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Computer vision presents an attractive sensor option for micro aerial vehicle (MAV) applications due to
the payload and performance restrictions imposed by typical mission scenarios. Optical flow can be measured
by tracking the perceived motion of feature points between successive image frames. This perceived feature-
point motion yields information regarding vehicle motion as described through geometric relationships. This
paper presents an optimization-based approach to estimateaircraft angular rates and wind-axis angles using
monocular vision. A bias in the optical-flow equations is leveraged to decouple components resulting from
angular and translational motion, respectively. Attemptsto resolve the ambiguity introduced by the loss of
depth information are avoided through this decoupling. Additionally, estimator performance is shown to rely
on proper selection of feature points used for the estimation process. Parallax measurements are used to
identify features that are most likely to yield accurate state estimates. The technique is then demonstrated
through simulation.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been considered for a variety of applications. Recent progress in the
development of small-scale, fixed wing UAVs has facilitatedmission scenarios that were previously not possible. A
micro aerial vehicle (MAV) demonstrates the stealth and agility to maneuver undetected throughout complex and
cluttered environments; however, the control challenges posed by such a task are diverse and many. While a variety of
miniature inertial-measurement packages have been emerging for use in MAV applications, these units add weight and
often provide inaccurate information during aggressive maneuvers. Additionally, many of these units rely on position
measurements from GPS to generate their measurements. Access to GPS signals during urban flight operations is
likely to be intermittent at best. As such, navigation capabilities can be severely impaired for large segments of the
mission.

Alternatively, small video cameras present a lightweight,low-power, and information-rich sensor. Computer vision
has been demonstrated as an enabling technology for MAV control tasks. Vision-based techniques are especially
effective when maneuvering relative to nearby objects. These situations provide a diverse set of information concerning
camera motion. Thus, computer vision is well-suited to aid navigation during GPS-denied mission segments.

Figure 1. Tracking feature points (green) yields
perceived relative motion

Vision processing techniques allow the extraction of information concern-
ing both the environment as well as camera motion. In particular, techniques
that can identify and track points of significance in successive images enable
a variety of problems to be addressed. These “feature points,” as depicted in
Figure 1, are commonly detected using the intensity gradient of the image, and
are then tracked using techniques such as template registration, point correla-
tion, dynamic filtering, or some combination thereof.1–3 Recent efforts have
moved these tracking algorithms towards real-time implementation for images
with large motion between frames for flight control applications.2,4

Tracking features between consecutive frames gives an indication of the
perceived motion in the image. This apparent velocity is denoted optical flow
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and can be characterized by the gradient of the image intensity function.5 A variety of techniques exist for computing
optical flow, including differential methods, frequency-based methods, and correlation-based methods.6 For the case
of a fixed environment, optical flow results solely from camera motion and can therefore provide information related
to the vehicle state.

Researchers have exploited this observation previously for state estimation. Soatto et al. derived a form of the
Kalman filter that uses the relationship between vision-based measurements and the motion of the camera.7,8 The
resulting implicit extended Kalman filter (IEKF) can be usedto recover the camera motion states. Gurfil and Rotstein
recast Soatto’s work in terms of an aircraft state-estimation problem by incorporating aircraft dynamics into the IEKF
framework.9 The resulting formulation partially estimated the aircraft states but exhibited relatively slow convergence.
Improvements have been demonstrated by Webb et al. who also used an aircraft model.10,11 Unfortunately, accurate
MAV models are often not available within an aggressive flight regime where the aerodynamics are notoriously difficult
to characterize.

Other techniques, such as the eight-point algorithm,12 do not require a vehicle model to obtain state estimates. The
eight-point algorithm computes the relative translation and rotation of the camera between two vantage points using a
geometric relationship. Epipolar geometry requires that asingle point in space viewed from two vantage points will be
coplanar with each vantage point. This constraint is used tocompute the essential matrix and recover camera motion.

Several techniques have utilized the kinematic relationship between camera motion and the resulting optical flow
to directly solve for unknown motion parameters using constrained optimization.13–15 These techniques depend on at
least partial knowledge of the translational velocity for use in the optimization. This knowledge often depends on GPS
measurements and therefore is not available for the missionsegments of interest here.

This paper addresses the problem of estimating aircraft states during a GPS-denied mission segment. An iterative
optimization approach is adopted to determine the angular rates and the wind-axis angles. No knowledge of vehicle
velocity is required. The coupled aircraft-camera kinematics are used to solve for aircraft states in similar fashion
to previous efforts; however, velocity dependencies are removed through decoupling the optical flow resulting from
angular and translational motion, respectively. Angular rate estimates are obtained initially and used to set up a simple
linear least-squares problem for the aerodynamic angles. Performance of the least-squares problem is further improved
through the application of a weighting scheme derived from parallax measurements.

