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Computer vision presents an attractive sensor option for niro aerial vehicle (MAV) applications due to
the payload and performance restrictions imposed by typichmission scenarios. Optical flow can be measured
by tracking the perceived motion of feature points betweensccessive image frames. This perceived feature-
point motion yields information regarding vehicle motion as described through geometric relationships. This
paper presents an optimization-based approach to estimataircraft angular rates and wind-axis angles using
monocular vision. A bias in the optical-flow equations is legraged to decouple components resulting from
angular and translational motion, respectively. Attemptsto resolve the ambiguity introduced by the loss of
depth information are avoided through this decoupling. Addtionally, estimator performance is shown to rely
on proper selection of feature points used for the estimatio process. Parallax measurements are used to
identify features that are most likely to yield accurate stde estimates. The technique is then demonstrated
through simulation.

[. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been considered faraety of applications. Recent progress in the
development of small-scale, fixed wing UAVs has facilitateidsion scenarios that were previously not possible. A
micro aerial vehicle (MAV) demonstrates the stealth anditggio maneuver undetected throughout complex and
cluttered environments; however, the control challengsed by such a task are diverse and many. While a variety of
miniature inertial-measurement packages have been emgdagiuse in MAV applications, these units add weight and
often provide inaccurate information during aggressivaewxers. Additionally, many of these units rely on position
measurements from GPS to generate their measurementsssAltc&PS signals during urban flight operations is
likely to be intermittent at best. As such, navigation calitas can be severely impaired for large segments of the
mission.

Alternatively, small video cameras present a lightweitgivt;power, and information-rich sensor. Computer vision
has been demonstrated as an enabling technology for MAtalaaisks. Vision-based techniques are especially
effective when maneuvering relative to nearby objects s€lsituations provide a diverse set of information concgyni
camera motion. Thus, computer vision is well-suited to adigation during GPS-denied mission segments.

Vision processing techniques allow the extraction of infation concern-
ing both the environment as well as camera motion. In pdaictechniques
that can identify and track points of significance in sucieessnages enable
a variety of problems to be addressed. These “feature goagslepicted in S &=
Figure 1, are commonly detected using the intensity gradiethe image, and
are then tracked using techniques such as template réigisirpoint correla-
tion, dynamic filtering, or some combination theréof. Recent efforts have g
moved these tracking algorithms towards real-time implaaion for images
with large motion between frames for flight control applicas? 4

Tracking features between consecutive frames gives agafidn of the rigyre 1. racking feature points (green) yields
perceived motion in the image. This apparent velocity isotieth optical flow perceived relative motion
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and can be characterized by the gradient of the image ityefsiction® A variety of techniques exist for computing
optical flow, including differential methods, frequencgsed methods, and correlation-based metAdets: the case

of a fixed environment, optical flow results solely from camerotion and can therefore provide information related
to the vehicle state.

Researchers have exploited this observation previouslgtéde estimation. Soatto et al. derived a form of the
Kalman filter that uses the relationship between visioredaseasurements and the motion of the camérahe
resulting implicit extended Kalman filter (IEKF) can be usedecover the camera motion states. Gurfil and Rotstein
recast Soatto’s work in terms of an aircraft state-estiomgproblem by incorporating aircraft dynamics into the IEKF
framework? The resulting formulation partially estimated the airtsaifites but exhibited relatively slow convergence.
Improvements have been demonstrated by Webb et al. who sésban aircraft modéf> 1! Unfortunately, accurate
MAV models are often not available within an aggressive fliglgime where the aerodynamics are notoriously difficult
to characterize.

Other techniques, such as the eight-point algorithoip not require a vehicle model to obtain state estimates. The
eight-point algorithm computes the relative translatiod eotation of the camera between two vantage points using a
geometric relationship. Epipolar geometry requires ttshgle point in space viewed from two vantage points will be
coplanar with each vantage point. This constraint is usedmapute the essential matrix and recover camera motion.

Several techniques have utilized the kinematic relatignisbtween camera motion and the resulting optical flow
to directly solve for unknown motion parameters using caised optimizatiort3—1° These techniques depend on at
least partial knowledge of the translational velocity feeun the optimization. This knowledge often depends on GPS
measurements and therefore is not available for the misgigments of interest here.

