight control problems [12]. i andvi are proportional to the tangent of the bearing and
elevation tom. Consequently, depth information is lost and
the image can be used only to locate the line of sightito

r a given image frame.

A. Problem Geometry

The geometry for the general case of an aircraft carryi
a single camera is described by the vector diagram of Fig. 1
and (1a)-(1d). The aircraft body basiB, is fixed at the
aircraft center of gravity and is located relative to thertiiad
frame, E, by the vectorR as in (1a). The camera reference
frame,C, is fixed to the aircraft at an arbitrary position and
is located relative t@ by the vectord as in (1b).

Fig. 2. Mappingm to the Focal Plane

The velocity of m’s projection in the image is found
through differentiation of (3). Here, the focal plane vélies
are interpreted as the optical flow of the image sampled at
Fig. 1. Geometry Exhibited by Aircraft, Camera, and a FeaRoint the point (i, v;). This quantity can be measured directly
from video data for a set afi points given that each point

?: RlAé1+R2Aé2+R3(:93 (18)  can be tracked between two image frames. A variety of
A = A1by + Apby + Asbs (1b) techniques discussed in the vision processing literatave h
gi G e et &b (1c) been shown t_o succ_:essfully detect and track feature points
. . . N through a series of images [1], [2], [3].
Mi = Ny,C1+N2,C2+ N3Cs (1d) :
ho - - i f [y 0 —ny | M
The it" point-feature of the environment is denotegl { \'/-I } =— { 0' s N2, (4)
and is located relative t& by & as in (1c). The vector ! N3 s 2 N3

i then relates the relative position af with respect to

C, as described by (1d). This relative position vector can bg'
expressed in terms of the aircraft position and orientatian It is evident through inspection of (3) and (4) tHak, v;)

the coordinate transformatiofisg and Tgc, which represent can be described in terms of aircraft parameters through the
simple axis rotations fronk to B andB to C, respectively. transformationsTeg and Tgc if 1ji is expressed as in (2).
Using (2),R, A, and & are all transformed to th€ basis, Equation (4) indicates the necessity to differentigte The
thus introducing the aircraft position and orientatioroitite ~ derivative is taken prior to the coordinate transformatigif

The Coupled Equations

expression forr. respect to th& reference frame. The assumption is made that
= S . my is static in theE-frame for each of thefeature points. The
fi = TacTes(§i — R) — TecA (2)  camera is also assumed to have a fixed position relative to
B. Focal Plane Dynamics B. These assumptions imply tha (§) = £ (4) =0 in (5).

Evaluation of the remaining terms yields the time deriativ

to the focal plane throuah a transf tion that is depend of 7ji with respect to th& frame as shown in (6) wherei®
0 the focal plane through a transtormation that is dependef), s ;c represent the angular velocities of tBeframe and

e o e 0 Ol G Tame i repect 6 ando,respecively.These angul
. C velocities are expressed in their respective rotating dase
that measures the distance from the origirCofo the focal P P g

The perspective camera model maps the projectiom;of

plane along thecs” axis. This axis is normal to the focal Bd . Bd /s Bd/5 Ed/x

plane. The geometry of this mapping is depicted in Fig. 2. at M= <£> St (R) St <A> ®)
The projection ofm is located on the focal plane by the C_d S (3,E~B_R)_(E~B ., B~C) . =
coordinatesy; and v; which are determined as in (3). The dt () = <R+ @ XA) ( Wi ) N ©)



The resulting differential equation describes the reativequations in six unknowns; however, tracking an additional
position and orientation changes betwe€nand them. feature point,m;, ), introduces only a single additional
This result is expressed in terms of aircraft states foligvi unknown,ns ;. 1), while providing two additional equations.
the series of coordinate transformations shown in (7). Thehe translational velocities and angular rates are common t
dynamics of feature motion across the focal plane can now liee new expressions because thg, ) is tracked relative
combined with the aircraft dynamics to form a fully-coupledo the same reference frame as. Therefore, trackingn
system. Coupling is accomplished through augmenting tHeatures givesi2equations in & n unknowns. Consequently,
well-known aircraft equations of motion with (7) in state-the system is completely determined foi 6.

