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Abstract

Aeroelastic dynamics must be accurately known to ensure
safe and efficient flight testing. Unfortunately, most mod-
els of aircraft systems typically describe only the linear dy-
namics. These models are inadequate for predicting behav-
iors, like limit cycle oscillations, resulting from nonlinear-
ities. This paper presents an approach to augment a linear
model by identifying associated nonlinear operators. Essen-
tially, the difference between a flight data measurement and
a simulated measurement indicates the unmodeled dynamics.
Volterra kernels are computed to represent the difference in
measurement and, consequently, represent the unmodeled dy-
namics. The approach is applied to a nonlinear pitch-plunge
system for which only a linear model is assumed available.
The method is able to characterize errors due to incorrect pa-
rameters in the linear model and errors due to unmodeled non-
linearities of the dynamics.

Introduction

The analysis of nonlinear aeroelasticity is a research area of
increasing importance to the flight test community. The oc-
curence of limit cycle oscillations resulting from these nonlin-
ear dynamics has been noted on several aircraft [5]. Indeed,
these limit cycle oscillations have been noted with varying
types of behaviors which may indicate varying nonlinearities
affect the dynamics [3].

Aeroelastic models, despite the importance of nonlinear dy-
namics in physical systems, are usually generated with as-
sumptions of linearity. These models are used to predict the
onset of flight conditions at which linear instabilities occur
and, potentially, indicate conditions at which limit cycles are
likely to occur [4]. In general, the actual nonlinearities exist-
ing in aircraft are not well understood and subsequently can
not be modeled.�
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Current practices for flight testing reflect the lack of accuracy
for modeling nonlinear aeroelasticity. Flight data is gener-
ated that measures responses of the aircraft to various types
of excitation. This data is then analyzed to extract basic infor-
mation, such as damping, about the aircraft dynamics which
may be used to indicate the onset of instabilities. Flight data
often has characteristics that indicate it was generated from
nonlinear dynamics but a uniform framework does not exist
for extracting all types of characteristics.

This paper presents a method to identify nonlinear dynamics
from analysis of flight data. Actually, the method identifies
unknown dynamics, or errors, in a linear model by subtracting
simulated data from measured data. The linear and nonlinear
components of the errors are then extracted. In this way, the
method identifies unmodeled linear and nonlinear dynamics
associated with a model as indicated by flight data.

The approach relies on a particular formulation of the model
that relates the known dynamics to the unknown dynamics
through a feedback relationship. This formulation has already
been demonstrated as a valid representation for many types of
nonlinear systems [18]. Furthermore, the basic formulation
was used for the specific problem of identifying static nonlin-
earities using an optimization approach [17].

Identification of the unknown dynamics is accomplished us-
ing Volterra kernels. A wavelet-based approach has been de-
veloped that identifies kernels to represent a mapping between
a set of input and output data. A variant of this approach has
already been utilized to extract estimates of linear uncertainty
for a linear model [11].

A nonlinear pitch-plunge system is used to demonstrate the
approach. This system consists of a rigid wing mounted in
a wind tunnel [16]. Separate models are generated to rep-
resent the linearized dynamics such that one model has the
correct estimate of pitch stiffness while the other has an in-
correct estimate. Volterra kernels are identified to describe
the differences between measured and predicted outputs of
the system. These kernels were able to demonstrate that the
inaccurate model does indeed have an error in its represen-
tation of the linearized dynamics. More importantly, these
kernels also show that the dynamics have a nonlinearity that
is not included with either model.
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Nonlinear Aeroelasticity

The aeroelastic systems under consideration are described by
the general equation of motion in Equation 1.�	�
�� ��
�� ��
�� ����� ����� � (1)

This general formulation uses 
"!$#&%(' as the modal dis-
placement vector and �)!	# %+* as the input vector. The
dynamics are described by

� !,# %('(-.%(' as the equivalent
mass matrix, /!0# %('(-.%(' as the equivalent damping ma-
trix, � !1# %2'3-.%2' as the equivalent stiffness matrix and�/!4# %2'3-5%+* as the equivalent input matrix. Also, the el-
ement �76 # %(8:9 # % ' is the equivalent nonlinearity which
is a function of ��!&# %28 .
The matrices in Equation 1 are described as equivalents to
standard elements of structural dynamics. These matrices are
actually formulated by combining elements of structural dy-
namics and aerodynamics. Such a formulation is relatively
straightforward, as will be demonstrated for a pitch-plunge
example, using linear algebra. Of course, the formulation re-
quires the unsteady aerodynamics to be represented as a ra-
tional function approximation. The derivations in this paper
are not explicitly dependent on any particular realization of
the dynamics; therefore, the form in Equation 1 will be used
for notational simplicity.