This paper addresses the problem of estimating aircraéissthuring a GPS-denied mission segment. An iterative
optimization approach is adopted to determine the angatasrand the wind-axis angles. No knowledge of vehicle
velocity is required. The coupled aircraft-camera kinéosaaire used to solve for aircraft states in similar fashion
to previous efforts; however, velocity dependencies amgoreed through decoupling the optical flow resulting from
angular and translational motion, respectively. Angudée estimates are obtained initially and used to set up desimp
linear least-squares problem for the aerodynamic angefoiiPnance of the least-squares problem is further imgtove
through the application of a weighting scheme derived framaflax measurements.

The remainder of the paper is organized as follows. Sectidemelops the coupled equations of motion describing
the dynamics of the aircraft-camera system, thus forming#nematical basis for the remainder of the paper. Section
[l discusses some properties of the relationship betwasreca motion and optical flow. Section IV details the vision-
based approach to state estimation. Finally, Section Vudszes a demonstrative example performed in simulation
using a nonlinear aircraft model.

Il. COUPLED AIRCRAFT-CAMERA MOTION

Video data from a camera moving relative to features in therenment can provide a great deal of information
concerning the motion of the camera. The relationship betviee image data and the motion of the vehicle carrying
the camera must be characterized in order to incorporageiriformation into estimation and control techniques.
The general framework developed here allows for the fortiariaand solution of a variety of vision-based control
problems'®

IILA. Problem Geometry

The geometry for the general case of an aircraft carryingglsicamera is described by the vector diagram of Figure 2
and Egs. 1a-1d. The aircraft body ba8sjs fixed at the aircraft center of gravity and is locatedtre¢eto the inertial
frame,E, by the vectoRR as in Eq. 1a. The camera reference fra@gis fixed to the aircraft at an arbitrary position
and is located relative tB by the vector as in Eq. 1b.

R=Ri& + Ro& + Rsés (1a)
A = Nby + Agby + Aghs (1b)
E =816+ E8+ 88 (1c)
i = Ny, €1+ N2,62+ N3 €3 (1d)

Theith point-feature of the environment is denotedand is located relative tB bygi as in Eq. 1c. The vector
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Figure 2. Problem Geometry

fji then relates the relative position wf with respect tcC, as described by Eq 1d. This relative position vector can
be expressed in terms of the aircraft position and oriesniatia the coordinate transformatiofss and Tgc, which
represent simple axis rotations frdgto B andB to C, respectively. The usual definitions for pitch, roll, andvwya
Euler angles are used to defifigs as in Eq. 2. The transformatidiac is a specified quantity that is dependent upon
the physical mounting of the camera to the airframe.

Teg=Typ-To- Ty
1 0 0 cos6 0 -—sin@ cosy sing O @)
=] 0 cosp sing 0 1 0 —sing cosy O
0 —sing cosp sind6 0 cosf 0 0 1

The relative position ofry can be expressed as a vector sum of the quantities in Eqadt#ehc, as shown in Eq. 3.
Each vector in Eq. 3 is transformed@in order to maintain consistency in bases withNote that the dependence
of 7j on the position and orientation of the aircraft is introdiiie Eq. 3 through the inertial positiofs, and the
transformation fronk to B, Tgp.

fii = TecTes(& — R) — Tach (3

II.B. Camera Model

The pinhole camera model maps the projection of a point inespa, onto a plane that is normal to tleg axis. This
plane is denoted the image plane and is displaced along #nas by the focal lengthf, which is an intrinsic camera
parameter. The mapping results from a transformation shdé:pendent upon both the relative positionandf. The
resulting projection ofr; is located on the image plane at the coordingtesndv; which are determined as in Eq. 4.
The geometry of this mapping is depicted in Figure 3.

mio| o fong
[ Vi ]_’7& [ n2; ] )

The mapping to an image is restricted by the field of view (FOWh thaiu € [u, 1] andv € [v,V] . This constraint
on the two-dimensional image position translates to anlanganstraintin three-dimensions. This angular desioript
of the constraint results from the property that the pinlwalsmera actually relates the line-of-sight (LOS) to feature
within the camera FOV. The projection of a point in three-elimeional space to the two-dimensional image maps back
to a ray in three-dimensional space along the LOS as seemimd=8. Inspection of Eq. 4 and Figure 3 reveals that
the values of the image coordinatég,v), are proportional to the tangents of the angles that orléstltOS in the
vertical and horizontal directions, respectively.
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Figure 3. Mapping m to the Image Plane

[I.C. Coupled Dynamics

The relative position of thé" feature point with respect to th@ basis,fji, is expressed in terms of aircraft states in
Eq. 3 as discussed previously. This vector can be diffeatatito yield a set of state equations to augment the aircraft
equations of motion. The new coupled system can then be ugiethe pinhole camera model to provide a continuous
dynamic description of image-based motion of the projectibm; as the vehicle state evolves.