The remainder of the paper is organized as follows. Section II develops the coupled equations of motion describing
the dynamics of the aircraft-camera system, thus forming a mathematical basis for the remainder of the paper. Section
III discusses some properties of the relationship between camera motion and optical flow. Section IV details the vision-
based approach to state estimation. Finally, Section V discusses a demonstrative example performed in simulation
using a nonlinear aircraft model.

II. COUPLED AIRCRAFT-CAMERA MOTION

Video data from a camera moving relative to features in the environment can provide a great deal of information
concerning the motion of the camera. The relationship between the image data and the motion of the vehicle carrying
the camera must be characterized in order to incorporate this information into estimation and control techniques.
The general framework developed here allows for the formulation and solution of a variety of vision-based control
problems.16

II.A. Problem Geometry

The geometry for the general case of an aircraft carrying a single camera is described by the vector diagram of Figure 2
and Eqs. 1a-1d. The aircraft body basis,B, is fixed at the aircraft center of gravity and is located relative to the inertial
frame,E, by the vector~R as in Eq. 1a. The camera reference frame,C, is fixed to the aircraft at an arbitrary position
and is located relative toB by the vector~∆ as in Eq. 1b.

~R= R1ê1 +R2ê2 +R3ê3 (1a)

~∆ = ∆1b̂1 + ∆2b̂2 + ∆3b̂3 (1b)

~ξi = ξ1i ê1 + ξ2i ê2 + ξ3i ê3 (1c)

~ηi = η1i ĉ1 + η2i ĉ2 + η3i ĉ3 (1d)

The ith point-feature of the environment is denotedmi and is located relative toE by ~ξi as in Eq. 1c. The vector
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Figure 2. Problem Geometry

~ηi then relates the relative position ofmi with respect toC, as described by Eq 1d. This relative position vector can
be expressed in terms of the aircraft position and orientation via the coordinate transformationsTEB andTBC, which
represent simple axis rotations fromE to B andB to C, respectively. The usual definitions for pitch, roll, and yaw
Euler angles are used to defineTEB as in Eq. 2. The transformationTBC is a specified quantity that is dependent upon
the physical mounting of the camera to the airframe.

TEB = Tφ ·Tθ ·Tψ

=







1 0 0

0 cosφ sinφ
0 −sinφ cosφ













cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ













cosψ sinψ 0

−sinψ cosψ 0

0 0 1







(2)

The relative position ofmi can be expressed as a vector sum of the quantities in Equations 1a-1c, as shown in Eq. 3.
Each vector in Eq. 3 is transformed toC in order to maintain consistency in bases with~η . Note that the dependence
of ~η on the position and orientation of the aircraft is introduced in Eq. 3 through the inertial position,~R, and the
transformation fromE to B, TEB.

~ηi = TBCTEB(~ξi −~R)−TBC~∆ (3)

II.B. Camera Model

The pinhole camera model maps the projection of a point in space,mi , onto a plane that is normal to the ˆc3 axis. This
plane is denoted the image plane and is displaced along the ˆc3 axis by the focal length,f , which is an intrinsic camera
parameter. The mapping results from a transformation that is dependent upon both the relative position,~η , and f . The
resulting projection ofmi is located on the image plane at the coordinatesµi andνi which are determined as in Eq. 4.
The geometry of this mapping is depicted in Figure 3.

[

µi

νi

]

=
f

η3i

[

η1i

η2i

]

(4)

The mapping to an image is restricted by the field of view (FOV)such thatµ ∈ [µ,µ] andν ∈ [ν,ν] . This constraint
on the two-dimensional image position translates to an angular constraint in three-dimensions. This angular description
of the constraint results from the property that the pinholecamera actually relates the line-of-sight (LOS) to features
within the camera FOV. The projection of a point in three-dimensional space to the two-dimensional image maps back
to a ray in three-dimensional space along the LOS as seen in Figure 3. Inspection of Eq. 4 and Figure 3 reveals that
the values of the image coordinates,(µ,ν), are proportional to the tangents of the angles that orient this LOS in the
vertical and horizontal directions, respectively.
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Figure 3. Mapping mi to the Image Plane

II.C. Coupled Dynamics

The relative position of theith feature point with respect to theC basis,~ηi , is expressed in terms of aircraft states in
Eq. 3 as discussed previously. This vector can be differentiated to yield a set of state equations to augment the aircraft
equations of motion. The new coupled system can then be used with the pinhole camera model to provide a continuous
dynamic description of image-based motion of the projection of mi as the vehicle state evolves.