An important feature in Equation 1 is the nonlinearity repre-
sented as ����� � . This nonlinearity is described as a function
of the signal � . In this paper, the signal � is restricted to being
a linear combination of the states and inputs. The use of � al-
lows the general formulation as presented to account for many
types of nonlinearities, such as nonlinear stiffness or surface
free play, using the same framework. Define this signal using;=< !�# %28>-.% ' and

;@? !A# %(8+-.% * .�B� ; < 
�� ; ? � (2)

Finally, a set of measurements are available from flight testing
of the aeroelastic system. Define these sensor measurements,C , using D < !A#A% ' -.% ' and

;@? !A#A% ' -5% * .C�� D < 
B� D ? � (3)

The formulation of Equation 1 is assumed to be an accurate
representation of the dynamics of a system. Any physical
system will not be exactly described by such a simple for-
mulation; however, the formulation is reasonably accurate for
many systems of interest.

Model

A model of the aeroelastic system in Equation 1 is developed
also using the concepts of equivalent matrices. The equation
of motion for this model is given in Equation 4.�	�
B�E��
��F��
��G�H�&�,IE�J�3� (4)

This model is assumed to contain the same number of modal
displacements and inputs as the true system in Equation 1.
Namely, 
G!K# % ' and ��!�# % * are dimensioned such

� !# % ' -5% ' L M!N# % ' -.% ' L �O!N# % ' -.% ' and �M!P# % ' -5% * .
The additional signal �G!F# %28 is dimensioned such that the
remaining term, I762# %28Q9 # % ' , is a mapping of appropri-
ate dimension.

The function, IE�J�3� , represents an unknown, possibly nonlin-
ear, contribution to the dynamics. This mapping is simply
represented in a fashion analogous to the nonlinearity of the
true dynamics; namely, the unknown dynamics are a function
of the states and inputs whose linear combination is described
by � .

The known and unknown elements of the model can be related
through feedback by introducing a signal R !&#�%2' .R �,IE��� � (5)

The inclusion of R allows the unknown element, IE��� � , to be
removed from the equation of motion and replaced by a feed-
back relationship. Instead, the system dynamics are now rep-
resented by a set of equations. These equations, along with
the formulations for the sensor measurements, C , and func-
tional dependency, � , are given in Equation 6.ST U �
 �V� �XWZY �[
\� �XWZY ��
�� �XW]Y �H��� �XWZY RC � D < 
�� D ? �� � ;=< 
�� ;=? � ^ _`

(6)
A single model, a , is developed to represent the dynamics
described in these equations. The inputs to the model are the
signals � and R whereas the outputs from the model are the
signals C and � . This model can be realized as a state-space
system because the known dynamics are assumed to be linear.

a �cbdde f g f f� �XW]Y � � �XWZY  �XW]Y � �XWZYD < f D ? f; < f ; ? f
hjiik

The model, a , is related to the unknown dynamics, IE��� � ,
through a feedback relationship as shown in Figure 1.

X

P
l lC �l

m wz

Figure 1: Feedback Relationship of Operators
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Operator Identification

The system as represented in Figure 1 has a natural decompo-
sition that separates known and unknown elements. As such,
the identification of the unknown operator is straightforward.
This approach allows maximum usage of the known dynam-
ics of the system for estimating the unknown dynamics.

The derivation of the identification procedure is simplified by
considering a particular representation of a . This model was
originally presented in terms of a state-space matrix quadru-
ple; however, it can also be presented as a matrix of transfer
functions. In this case, a is described as matrix of 4 transfer
functions relating the 2 inputs to the 2 outputs.a �on a YpY a Yrqa qsY a qtqKu (7)

The unknown operator, IE��� � , can be identified as a mapping
between the � and R signals. As such, these signals must be
isolated. Such an isolation can be accomplished using the el-
ements, a YpY and a Yvq , of the transfer function matrix. These
elements are used to compute the expected output measure-
ments of the model by noting that R �wIE�J�3� .C�� a YpY 
�� a Yrq IE�J�3� (8)

The operator is chosen such that the expected output of the
model, C , matches the measurements from the system, C , ac-
quired by flight data. Consequently, the unknown element can
be identified as an optimization.Ix�,y2zt{=|�}�~��� CB� a YtY 
�� a Yvq�� �J�3� � (9)

This formulation in Equation 9 is a particularly attractive ap-
proach for flight test programs. Essentially, the minimization
is based on the difference between measured and simulated
data. The measurement data, C , represents the nonlinear sys-
tem and the simulated data, a YtY 
 , represents the linearized
model.

A representation for I���� � can be computed as a set of
Volterra kernels. These kernels allow linear and nonlinear el-
ements of the unknown dynamics to be identified. Of course,
several techniques for system identification can be applied but
this paper will restrict attention to Volterra kernels.