The derivative is taken prior to any coordinate transforomat with respect to the reference frame as shown in
Eq. 5. Evaluation of the derivatives requires considerdfiio the rotating bases of the respective vectors as defined i
Egs. 1a-1d. Therefore the angular velocities of BhendC frames with respect to the frame are introduced as in
Eq. 6 and are represented byo® and E@°, respectively. These angular velocities are expressetkin tespective
rotating reference frames. The relationship is then maaipd to expresg; in terms of the remaining variables in
Eq. 7.

Ed . Ed .\ Ed,. Ed /.
2203020 ®
(;—(:(ﬁi)—i-(EG)Cxﬁi):gi—I;?—(3+E®Bx5) (6)
ﬁi:é_ﬁ_(Z+Ea5x5)_(EaB+BaC)xﬁi )

Equation 7 can be simplified through the application of seh@&ssumptions. The camerais assumed to have a fixed
position and orientation with respectBo This assumption implies.thﬁt: 0 and Ba* = 0. Further, the environment

is assumed to be static such that the inertial velocityofiven byé;, evaluates to zero as well. Finally, the camera
location is assumed to coincide with the center of gravitghsinatA = 0. The remaining quantities are transformed
from their respective bases to tBeframe for consistency, as shown in Eq. 8.

fii = —TecTesR— (Tac = @® x 7iji) (8)

Equation 8 can be further simplified by recognizing the deéins of the body-axis translational and angular
velocities, as shown in Equations 9 and 10. Finally, thesfiemmationTgc is specified as in Eq. 11. This form has the
C3 axis aligned with thdd, axis such that the camera is pointing directly out the nogeé@Airplane. The; axis is
located in theb;-bs plane pointing upwards while the axis points along thb, axis out the right wing.
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-, N r T
TEBR= VB = u v w } (9)
r T
EB=|p q r (10)
[0 0 1
Tec = 010 (11)
| -1 0 0

The resulting differential equation is shown as Eq. 12. Bljsation expresses the time rate of change of relative
feature position with respect to aircraft motion. Equati@tan be used to augment the well-known aircraft equations
of motion for each tracked feature to form a fully-coupledtsyn.

. —W— P +dns3
fi=—| vipny+rng (12)
u—Qqny —rne

lll. OPTICAL FLOW

Optical flow refers to perceived motion in an image resulfimgn relative motion between the camera and the
environment’ This motion can be generated by translation of the cametation of the camera, or motion of
features within the environment. The environment is cogr&d static for this work and thus optical flow is assumed
to be generated by camera motion alone for the remaindesofisision. Further, this paper interprets the motion of
specific point features of the environment as the optical.flblis motion is described through the camera model of
Section I1.B. Hence, the optical flow of a particular poim{, can be considered as a velocity vetﬁ’ﬂﬁwi, defined on
the image plane as in Eq. 13. The component?éfgf,mi are resolved in the image coordinate directions and thexefo
consist of the time-derivatives ofi's image coordinates;, vi), as shown in Figure 4(a). These quantities can be
measured directly from video data for a sehgfints given the assumption that each point can be trackedba two
image frames. A variety of techniques discussed in the nipr@cessing literature have been shown to successfully
detect and track feature points through a series of im&ges.

_ i T
Viiowj = [ i v } (13)
The expression for the velocity afi’s projection in the image is found through differentiatiohEq. 4. The

developments of Section Il allow this derivative to be réten in terms of aircraft states. The general expression for
the focal plane velocities of a feature point is given by E4. 1

, Ny
- f . 0 —ny S
I:'ll _ 5 r’3| ’71| n2i (14)
Vi ns 0 Nz —ng ’;’3‘

Upon substitution of the components of Eq. 12 into Eq. 14essvterms cancel while others can be grouped into
the form of the focal-plane coordinates given previouslfEoy 4. Camera calibration is assumed known such that the
focal length can be normalized fo= 1. The equations can now be expressed as in Egs. 15a and 1éie, tvd depth
component ofj; has been replaced with to simplify notation.