The derivative is taken prior to any coordinate transformations with respect to theE reference frame as shown in
Eq. 5. Evaluation of the derivatives requires consideration for the rotating bases of the respective vectors as defined in
Eqs. 1a-1d. Therefore the angular velocities of theB andC frames with respect to theE frame are introduced as in
Eq. 6 and are represented byE~ωB and E~ωC, respectively. These angular velocities are expressed in their respective
rotating reference frames. The relationship is then manipulated to expresṡ~ηi in terms of the remaining variables in
Eq. 7.

Ed
dt

(~ηi) =
Ed
dt

(

~ξi

)

−
Ed
dt

(

~R
)

−
Ed
dt

(

~∆
)

(5)

Cd
dt

(~ηi)+
(E~ωC×~ηi

)

= ~̇ξi − ~̇R−
(

~̇∆ + E~ωB×~∆
)

(6)

~̇ηi = ~̇ξi − ~̇R−
(

~̇∆ + E~ωB×~∆
)

−
(E~ωB + B~ωC)

×~ηi (7)

Equation 7 can be simplified through the application of several assumptions. The camera is assumed to have a fixed
position and orientation with respect toB. This assumption implies that~̇∆ = 0 and B~ωC = 0. Further, the environment

is assumed to be static such that the inertial velocity ofmi , given by~̇ξi , evaluates to zero as well. Finally, the camera
location is assumed to coincide with the center of gravity such that~∆ = 0. The remaining quantities are transformed
from their respective bases to theC frame for consistency, as shown in Eq. 8.

~̇ηi = −TBCTEB~̇R−
(

TBC
E~ωB×~ηi

)

(8)

Equation 8 can be further simplified by recognizing the definitions of the body-axis translational and angular
velocities, as shown in Equations 9 and 10. Finally, the transformationTBC is specified as in Eq. 11. This form has the
ĉ3 axis aligned with thêb1 axis such that the camera is pointing directly out the nose ofthe airplane. The ˆc1 axis is
located in thêb1-b̂3 plane pointing upwards while the ˆc2 axis points along thêb2 axis out the right wing.
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TEB~̇R=~VB =
[

u v w
]T

(9)

E~ωB =
[

p q r
]T

(10)

TBC =







0 0 1

0 1 0

−1 0 0






(11)

The resulting differential equation is shown as Eq. 12. Thisequation expresses the time rate of change of relative
feature position with respect to aircraft motion. Equation12 can be used to augment the well-known aircraft equations
of motion for each tracked feature to form a fully-coupled system.

~̇ηi = −







−w− pη2i +qη3i

v+ pη1i + rη3i

u−qη1i − rη2i






(12)

III. OPTICAL FLOW

Optical flow refers to perceived motion in an image resultingfrom relative motion between the camera and the
environment.17 This motion can be generated by translation of the camera, rotation of the camera, or motion of
features within the environment. The environment is considered static for this work and thus optical flow is assumed
to be generated by camera motion alone for the remainder of discussion. Further, this paper interprets the motion of
specific point features of the environment as the optical flow. This motion is described through the camera model of
Section II.B. Hence, the optical flow of a particular point,mi , can be considered as a velocity vector,~Vf low,i, defined on
the image plane as in Eq. 13. The components of~Vf low,i are resolved in the image coordinate directions and therefore
consist of the time-derivatives ofmi ’s image coordinates,(µi ,νi), as shown in Figure 4(a). These quantities can be
measured directly from video data for a set ofn points given the assumption that each point can be tracked between two
image frames. A variety of techniques discussed in the vision processing literature have been shown to successfully
detect and track feature points through a series of images.1–3

~Vf low,i =
[

µ̇i ν̇i

]T
(13)

The expression for the velocity ofmi ’s projection in the image is found through differentiationof Eq. 4. The
developments of Section II allow this derivative to be rewritten in terms of aircraft states. The general expression for
the focal plane velocities of a feature point is given by Eq. 14.

[

µ̇i

ν̇i

]

=
f

η3i
2

[

η3i 0 −η1i

0 η3i −η2i

]







η̇1i

η̇2i

η̇3i






(14)

Upon substitution of the components of Eq. 12 into Eq. 14, several terms cancel while others can be grouped into
the form of the focal-plane coordinates given previously byEq. 4. Camera calibration is assumed known such that the
focal length can be normalized tof = 1. The equations can now be expressed as in Eqs. 15a and 15b, where the depth
component of~ηi has been replaced withdi to simplify notation.

µ̇i = µi
u
di

+
w
di

+ νi p− (1+ µi
2)q− µiνi r (15a)

ν̇i = νi
u
di

−
v
di

− µi p− µiνiq− (1+ νi
2)r (15b)

III.A. Motion-Decoupled Feature Tracking

While it is natural to consider components of~Vf low with respect to the orthogonal image basis and the corresponding
coordinates,(µ ,ν), the optical flow can also be decomposed into contributions from motion parameters.18 The decom-
position shown by Eq. 16 distinguishes between the flow ofmi induced by translational motion,~Vf low,Ti , and the flow
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induced by rotational motion,~Vf low,Ri . This decomposition is non-orthogonal in general as depicted in Figure 4(b).
The non-orthogonal motion components are then resolved in terms of the image basis, as shown by Figure 4(c) and
Eqs. 17 and 18.