space representation.
A. Angular Rates

ii = —Tac (TEBﬁ+ BB x B) - (TBCEGJB+ Bdﬁ) xi  (7) The observed relationship between aircraft states and

. ) . ~ measured focal plane data is exploited using a nonlinear

Alternatively, the feature point dynamics can be rewrittefyast-squares routine. A cost function is formulated using
in terms of (14, vi) using (4). Substitution yields a set of two 5 yector-valued functionj(x), which relates each of the

differential equations that could augment the aircraft&ys , measured focal-plane velocities to the theoretical values

as an equivalent form of (7). This form is more useful inyetermined by the unknown aircraft states and feature mnge

the sense that the coupled dynamics are now representeqﬂpough (9). This function is expressed as in (10).
terms of the measurable focal-plane coordinates.

IIl. STATE ESTIMATION ity — ;‘—;xl—%X3+V1x4+(1+u12)x5+u1v1x5>

The general expression for the focal plane velocities of a Vi — (%4 X — o+ Havaxs + (14 Vlz)Xs)
feature point is given by (4). The developments of Section jx) — : (10)
[I-C allow this general expression to be rewritten in terrhs o . i . ) )
aircraft states. First, the assumption is made that the @ame b= (55— st ket (L s+ v )
has fixed position and orientation at the origirBoénd hence Un = (X<:fn> X+ ﬁxf“"x”“”""xﬁ(”"”z)x‘?)
A=A=BaC=0. where

In addition, Tsc is chosen such that the camera axig, ~ .
coincides with the body x-axidy;. This configuration has ?:[ u v w p g r nxm o N ]

the camera pointed directly out the nose of the aircraft. The

transformation is given by (8). The estimated vectox, is found through solving the opti-

mization problem posed in (11) that minimizes the magnitude

0O 0 1 of the cost function.
Tec=| 0 -1 0 (8) . 1
X=arg min = | JX) |? 11
1 0 O QXGWM)ZH ) | (11)

These simplifying assumptions do not affect the generality The focal-plane velocities are linear in the aircraft trans
of the following analysis but facilitate clarity. After sstt  |ational and angular velocities for the case of known 3-D
tution of (2), (3) and (7) into (4), the focal plane veloc#tie feature-point locations as shown by (9). When these 3-D
take on the form shown by (9) for an aircraft [12]. This|ocations are not available, as considered here, a noniipea
form relates(fi,vi) in terms of (u,vi), the aircraft body- s introduced into the expressions through the unknowneang
axis velocities and ratesy,v,w, p,q,r), and the range tay,  to each feature poinfj . This nonlinearity appears in (9) as
ns;- an inverse relationship that scales the terms associatid wi

aircraft translational velocity. Essentially, the valuk g

associated witlm; determines the contribution of the aircraft

translational velocities to the total optical flow at(v;).

Inspection of (9) verifies that feature points correspogdin

to distantm; will exhibit optical flow dominated by aircraft

orientation changes while nearlmg will be dominated by
9) aircraft translational motion.

The assumption is also made that the camera is calibrated The composition of the optical flow afuf, vi) resulting
Therefore the focal lengtH,, is a known parameter and canfrom translational and angular velocity components affect
be normalized tof = 1. the accuracy of the optimization in (11). This issue deathk wi

Given the measured focal-plane position and velocitthe well-known requirement for sufficient parallax in visio
of m’s projection, the remaining unknown terms in (9)based estimation problems [13]. Parallax refers to peeckiv
consist of the three aircraft translational velocity compomotion resulting from a change in observer position. The
nents{u, v, w}, the three aircraft angular velocity com-optical flow due to each of the translational velocities icek
ponents{p, q, r}, and the range componefi3;} of the greater parallax whem; corresponds to a feature at close
feature’s relative position vector. Thus there are only twoange; however, previous discussion indicates that thiealpt

i g 0 gt v (L+u?) Livi
= L 0 -y Hivi (1+vi?)