. u w
Ili:IliE‘FE‘FVip—(l"‘“iz)q—lliVir (15a)
| |
. u \%
Vi:Via—a—ﬂip_ﬂiviq_(l‘f'viz)r (15b)
| |

lII.LA.  Motion-Decoupled Feature Tracking

While it is natural to consider components\éfo,, With respect to the orthogonal image basis and the correspgn
coordinates(u, v), the optical flow can also be decomposed into contributitoraimotion parameter$. The decom-
position shown by Eq. 16 distinguishes between the flomdhduced by translational motioN o, and the flow
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induced by rotational motiorf/ﬂowRi. This decomposition is non-orthogonal in general as degdiat Figure 4(b).
The non-orthogonal motion components are then resolveering of the image basis, as shown by Figure 4(c) and
Egs. 17 and 18.

Viiowi = VeiowT, + Veiowr (16)
R . . T
Vflovv,T = [ Ht VT } 17)
- . . T
Viiowr = { HR VR } (18)
. |
MR |
|
ViiowR :
VT |
| .
— Vo
(M 7V| ) VI — : . R|
VilowTi £ ¥ fir
(a) Orthogonal Decomposition (b) Motion Decomposition (c) Orthogonal Motion Decomposi-

tion
Figure 4. Projecting an Optic Flow vector on orthogonal and ron-orthogonal bases

The expressions relating the component!i?mf\,ﬂi and\7f|owﬂ are easily recognized from the total flow expres-
sions of Egs. 15a and 15b. The translational componentdysitopsist of the terms of Eqs. 15a and 15b that contain
the velocity states(u,v,w), as shown by Eqgs. 19a and 19b. Similarly, the rotational @ymapts consist of the terms
of Egs. 15a and 15b that contain the angular rate stgpeg,r), as shown by Egs. 20a and 20b. Equations 21a and
21b follow directly from this simple decoupling method.

: U+w
i = B2 (192)
|
pp = AUV (19b)
di
iR, = Vip— (1+ p%)q— v (20a)
VR = —Hip— Hiviq— (14 vi%)r (20b)
Wi = [+ [IRi (21a)
Vi = V1 + VR; (21b)

[II.B. Parallax and the Focus of Expansion

The translational optical flow component can be consideseal measure of parallax. Parallax refers to the apparent
relative motion of points at different depths resultingnfrcamera displacement. Essentially, points exhibitingdar
parallax are likely to be nearby while points exhibiting $diparallax are likely distant. These effects are seen taltes
from the inverse depth relationship present in Egs. 19a 8bd Hence, parallax is considered here as a measure of
relative depth of feature points with respect to each other.
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A degenerate case of this observed relationship occursdaoslation di-
rectly toward a point in space. No apparent motion is obskfeethis case.
While this lack of motion degrades the potential informatgiven by paral-
lax measurements, it does yield useful information regeydhe direction of
velocity. Recall from Section 11.B that each point in the geaplane maps to
a ray in three-dimensional space. The point that maps toiteetin of the
velocity vector corresponds to this degenerate case arghisteld the focus of
expansion (FOE}? The FOE exhibits zero translational flow and is given b
Egs. 22a and 22b. Further, all other translational vectyrs, 1, radiate from
this point!® As such, each of th¥o,7 can be related to the FOE coordid /
nates through Eq. 23. Thisﬁequation simply states that ties liesulting from
an infinitg extension_ of gaOVhow,Ti intersect at the coordinatggr, ve). The Figure 5. Translational optical flow, or parallax,
concept is depicted in Figure 5. radiates from the focus of expansion.

(“F7VF>

HE = —w/u (22a)
VE =V/u (22b)

(Hi—He) _ fri
(Vi—VE) Vi
Equations 22a and 22b show that the FOE location is relatedtt)i to aircraft velocity information. The FOE

coordinates(Ug, Vg ), actually relate angular information regarding the o@gion of the velocity vector. This rela-
tionship is described in terms of image information throaglangent relationship as discussed in Section II.B. This
information is analogous to the angles describing the foamstion from aircraft body axis to wind axis, and 3.
Using some simple trigonometric relations, the FOE coatdig are related t andf through Eqs. 24a and 24b. The
angles are not related directly by the tangents of the FOEd@uates due to the wind-axis transformation sequence.
The angles related byr and ve are each measured relative to drame. The sideslip angle§, is defined as a
rotation from the intermediate axis that results from liatathe B axis througha.

(23)

pr = —f -tana (24a)
VE = <,/1+ ué) -tanf (24b)

IV. STATE ESTIMATION USING OPTICAL FLOW

An optimization-based approach is adopted to determinaiticeaft angular rates and aerodynamic angles given
only measurements derived from a sequence of images. Taworedhips derived in Section Ill between aircraft
motion and image-based parameters are exploited to set eps&dquares minimization problem. Values of the
aircraft motion parameters are effectively fitted to ogtitav measurements using variations of Egs. 15a and 15b.
Two methods that have been presented previously in thatitex are discussed followed by a new method presented
here.