~Vf low,i =~Vf low,Ti +
~Vf low,Ri (16)

~Vf low,T =
[

µ̇Ti ν̇Ti

]T
(17)

~Vf low,R =
[

µ̇Ri ν̇Ri

]T
(18)

~Vf low,i

(µi ,νi )

µ̇i

ν̇i

(a) Orthogonal Decomposition

~Vf low,Ri

~Vf low,i

(µi ,νi)

~Vf low,Ti

(b) Motion Decomposition

µ̇Ri

ν̇Ri

µ̇Ti
~Vf low,Ti

~Vf low,Ri

ν̇Ti

(c) Orthogonal Motion Decomposi-
tion

Figure 4. Projecting an Optic Flow vector on orthogonal and non-orthogonal bases

The expressions relating the components of~Vf low,Ti and~Vf low,Ri are easily recognized from the total flow expres-
sions of Eqs. 15a and 15b. The translational components simply consist of the terms of Eqs. 15a and 15b that contain
the velocity states,(u,v,w), as shown by Eqs. 19a and 19b. Similarly, the rotational components consist of the terms
of Eqs. 15a and 15b that contain the angular rate states,(p,q, r), as shown by Eqs. 20a and 20b. Equations 21a and
21b follow directly from this simple decoupling method.

µ̇Ti =
µiu+w

di
(19a)

ν̇Ti =
νiu−v

di
(19b)

µ̇Ri = νi p− (1+ µi
2)q− µiνir (20a)

ν̇Ri = −µi p− µiνiq− (1+ νi
2)r (20b)

µ̇i = µ̇T,i + µ̇R,i (21a)

ν̇i = ν̇T,i + ν̇R,i (21b)

III.B. Parallax and the Focus of Expansion

The translational optical flow component can be considered as a measure of parallax. Parallax refers to the apparent
relative motion of points at different depths resulting from camera displacement. Essentially, points exhibiting large
parallax are likely to be nearby while points exhibiting small parallax are likely distant. These effects are seen to result
from the inverse depth relationship present in Eqs. 19a and 19b. Hence, parallax is considered here as a measure of
relative depth of feature points with respect to each other.
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(µF ,νF )

Figure 5. Translational optical flow, or parallax,
radiates from the focus of expansion.

A degenerate case of this observed relationship occurs for translation di-
rectly toward a point in space. No apparent motion is observed for this case.
While this lack of motion degrades the potential information given by paral-
lax measurements, it does yield useful information regarding the direction of
velocity. Recall from Section II.B that each point in the image plane maps to
a ray in three-dimensional space. The point that maps to the direction of the
velocity vector corresponds to this degenerate case and is denoted the focus of
expansion (FOE).19 The FOE exhibits zero translational flow and is given by
Eqs. 22a and 22b. Further, all other translational vectors,~Vf low,Ti , radiate from
this point.19 As such, each of the~Vf low,Ti can be related to the FOE coordi-
nates through Eq. 23. This equation simply states that the lines resulting from
an infinite extension of each~Vf low,Ti intersect at the coordinates,(µF ,νF). The
concept is depicted in Figure 5.

µF = −w/u (22a)

νF = v/u (22b)

(µi − µF)

(νi −νF)
=

µ̇T,i

ν̇T,i
(23)

Equations 22a and 22b show that the FOE location is related directly to aircraft velocity information. The FOE
coordinates,(µF ,νF), actually relate angular information regarding the orientation of the velocity vector. This rela-
tionship is described in terms of image information througha tangent relationship as discussed in Section II.B. This
information is analogous to the angles describing the transformation from aircraft body axis to wind axis,α andβ .
Using some simple trigonometric relations, the FOE coordinates are related toα andβ through Eqs. 24a and 24b. The
angles are not related directly by the tangents of the FOE coordinates due to the wind-axis transformation sequence.
The angles related byµF andνF are each measured relative to theC frame. The sideslip angle,β , is defined as a
rotation from the intermediate axis that results from rotating theB axis throughα.

µF = − f · tanα (24a)

νF =

(

√

1+ µ2
F

)

· tanβ (24b)

IV. STATE ESTIMATION USING OPTICAL FLOW

An optimization-based approach is adopted to determine theaircraft angular rates and aerodynamic angles given
only measurements derived from a sequence of images. The relationships derived in Section III between aircraft
motion and image-based parameters are exploited to set up a least-squares minimization problem. Values of the
aircraft motion parameters are effectively fitted to optical flow measurements using variations of Eqs. 15a and 15b.
Two methods that have been presented previously in the literature are discussed followed by a new method presented
here.