- 9 T £ < ¢



flow induced by angular motion might be poorly scaled iB. Aerodynamic Angles

this case. This observation suggests that the accuracyeof th ajthough the nonlinear estimation of Section I11-A yielded
state estimates could be improved through selective ieius oy 5 subset of the desired estimates, the information that
of feature points in the optimization. A tradeoff is present a5 gbtained can be used to extract further details from the
that nearby points exhibiting large parallax must be baénc 5., image sequence. Specifically, the focal-plane vek:iti
with distant points that aII(_)W adequate representatiomef t yaoscribed by (9) can be decomposed into two components:
angular motion of the vehicle. ~_ one resulting from aircraft orientation changes and themth
Defining a selection strategy to meet these criteria iggylting from aircraft translation [14]. This additioriafor-

problematic due to the unknown range value to each poinhaiion is then used to estimate the aircraft angle of at@ack,
n3;; however, the relationships exhibited in (9) coupled withy§ angle of sideslig3. These aerodynamic angles describe
generalized behavior can yield a policy to select featur§fe orientation of the velocity vector with respect to the

that are likely to achieve the desired balance. For examplgi'rcraft body x—axis,E)l, and therefore relate the side and
(9) shows that the translational velocities have a greatggtical velocity components; andw.

contribution to the optical flow at large radial distancenfro Computation of the decoupled optical flow is possible
the image center. Furthes,causes points to spread radiallyso; the measured focal plane positions and velocities  if

from the direction of velocity. The velocitiesandw cause rgasonable estimates for the angular rates are available re
horizontal and vertical motion, respectively, for the give g iting from the analysis of Section IlI-A. The optical flow

choice ofTgc. The roll rate,p, induces a “swirling” motion  omponent due to aircraft rotation is found as in (12).
about the axis of rotation that increases in magnitude with

radial distance from this axis. Finallg,andr cause vertical
and horizontal motion, respectively. ] vi (142 i Vi

Based on these observations, areas of the image are defined vg ] - [ — Ui L Vi (1+v?) q
from which feature-point selection is desired. Points are r
restricted radially in the image to an annulus such that The optical flow component due to translational motion
sufficient parallax is exhibited without choosing pointatth cannot be found explicitly from (9) due to the ambiguity
are likely to dominate the optical flow. Further, points aréetween the linear aircraft velocities and the range to each
selected within this annulus from angular regions centerafdividual feature. The result of (12) is therefore used to
about the equidistant lines from the horizontal and velrticaletermine this remaining translational component, as 3. (1
axes (i.e. along the diagonals). This restriction avoids th _ S
ambiguity resulting from similar focal-plane motions irvdal [ H, ] _ { Hi — HR; ] (13)
by {v,w} and{q,r}. These regions are depicted in Fig. 3. VT, Vi — VR
The translational optical flow vectors will all radiate from

- a singular point in the image plane which is commonly
O P denoted the focus of expansion (FOE). The FOE has zero

(12)

-- translational optical flow and can be interpreted as thelfoca
s * - plane projection of the direction of translational motid’].
| I

PN | The concept is depicted in Fig. 4 where the FOE is located

]
\
\ O N ;@f at focal coordinates ofue, V).
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Fig. 3. Image Regions for Feature-Point Selection (shaded) \\ ‘\ R /'/:/f
N //, -
Despite these efforts to condition the optimization, esti- :,f\"; .
mation of the translational velocities remains problemati RO
The inverse scaling ons for these states in (9) implies a yd (i, ve)

nonunique solution for the set of unknowrsi, v, w, ns; }.
Therefore the total translational velocity can only be dete
mined up to a scaling constant using this procedure. This Fig. 4. Approximating the FOE using Decoupled Optical Flow
phenomenon is well documented in the literature [6], [7],

[8], [13]. Moreover, another difficulty arises in that theake An approximation for the FOE location is found by
difference betweemn and {v,w} is typically large for fixed- extending the translational optical-flow vectors and segki
wing aircraft. So while the optimization procedure is cdpab the common point of intersection. Using feature points
of determining accurate estimates for the aircraft angulaesults in a system oh equations in 2 unknowns. To
velocities, further analysis is required to obtain reasdma account for possible measurement error, a linear leastrequ
velocity estimates. optimization is used as in (14).