IV.A. Method 1

Inspection of the optical flow expressions given by Egs. Ifth E6b reveals two equations in seven unknowns for
a single tracked feature point. This conclusion assumesthieaimage coordinates;, vi), and the optical flow
components([i,v;), are measurable quantities. The seven unknowns consisedhtee aircraft linear velocity
components(u, v, w), the three aircraft angular velocity componeris, g, r), and the feature deptl;. Tracking
each additional feature point results in the gain of two &oldal equations at the expense of only a single added
unknown variable: the respective feature depthxf the additional tracked points. As such, a minimum of sings
must be tracked to determine the system. A feasible optiroizaroblem can be posed given this over-determined
system. The minimization utilizes the cost function giverEg). 26, which consists of a sum of squared terms of the
form shown in Eq. 25. The decision variables consist of trgutar velocity,E @8, the translational velocity/s, and

the vector of feature depths for each poiﬁt,
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2
e Hiu—+wW . viu—V .
Jl,i(EwB,VB,di)—< : +vip—(1+ui2)q—uivir—ui> +<—' —Uip_UiViq—(1+Vi2)r—Vi)

(25)
3 (FaP Ve, d) = 3 3 (26)

This method has been previously shown to yield accuratmatdi for the angular rate variables; however, errors
are encountered in the computation of the body-axis ve#sdit To account for this deficiency, the motion decoupling
conceptdescribed in Section Ill.Ais leveraged to deteenaimestimate of the FOE. This value is then used to compute
estimates of the wind-axis anglesand. Specifically, the rate estimates that result from the mimation of Eq. 26
can be used in conjunction with Egs. 20a and 20b to computethéonal component of the optical flow over the
entire image. This information allows access to the trdiwsial component, or parallax, which can be used to estimate
the FOE. Estimates of the angle of attaak.and the angle of sideslif, follow from a straightforward computation.
Hence, only directional velocity information can be reaeck

The optical flow component due to translational motion catecfound explicitly from Eqgs. 19a and 19b due to
the poor estimates of the body-axis velocities, and the owkrdepths to each individual feature. Alternatively, flow
measurements and the estimates of angular velocity canduetoasecover the translational flow field as in Eqgs. 27
and 28. This result is achieved using Egs. 20a and 20b witarigelar velocity estimates to compytg andvg, for
all feature points.

Hr = [ — LR (27)
Vr = U — R (28)

Recall from Section Ill.A that the translational opticalMicadiates from the FOE and that the location of this point,
(Ue, VE), can be used to obtaimm andf3 through Eqgs. 24a and 24b. Hence, an estimate of the FOEqokads to
an estimate of the wind-axis angles. An approximation ferFIOE location is found by extending the translational
optical-flow vectors and seeking the common point of intetisa. Usingn feature points results in a system rof
equations in 2 unknowns. A linear least-squares optimina used as in Eq. 29 to estimate the FOE coordinate
values.

HEl —arg min }HC T (29)
VF ue[ﬂﬂ} 2 Vv
ve(vy
where
1 1 1 T
C=|_i _iy . _in (30a)
Yy Ytp Vin
. ) _ T
VZ{ (Ul_yv:_ivl) (Hz—yv:—jvz) (IJn_C:;' Vn) } (30b)

Once an approximation is found for the FOE, estimates ahdf3 are straightforward to compute using Eqgs. 24a
and 24b. The actual expressions are given as Egs. 31a and 31b.

G=—tan?! (%up) (31a)

B =tan? (VF/ (\/r;i,%)) (31b)

This method has been previously shown to exhibit reasorestimation performance; however, the requirement
to compute feature depths for each tracked point drives &ty up and results in poor conditioning of the optimiza-
tion.1> Additionally, approximations of the total velocity and asge feature point depths are required to initialize
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the optimization at each step. Average feature points deajeifjuire knowledge about the scaling of the environment
which may not always be accurate or available. Further, thet likely source of the required velocity informationis a
GPS sensor; however, the vision system is intended to peetate estimates during mission segments for which GPS
data is not available. Therefore the assumption of a con'dtam velocity” would be the next closest approximation;
where this value is taken as the either the last measuredityefior to loss of GPS signal or some known average
cruise speed.