IV.A. Method 1

Inspection of the optical flow expressions given by Eqs. 15a and 15b reveals two equations in seven unknowns for
a single tracked feature point. This conclusion assumes that the image coordinates,(µi ,νi), and the optical flow
components,(µ̇i , ν̇i), are measurable quantities. The seven unknowns consist of the three aircraft linear velocity
components,(u, v, w), the three aircraft angular velocity components,(p, q, r), and the feature depth,di . Tracking
each additional feature point results in the gain of two additional equations at the expense of only a single added
unknown variable: the respective feature depths,di , of the additional tracked points. As such, a minimum of six points
must be tracked to determine the system. A feasible optimization problem can be posed given this over-determined
system. The minimization utilizes the cost function given as Eq. 26, which consists of a sum of squared terms of the
form shown in Eq. 25. The decision variables consist of the angular velocity,E~ωB, the translational velocity,~VB, and
the vector of feature depths for each point,~d.
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J1,i

(

E~ωB,~VB,di

)

=

(

µiu+w
di

+ νi p− (1+ µi
2)q− µiνir − µ̇i

)2

+

(

νiu−v
di

− µi p− µiνiq− (1+ νi
2)r − ν̇i

)2

(25)

J1

(

E~ωB,~VB, ~d
)

= ∑
i

J1,i (26)

This method has been previously shown to yield accurate estimates for the angular rate variables; however, errors
are encountered in the computation of the body-axis velocities.15 To account for this deficiency, the motion decoupling
concept described in Section III.A is leveraged to determine an estimate of the FOE. This value is then used to compute
estimates of the wind-axis angles,α andβ . Specifically, the rate estimates that result from the minimization of Eq. 26
can be used in conjunction with Eqs. 20a and 20b to compute therotational component of the optical flow over the
entire image. This information allows access to the translational component, or parallax, which can be used to estimate
the FOE. Estimates of the angle of attack,α, and the angle of sideslip,β , follow from a straightforward computation.
Hence, only directional velocity information can be recovered.

The optical flow component due to translational motion cannot be found explicitly from Eqs. 19a and 19b due to
the poor estimates of the body-axis velocities, and the unknown depths to each individual feature. Alternatively, flow
measurements and the estimates of angular velocity can be used to recover the translational flow field as in Eqs. 27
and 28. This result is achieved using Eqs. 20a and 20b with theangular velocity estimates to computeµ̇Ri andν̇Ri for
all feature points.

µ̇Ti = µ̇i − µ̇Ri (27)

ν̇Ti = ν̇i − ν̇Ri (28)

Recall from Section III.A that the translational optical flow radiates from the FOE and that the location of this point,
(µF ,νF), can be used to obtainα andβ through Eqs. 24a and 24b. Hence, an estimate of the FOE position leads to
an estimate of the wind-axis angles. An approximation for the FOE location is found by extending the translational
optical-flow vectors and seeking the common point of intersection. Usingn feature points results in a system ofn
equations in 2 unknowns. A linear least-squares optimization is used as in Eq. 29 to estimate the FOE coordinate
values.

[

µF

νF

]

= arg min
µ ∈

[

µ, µ
]

ν ∈ [ν,ν]

1
2
‖C

[

µ
ν

]

− γ ‖2 (29)

where

C =

[

1 1 · · · 1

−
µ̇t1
ν̇t1

−
µ̇t2
ν̇t2

· · · −
µ̇tn
ν̇tn

]T

(30a)

γ =
[ (

µ1−
µ̇t1
ν̇t1

ν1

) (

µ2−
µ̇t2
ν̇t2

ν2

)

· · ·
(

µn−
µ̇tn
ν̇tn

νn

) ]T
(30b)

Once an approximation is found for the FOE, estimates ofα andβ are straightforward to compute using Eqs. 24a
and 24b. The actual expressions are given as Eqs. 31a and 31b.

α̂ = − tan−1
(

1
f

µF

)

(31a)

β̂ = tan−1
(

νF/

(

√

1+ µ2
F

))

(31b)

This method has been previously shown to exhibit reasonableestimation performance; however, the requirement
to compute feature depths for each tracked point drives complexity up and results in poor conditioning of the optimiza-
tion.15 Additionally, approximations of the total velocity and average feature point depths are required to initialize
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the optimization at each step. Average feature points depths require knowledge about the scaling of the environment
which may not always be accurate or available. Further, the most likely source of the required velocity information is a
GPS sensor; however, the vision system is intended to provide state estimates during mission segments for which GPS
data is not available. Therefore the assumption of a constant “trim velocity” would be the next closest approximation;
where this value is taken as the either the last measured velocity prior to loss of GPS signal or some known average
cruise speed.