an idealistic uniform spacing of feature points along a 3-D
{ He ] —arg min 1 [ C[ H } —d|? (14) 9rid. As such, at least 24 feature points are visible and can
VF 2 v tracked in each image frame throughout the simulation.
The flight condition is chosen as trim for straight and
where level flight at sea level. The airspeed is 6®8ecfor which
the angle of attack is 1.562%g Doublets are commanded
A o 1T to elevator, aileron, and rudder contr.oll surfaces to geeera
Co { o, e By } (1sa) Mmaneuvers away from this trim condition.

He [gﬂ}
ve vV

-1 -1 - -1 The optimization routine solves for the 6 unknown aircraft
A Ay vy T states using the 48 equations associated with the 24 feature
a=[ (u-sim) (e-miw) o (w-Bim) | aso points. The initial conditions for these states are rangoml
Once an approximation is found for the FOE, estimateshosen to mimic a situation in which no inertial measure-
of a and 3 are straightforward to compute. The cameranents are available. Each successive estimate is thenased t
model of (3) gives directional information in the form of start the optimization at the next instant in time.
tangent to line of sight. Therefore, and 3 are found from Also, the range to each feature point is estimated by

the coordinates of the FOE using (16a) and (16b). the optimization procedure. The initial condition for the
routine is a scaled constant. The range obviously changes as
/1 the aircraft approaches the feature point; consequeihity, t
a = —tan <?HF> (16a)  estimated range is not used to start the optimization for the

1 next instant in time. The simulation actually uses this same
B=tan?! <—V|:> (16b) constant as the initial condition of range for the optimizat
f at all points in time.
While a and 8 are often sufficient for flight control . .
applications, the aerodynamic relationship between the?e Estimates from Optical Flow
angles and{u, v, w} can be used to form estimates of the The aircraft states are estimated through the optimization
translational velocities. This relationship is shown gl of (11). This procedure directly uses the optical flow of

- (17c), whereVr represents the total vehicle velocity. feature points to compute the states. The resulting estBnat
indicate the aircraft states throughout the maneuvers.

The estimates of body-axis translational velocities, as

w
tan(a) = m (1728)  shown in Fig. 5, show varying levels of accuracy. The side
sin(B) = v (17b) and vertical components, andw, exhibit the correct trend
VW but have incorrect magnitude. The forward componeint,
Vi = VU2 + V2 + w2 (17¢) tracks especially poorly.

70

The application of (17a) - (17c) leaves one variable
undetermined. Therefore, approximations ofand w are
computed using the assumptions described by (18). Essen-
tially, the forward velocity componeng, is approximated as =
the total velocityVr. This approximation is reasonable for
an aircraft in flight. The approximated trim velocityr, .., i T T S B B
is used as the total velocity. This approximated trim veioci
is chosen using known correlation to a throttle setting.

Equation (17c) is also used to help refine the estimate
of u from the assumed constant value. These assumptions
will affect the estimates of andw only slightly with more

4 6
time (sec)

w (f/sec)

significant error appearing in the estimate tor I T T S
U~ Vr ~ Vi, (18) Fig. 5. Body Axis Velocities (solid) and Estimates (dashed)
IV. EXAMPLE

The estimates of body-axis angular velocities, as shown
in Fig. 6, are quite accurate. Each of those parameters is
Aircraft states are estimated using simulated data t@stimated to high accuracy for both large and small values
demonstrate the technique. Specifically, a high-fidelitp-no during the maneuver.
linear model of an F-16 is simulated to fly through a region of ) )
obstacles [16]. A camera is mounted at the center of gravify: Estimates from Decoupled Optical Flow
of this aircraft, which is the origin of thB-basis, and aligned  The states are also estimated using the decoupled optical
along the nose. The environment is constructed to provid®w which separates rotational and translational comptaen

A. Simulation
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Fig. 6. Body Axis Angular Rates (solid) and Estimates (dd¥he Fig. 8. Body Axis Velocities (solid) and Estimates (dasheding
Decoupled Optical Flow
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