IV.B. Method 2

As an alternative to using Eqs 15a and 15b directly as in Esjan@ 26, the optical flow expressions can be combined
to a single equation through the elimination of the deptlialde, d;. This single equation is then used in a similar
fashion to set up an optimization problem. After some algebmanipulation, the resulting cost function for mini-
mization is seen a% (EJ)B,VB) in Eq. 33 which consists of terms of the form shown in Eq. 323sTérm presents an
attractive alternative in comparison to Eq. 25 in that thenbar of variables has been reduced to only those of interest
to the state-estimation problem. A large number of measig@ttire points can be used in the optimization to ensure
robustness without an unnecessary increase in problemlegityp

(M2 +V2) P—vid-+ Kl + HiVi — 4V,

Joi (EG)B,VB) = { u v w} —vip+ (1+ p?) g+ pivir + i (32)
HiP+ Hivid+ (14 v2) r+ v
2 (FaPVe) = 5 (%1)° (33)

The constrained minimization problem featuring the cosicfion of Eq. 33 has been shown to admit a unique
solution under certain conditiort$.This solution results in accurate estimates such thattieatileast squares step to
recover the FOE is unnecessary. The constraints under wheclxistence proof is performed are shown as Egs. 34
and 35, respectively, whekéis the known total speed of the vehicle. The constraintsexgaired in order to resolve a
velocity scale-ambiguity. Specifically, Egs. 15a,15b, 3Bdre satisfied for any scalar multiple of the vehicle véjoci

u>0 (34)
Vs |=V >0 (35)

Inclusion of the constraints shown in Egs. 34 and 35 is probté for the current application. As with the previous
method, GPS measurements are required to obtain a valueefdotal velocity. These measurements are assumed
unavailable for missions of interest to this paper. Thamfan approximation such as the “trim velocity” assumption
described previously is required to express the constshiown in Eq. 35.

IV.C. Method 3

In contrast, the approach taken for the method presentedisiéw eliminate explicit velocity dependencies from the
optimization altogether. The optical flow is decoupled adéw to motion contributions as described in Section I1l.A
prior to posing the optimization problem. Consequentlg, éimgular motion and translational motion can be treated
as separate problems. Solution of the angular motion altbesconversion of optical flow measurements to their
translational components. These components then yieddtiinal velocity information in the form of the wind-axis
anglesa andp. Further, the decoupled flow permits access to measuremwigthis parallax induced on each tracked
feature point. This measure of relative depth can be leesrag aid in feature selection and weighting for proper
conditioning of the optimization.

Estimates of the aircraft angular rates are achieved thrtheg solution of an optimization problem that does not
explicitly include vehicle velocity. Specifically, the momn-decoupled optical flow is used to form a quadratic cost
function that is minimized for the correct values of the miftstates in question.

Section III.A describes the decomposition of the opticalftd a feature pointin, into contributions from transla-
tional motion and angular motion. Further, the translatl@omponent, or parallax, is shown to expand radially from
the FOE. This condition is re-expressed here as Eq. 36.

Vri (i — i) — i (v = vE) = (36)
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Recall that the image velocity componentswf ([, Vi), can be expressed as a sum of the componef\7tt,s1dwf¢i
alnd\7f|c,\,VRi as in Egs. 21a and 21b. These vectors represent the optiwabflay resulting from translation and
rotation, respectively. The decomposed flow can be usedii@ss the translational flow in terms of the total flow and
the rotational component, as shown in Egs. 37a and 37b.

pri = i — HRj (37a)
VTi = Vi — URj (37b)

After substitution of Egs. 37a and 37b into Eq. 36, the FOEd@@mm is expressed as Eq. 38. This expression
captures the dependence of the measurable optical flow awengm([4, vi), on the vehicle motion without explicit
references to translational velocity terms. The rotafifiow terms, (Lir;, Vr;), are defined by Egs. 20a and 20b and
are dependent only upon the measurable feature point imagjgoms and the unknown vehicle angular velocities.
The influence of the translational motion is contained ehtiin the unknown FOE positiofipg, Ve ).

(F4 = fiRi) (Vi = VE) — (% — Vi) (K — He) = O (38)

Eq. 38 is comprised of the three unknown angular velocitiesthe unknown FOE position along with measurable
image quantities. No additional unknowns are added thriowegiking additional feature points, therefore the system
is completely determined when at least five features ar&erhcAn optimization problem to solve for the unknown
guantities can be formulated using terms taking the form apf 38. After substitution of the expressions for the
rotational flow components, the cost term associated with é@cked feature point is shown as Eq. 39 The cost
function is then given as the sum of the squares of terms dbitme shown in Eq 39 for all visible feature points, as
shown by Eq. 40.