IV.B. Method 2

As an alternative to using Eqs 15a and 15b directly as in Eqs. 25 and 26, the optical flow expressions can be combined
to a single equation through the elimination of the depth variable,di . This single equation is then used in a similar
fashion to set up an optimization problem. After some algebraic manipulation, the resulting cost function for mini-

mization is seen asJ2

(

E~ωB,~VB

)

in Eq. 33 which consists of terms of the form shown in Eq. 32. This form presents an

attractive alternative in comparison to Eq. 25 in that the number of variables has been reduced to only those of interest
to the state-estimation problem. A large number of measuredfeature points can be used in the optimization to ensure
robustness without an unnecessary increase in problem complexity.

J2,i

(

E~ωB,~VB

)

=
[

u v w
]







(

µ2
i + ν2

i

)

p−νiq+ µir + µi ν̇i − µ̇iνi

−νi p+
(

1+ µ2
i

)

q+ µiνi r + µ̇i

µi p+ µiνiq+
(

1+ ν2
i

)

r + ν̇i






(32)

J2

(

E~ωB,~VB

)

= ∑
i

(J2,i)
2 (33)

The constrained minimization problem featuring the cost function of Eq. 33 has been shown to admit a unique
solution under certain conditions.14 This solution results in accurate estimates such that the linear least squares step to
recover the FOE is unnecessary. The constraints under whichthe existence proof is performed are shown as Eqs. 34
and 35, respectively, whereV is the known total speed of the vehicle. The constraints are required in order to resolve a
velocity scale-ambiguity. Specifically, Eqs. 15a,15b, and32 are satisfied for any scalar multiple of the vehicle velocity.

u > 0 (34)

‖~VB ‖= V > 0 (35)

Inclusion of the constraints shown in Eqs. 34 and 35 is problematic for the current application. As with the previous
method, GPS measurements are required to obtain a value for the total velocity. These measurements are assumed
unavailable for missions of interest to this paper. Therefore, an approximation such as the “trim velocity” assumption
described previously is required to express the constraintshown in Eq. 35.

IV.C. Method 3

In contrast, the approach taken for the method presented here is to eliminate explicit velocity dependencies from the
optimization altogether. The optical flow is decoupled according to motion contributions as described in Section III.A
prior to posing the optimization problem. Consequently, the angular motion and translational motion can be treated
as separate problems. Solution of the angular motion allowsthe conversion of optical flow measurements to their
translational components. These components then yield directional velocity information in the form of the wind-axis
angles,α andβ . Further, the decoupled flow permits access to measurementsof the parallax induced on each tracked
feature point. This measure of relative depth can be leveraged to aid in feature selection and weighting for proper
conditioning of the optimization.

Estimates of the aircraft angular rates are achieved through the solution of an optimization problem that does not
explicitly include vehicle velocity. Specifically, the motion-decoupled optical flow is used to form a quadratic cost
function that is minimized for the correct values of the aircraft states in question.

Section III.A describes the decomposition of the optical flow of a feature point,mi , into contributions from transla-
tional motion and angular motion. Further, the translational component, or parallax, is shown to expand radially from
the FOE. This condition is re-expressed here as Eq. 36.

ν̇T,i (µi − µF)− µ̇T,i (νi −νF) = 0 (36)
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Recall that the image velocity components ofmi , (µ̇i , ν̇i), can be expressed as a sum of the components of~Vf low,Ti

and~Vf low,Ri as in Eqs. 21a and 21b. These vectors represent the optical flow of mi resulting from translation and
rotation, respectively. The decomposed flow can be used to express the translational flow in terms of the total flow and
the rotational component, as shown in Eqs. 37a and 37b.

µ̇T,i = µ̇i − µ̇R,i (37a)

ν̇T,i = ν̇i − ν̇R,i (37b)

After substitution of Eqs. 37a and 37b into Eq. 36, the FOE condition is expressed as Eq. 38. This expression
captures the dependence of the measurable optical flow components,(µ̇i , ν̇i), on the vehicle motion without explicit
references to translational velocity terms. The rotational flow terms,(µ̇R,i , ν̇R,i), are defined by Eqs. 20a and 20b and
are dependent only upon the measurable feature point image positions and the unknown vehicle angular velocities.
The influence of the translational motion is contained entirely in the unknown FOE position,(µF ,νF ).

(µ̇i − µ̇R,i)(νi −νF)− (ν̇i − ν̇R,i)(µi − µF) = 0 (38)

Eq. 38 is comprised of the three unknown angular velocities and the unknown FOE position along with measurable
image quantities. No additional unknowns are added throughtracking additional feature points, therefore the system
is completely determined when at least five features are tracked. An optimization problem to solve for the unknown
quantities can be formulated using terms taking the form of Eq. 38. After substitution of the expressions for the
rotational flow components, the cost term associated with each tracked feature point is shown as Eq. 39 The cost
function is then given as the sum of the squares of terms of theform shown in Eq 39 for all visible feature points, as
shown by Eq. 40.

J3,i
(E~ωB,µF ,νF

)

=
[

p q r
]







(

ν2
i −νiνF

)

+
(

µ2
i − µiµF

)

µiνi (µi − µF)−
(

1+ µ2
i

)

(νi −νF)
(

1+ ν2
i

)

(µi − µF)− µiνi (νi −νF)






+

[

−(νi −νF) (µi − µF)
]

[

µ̇i

ν̇i

]

(39)

J3
(E~ωB,νF ,µF

)

= ∑
i

(J3,i)
2 (40)

Finally, the minimization problem can be posed as Eq. 41. Thesolution of Eq. 41 yields estimates for the aircraft
angular velocity,E ~̂ωB, and for the FOE coordinates,(µ̂F , ν̂F). While (µ̂F , ν̂F) could be used to yield estimates ofα
andβ via Eqs. 24a and 24b, improved accuracy can be achieved through parallax-dependent feature selection and a
second optimization step similar to that discussed in Section IV.A. Hence, the currently obtained FOE coordinates are
disregarded and only the estimates for angular velocity arekept.

(

E~̂ωB, µ̂F , ν̂F

)

= arg min
(E~ωB,µF ,νF)

J3
(E~ωB,µF ,νF

)

(41)

The angular rate estimates obtained through the optimization problem posed in Eq. 41 are used to decouple the
optical flow and set up the linear least-squares problem shown previously as Eq. 29. Further, the most accurate in-
formation for the aerodynamic angle estimation step is achieved through the use of flow that is dominated by relative
velocity. Flow vectors that exhibit a large amount of parallax give a strong indication of the FOE location. Vectors
exhibiting less parallax are subject to inaccuracies resulting from measurement and estimation error. Potential im-
provements in the estimation accuracy of(µF ,νF) can be made through proper feature selection based on parallax
measurements.

In addition to selecting the largest translational flow vectors, the least-squares optimization can be further improved
by weighting the vectors that give a better indication of theactual FOE. The weight for each translational flow vector
is computed as a function of parallax such that larger translational flow vectors are given greater influence in the
optimization.

10 of 16

American Institute of Aeronautics and Astronautics



V. EXAMPLE

V.A. Simulation

Aircraft states are estimated using data generated by a flight simulation. Specifically, a high-fidelity model of the
nonlinear equations of motion for an F-16 is simulated to fly through a region of obstacles.20 The model includes an
autopilot which enables the vehicle to track a set of maneuvers and progress between waypoints using inertial sensors.

Images are generated by simulating a camera mounted on the aircraft. This camera is mounted at the center of
gravity with the optical axis aligned along the nose of the vehicle. The camera model uses a 70degfield of view and
a capture rate of 30images/second.

The environment is constructed to approximate an urban scene scaled to the dynamics of the F-16. This envi-
ronment is shown in Figure 6. The building surfaces of the environment are populated with feature points in a grid
pattern with a spacing of 500ft. Points are scattered randomly on the ground plane according to a uniform distribution.
Several points are also scattered at a large distance in all directions to simulate feature points corresponding to clouds
and background clutter.

Figure 6. Virtual Environment and Simulated Trajectory

The aircraft maneuvers through the environment by following a prescribed trajectory. This trajectory, as shown in
Figure 6, involves several maneuvers. The vehicle is initially flying at trim for straight and level flight at sea level. A
maneuver is executed which results in an aggressive climb followed by a negative roll to an inverted configuration.
This inverted flight is characterized by a positive pitch rate throughout. The aircraft then rolls back to a wings-level
condition while maintaining a nose-high attitude. The position data in Figure 7 and attitude data in Figure 8 quantify
these maneuvers.

A critical aspect of this trajectory is the variation in rates and velocities associated with these maneuvers. These
rates are shown in Figure 9 while the velocities are represented in Figure 10 by the total airspeed along with the
angle of attack and angle of sideslip. The large variations of these parameters are indicative of maneuvers, such as
traverssing an urban environment by a UAV, for which vision-based feedback might be especially valuable.

V.B. State Estimation without Noise

A sequence of images are measured that do not contain any random variations due to noise. These images are effec-
tively perfect measurements of the environment. As such, the analysis of perfect measurements should demonstrate
an upper bound on the theoretical accuracy of the state estimates generated by minimizing each of the cost functions.