- (v? = vive) + (W7 — Hike) i
Li(F@ ,HF,VF):{ P q f} pivi (i — pe) — (1+ p?) (vi— V) +[ —(vi—ve) (W—Ur) } [ 0 ]
(1+v?) (i — pr) — pivi (Vi — VE) !
(39)
Js (BB, ve, pip) = Z(Je.,i)2 (40)

Finally, the minimization problem can be posed as Eq. 41. Sidhetion of Eq. 41 yields estimates for the aircraft
angular velocity,F @B, and for the FOE coordinate§ir, Ur ). While (fir, Ur) could be used to yield estimates af
andp via Eqgs. 24a and 24b, improved accuracy can be achievedghnparallax-dependent feature selection and a
second optimization step similar to that discussed in 8rdti.A. Hence, the currently obtained FOE coordinates are
disregarded and only the estimates for angular velocitkepe

(Eé)B,ﬁF,OF) =arg  min  J3(5®@° pr,ve) (41)
(BB, ur,ve)

The angular rate estimates obtained through the optimizgtioblem posed in Eq. 41 are used to decouple the
optical flow and set up the linear least-squares problem stpreviously as Eq. 29. Further, the most accurate in-
formation for the aerodynamic angle estimation step iseaad through the use of flow that is dominated by relative
velocity. Flow vectors that exhibit a large amount of parelyive a strong indication of the FOE location. Vectors
exhibiting less parallax are subject to inaccuracies tiegufrom measurement and estimation error. Potential im-
provements in the estimation accuracy(pf, ve) can be made through proper feature selection based ongarall
measurements.

In addition to selecting the largest translational flow vestthe least-squares optimization can be further imgtove
by weighting the vectors that give a better indication ofdlsual FOE. The weight for each translational flow vector
is computed as a function of parallax such that larger tedinslal flow vectors are given greater influence in the
optimization.
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V. EXAMPLE

V.A. Simulation

Aircraft states are estimated using data generated by d figtulation. Specifically, a high-fidelity model of the
nonlinear equations of motion for an F-16 is simulated tolilpugh a region of obstaclé®.The model includes an
autopilot which enables the vehicle to track a set of manesLsed progress between waypoints using inertial sensors.
Images are generated by simulating a camera mounted onrtiafai This camera is mounted at the center of
gravity with the optical axis aligned along the nose of theigike. The camera model uses adéfield of view and
a capture rate of 3nages/second
The environment is constructed to approximate an urbanessealed to the dynamics of the F-16. This envi-
ronment is shown in Figure 6. The building surfaces of therenment are populated with feature points in a grid
pattern with a spacing of 5@ Points are scattered randomly on the ground plane acaptalguniform distribution.
Several points are also scattered at a large distance iredtidns to simulate feature points corresponding todfou
and background clutter.

Figure 6. Virtual Environment and Simulated Trajectory

The aircraft maneuvers through the environment by follgnarprescribed trajectory. This trajectory, as shown in
Figure 6, involves several maneuvers. The vehicle is ihjtflying at trim for straight and level flight at sea level. A
maneuver is executed which results in an aggressive clitidfed by a negative roll to an inverted configuration.
This inverted flight is characterized by a positive pitctertitroughout. The aircraft then rolls back to a wings-level
condition while maintaining a nose-high attitude. The flosidata in Figure 7 and attitude data in Figure 8 quantify
these maneuvers.

A critical aspect of this trajectory is the variation in reiend velocities associated with these maneuvers. These
rates are shown in Figure 9 while the velocities are repteseim Figure 10 by the total airspeed along with the
angle of attack and angle of sideslip. The large variatidrtb@se parameters are indicative of maneuvers, such as
traverssing an urban environment by a UAV, for which vistmsed feedback might be especially valuable.

V.B. State Estimation without Noise

A sequence of images are measured that do not contain angmavattiations due to noise. These images are effec-

tively perfect measurements of the environment. As sudhatialysis of perfect measurements should demonstrate

an upper bound on the theoretical accuracy of the state @&stingenerated by minimizing each of the cost functions.
The estimated rates are shown in Figure 11 along with theahrdtes. The minimization of each cost function

is able to generate highly accurate estimates of the rateseSimated values are visually indistinguishable from the

actual values.
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Figure 10. Vehicle velocity through 20sec duration of maneuver
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Figure 11. Angular rate estimates for the noise-free case.d3ults are shown forJ; (dashed magenta),), (dotted blue), andJ; (dash-dot red) overlayed on truth
value (solid black)

The estimates of aerodynamic angles are shown in Figureoh? alith actual angles. In thise case, the estimated
values are quite close to the true values; however, a smadtiten is noted in the data associated with dheost from
Equation 32. The formulation @b assumed a constant approximated “trim velocity” as deedrib Section IV. This
condition is clearly violated by the airspeed, as shown guké 10, nears its minimal value at the time of the error in
the angles.

10 12 14 16 18 20

10 12 14 16 18 20 o 2 4 6

s s
Time, sec Time, sec

) 2 4 6

Figure 12. Aerodynamic angle estimates for the noise-freease. Results are shown fod; (dashed magenta),J, (dotted blue), andJ; (dash-dot red) overlayed
on truth value (solid black)

The accuracy of the state estimates can be approximatee &¢lorm metric of each error. These metrics, given
in Table 1, demonstrate that minimizidg generates the best estimates. These estimates are alwaypyéu over
minimization ofJ; by a factor of at least 2 and over minimizationJafby an order of magnitude.

cost function p o} r a B
N 0.0245 0.0219 0.0449 0.2538 0.3503
J 0.2113 0.3002 0.4146 5.2542 5.7387
Jz 0.0059 0.0089 0.0056 0.1036 0.0552

Table 1. 2-Norm of Total error during 20 sec maneuver, noise-free

V.C. State Estimates with Noise

Noise is introduced to the images to reflect the performafieach cost function using imperfect measurements. A
noise value up to 0.5 pixels, both horizontally and verticas associated with each feature point in the image. Such
noise is a realistic level that could result from lens disbor, errors in calibration, and numerical errors in image
processing.

The angular rates which are estimated are shown in Figure d@mpare with the actual values. In each case, the
state estimates are reasonably accurate. Slight variatiooted in each estimate; however, these variations ate qui
minor.
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Figure 13. Angular rate estimates for the case of 0.5 pixel-dth noise that is uniformly distributed about measured image position. Results are shown fod;
(dashed magenta)), (dotted blue), andJs (dash-dot red) overlayed on truth value (solid black)

The estimates of the aerodynamics angles, as shown in Figyrare somewhat more sensitive to the noise.
The estimates resulting from minimization of each cost fiomcshow significant error around 10 seconds into the

simulation. Additional error is present as the simulatiode

B, deg
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s s
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Figure 14. Aerodynamic angle estimates for the case of 0.5xgl-width noise that is uniformly distributed about measured image position. Results are shown
for J; (dashed magenta),), (dotted blue), andJ; (dash-dot red) overlayed on truth value (solid black)

The effect of noise is evident in the 2-norm metrics of eaabresignal. These values, given in Table 2, are
noticeably higher than the corresponding metrics asstiafth noise-free images in Table 1. The cost function
whose minimization resulted in the smallest error actuadlyies with the state estimate. The error in rates was
smallest forJ; and largest fod,; conversely, the error in angle of attack was smallesgf@nd largest fod;.

cost function p o} r o B
N} 0.2789 0.4200 0.3963 14.6860 12.5938
N7 0.4323 0.6296 0.7359 10.8991 13.2984
J3 0.3495 0.5204 0.5996 13.2852 12.3931

Table 2. 2-Norm of Total error during 20 sec maneuver, with pixel position noise

V.D. Computational Cost

The computational cost of state estimation is another meith which to evaluate the cost functions. The application
of such approaches is presumable for autonomous operatigmgdlight; consequently, the speed at which infor-
mation is available for control becomes critical. The nasity for speed is compounded as the flight environment

becomes more dense and agile maneuvering is required.
The CPU required for each estimation is given in Table 3 asrdeénhed by MATLAB. Clearly, the minimization

of J3 is achieved with a reduced workload as comparel &ndJ,.
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cost function without noise  with noise

N 9383.7 9492.5
J 1678.3 1995.1
J3 680.3 791.4

Table 3. Total CPU time in seconds

VI. CONCLUSION

This paper has presented a technique for partial aircratié gstimation using vision as a sensor. Optical flow
is used to compute accurate estimates of the aircraft bodyasgular rates as well as the aerodynamic angles that
determine the orientation of the velocity vector. Estimataccuracy is aided by selectively tracking those feature
points more likely to exhibit motion that is beneficial to tbstimation process. Development of this purely visual
technique is a step towards using vision for flight contrat@mplex and cluttered environments.
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