The estimated rates are shown in Figure 11 along with the actual rates. The minimization of each cost function
is able to generate highly accurate estimates of the rates. The esimated values are visually indistinguishable from the
actual values.
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Figure 7. Vehicle position through 20sec duration of maneuver
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Figure 8. Vehicle attitude through 20sec duration of maneuver
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Figure 9. Vehicle rates through 20sec duration of maneuver
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Figure 10. Vehicle velocity through 20sec duration of maneuver
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Figure 11. Angular rate estimates for the noise-free case. Results are shown forJ1 (dashed magenta),J2 (dotted blue), andJ3 (dash-dot red) overlayed on truth
value (solid black)

The estimates of aerodynamic angles are shown in Figure 12 along with actual angles. In thise case, the estimated
values are quite close to the true values; however, a small deviation is noted in the data associated with theJ2 cost from
Equation 32. The formulation ofJ2 assumed a constant approximated “trim velocity” as described in Section IV. This
condition is clearly violated by the airspeed, as shown in Figure 10, nears its minimal value at the time of the error in
the angles.
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Figure 12. Aerodynamic angle estimates for the noise-free case. Results are shown forJ1 (dashed magenta),J2 (dotted blue), andJ3 (dash-dot red) overlayed
on truth value (solid black)

The accuracy of the state estimates can be approximated by the 2-norm metric of each error. These metrics, given
in Table 1, demonstrate that minimizingJ3 generates the best estimates. These estimates are always improved over
minimization ofJ1 by a factor of at least 2 and over minimization ofJ3 by an order of magnitude.

cost function p q r α β
J1 0.0245 0.0219 0.0449 0.2538 0.3503

J2 0.2113 0.3002 0.4146 5.2542 5.7387

J3 0.0059 0.0089 0.0056 0.1036 0.0552

Table 1. 2-Norm of Total error during 20 sec maneuver, noise-free

V.C. State Estimates with Noise

Noise is introduced to the images to reflect the performance of each cost function using imperfect measurements. A
noise value up to 0.5 pixels, both horizontally and vertically, is associated with each feature point in the image. Such
noise is a realistic level that could result from lens distortion, errors in calibration, and numerical errors in image
processing.

The angular rates which are estimated are shown in Figure 13 to compare with the actual values. In each case, the
state estimates are reasonably accurate. Slight variationis noted in each estimate; however, these variations are quite
minor.
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Figure 13. Angular rate estimates for the case of 0.5 pixel-width noise that is uniformly distributed about measured image position. Results are shown forJ1

(dashed magenta),J2 (dotted blue), andJ3 (dash-dot red) overlayed on truth value (solid black)

The estimates of the aerodynamics angles, as shown in Figure14, are somewhat more sensitive to the noise.
The estimates resulting from minimization of each cost function show significant error around 10 seconds into the
simulation. Additional error is present as the simulation ends.
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Figure 14. Aerodynamic angle estimates for the case of 0.5 pixel-width noise that is uniformly distributed about measured image position. Results are shown
for J1 (dashed magenta),J2 (dotted blue), andJ3 (dash-dot red) overlayed on truth value (solid black)

The effect of noise is evident in the 2-norm metrics of each error signal. These values, given in Table 2, are
noticeably higher than the corresponding metrics associated with noise-free images in Table 1. The cost function
whose minimization resulted in the smallest error actuallyvaries with the state estimate. The error in rates was
smallest forJ1 and largest forJ2; conversely, the error in angle of attack was smallest forJ2 and largest forJ1.

cost function p q r α β
J1 0.2789 0.4200 0.3963 14.6860 12.5938

J2 0.4323 0.6296 0.7359 10.8991 13.2984

J3 0.3495 0.5204 0.5996 13.2852 12.3931

Table 2. 2-Norm of Total error during 20 sec maneuver, with pixel position noise

V.D. Computational Cost

The computational cost of state estimation is another metric with which to evaluate the cost functions. The application
of such approaches is presumable for autonomous operation during flight; consequently, the speed at which infor-
mation is available for control becomes critical. The neccessity for speed is compounded as the flight environment
becomes more dense and agile maneuvering is required.

The CPU required for each estimation is given in Table 3 as determined by MATLAB. Clearly, the minimization
of J3 is achieved with a reduced workload as compared toJ1 andJ2.
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cost function without noise with noise

J1 9383.7 9492.5

J2 1678.3 1995.1

J3 680.3 791.4

Table 3. Total CPU time in seconds

VI. CONCLUSION

This paper has presented a technique for partial aircraft state estimation using vision as a sensor. Optical flow
is used to compute accurate estimates of the aircraft body axis angular rates as well as the aerodynamic angles that
determine the orientation of the velocity vector. Estimation accuracy is aided by selectively tracking those feature
points more likely to exhibit motion that is beneficial to theestimation process. Development of this purely visual
technique is a step towards using vision for flight control incomplex and cluttered environments.
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