Volterra Kernels

Volterra series representations provide a convenient frame-
work for the analysis of nonlinear dynamical systems. The
Volterra theory of nonlinear systems states that the system
output, R , can be expressed in terms of an infinite series of
integral operators of increasing order [13, 14].R ���v��� R Y ���v��� R q ���v��� R�� ���v���w�����>� R�� ���v� (10)

In practice, the series is truncated and this paper consid-
ers Volterra models that include only the first, second, and
third-order operators. For a causal, time-invariant, single-
input/single-output system, these operators take the formR Y ���v�@���F��E� Y ���2�r�������G�2�r�(� (11)

R q ���v�@��� �� � ��E� q ��� Lv� �r�������G�2�r������� � �v�2�+� � (12)

R�� ���v�@�4�F�� ���� �F��E� � ��� Lv��Lv� �v�����3���2�v�����3� � �r����� � � �r�(�+� � � �
(13)

where � is the input and � Y L � q L � � denote the first, second,
and third-order Volterra kernels. Collectively, the Volterra
kernels provide a model of the system since, once the ker-
nels have been identified, the response to any arbitrary input
can be determined. The first-order kernel represents the linear
dynamics of the system while the higher-order kernels char-
acterize the nonlinear dynamics. It should be noted that, for
a linear system, the first-order kernel is equivalent to the im-
pulse response of the system and the output is given by Equa-
tion 11. Therefore, the Volterra theory can be viewed as an
extension of the concept of linear convolution to nonlinear
systems.

Boyd and Chua [2] have demonstrated that, in general, any
system that exhibits fading memory can be approximated to
arbitrary accuracy in terms of a truncated Volterra series. Fad-
ing memory asserts that past inputs have a diminishing influ-
ence on the present output. This implies that all of the Volterra
kernels of a given system decay to zero in a finite period of
time. Many systems in engineering practice satisfy this re-
quirement; therefore, the Volterra theory is applicable to a
large class of dynamical systems. The truncation error asso-
ciated with a finite Volterra series representation is related to
the input amplitude [2]. This paper considers Volterra series
that have been truncated to include only the first, second, and
third-order operators. For many systems of interest, it has
been demonstrated that the second and third-order kernels are
sufficient to characterize the nonlinear dynamics when the in-
put amplitude is sufficiently bounded.

The identification of Volterra kernels is a difficult problem in
practice. By nature, it is an ill-posed, inverse problem since
the system model, in the form of Volterra kernels, must be de-
termined from input/output measurements from the system.
Typically, a large number of parameters are needed to rep-
resent the kernels, with the number increasing geometrically
with the order of the kernel. A diverse range of approaches
have been taken to identify Volterra kernels in both the time
and frequency domains. The harmonic probing method [1] is
commonly used to measure kernels in the frequency domain.
Time-domain approaches include the application of discrete
impulse inputs [15], variations of the cross-correlation tech-
nique [8], and expanding the kernels in terms of a set of basis
functions such as decaying exponentials [12].
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The approach taken in this paper is to represent first, sec-
ond, and third-order kernels in terms of a multiwavelet ba-
sis. Wavelets are compactly-supported, oscillatory func-
tions that are constructed to satisfy certain properties such
as orthogonality, smoothness, and symmetry requirements.
Multiwavelets are composed of a set of wavelet functions��� Y L�������L �� +¡ that are generated from a set of scaling func-
tions

�>¢ Y L�������L ¢   ¡ [6]. The scaled translates and dilates of the
multiwavelets form a basis for £ q �¤#&� , the space of square-
integrable functions. Higher-dimensional multiwavelets are
easily constructed as tensor products of the one-dimensional
scaling functions and multiwavelets. The main motivation
for using wavelet expansions is that they provide information
about the kernels in both the time and frequency domains. Of-
ten, many of the wavelet coefficients are very small and can
be neglected, leading to reduced-order representations of the
kernels.

This paper employs piecewise-quadratic multiwavelets that
have been constructed using the technique of intertwining [6].
This process derives four scaling functions and associated
multiwavelets from the classical quadratic finite element ba-
sis functions. The details of this construction and plots of
the multiwavelets are given in Ref. [10]. This class of multi-
wavelets is well-suited for the approximation of Volterra ker-
nels because the functions are orthogonal, symmetric or anti-
symmetric, and are easily adapted to the finite domains over
which the kernels are supported.

Multiwavelet expansions of the kernels are substituted into
Equations 11 through 13 along with a zero-order hold, or
piecewise-constant, approximation of the input. Then, the
kernel identification problem reduces to a matrix equation of
the form R ¥ �N¦ § Y § q § ��¨ ST U,© Y© q© �

^ _` (14)

In Equation 14, R ¥ represents a vector of discrete outputs that
have been sampled at ª ¥ Hz. The vectors © Y , © q , © � are com-
posed of the multiscale wavelet coefficients that represent the
first, second, and third-order kernels. It should be noted that
the formulation in Equation 14 takes into account the fact that
the Volterra kernels can be assumed to be symmetric [14].
This reduces the number of second and third-order coeffi-
cients in the model by roughly factors of two and six, re-
spectively. Equation 14 is solved, in a least-squares sense,
for the first, second, and third-order kernel coefficients. In
many cases, the vectors © Y , © q , © � can be truncated to obtain
reduced-order representations of the kernels.

Specific Formulations

Concept

The model presented in Figure 1 is a general formulation that
can be used to represent a broad range of systems. This gen-

eral formulation can often be recast for specific models. In
particular, the models can be altered if the unknown dynamics
are assumed to be functions of either the states or the inputs.

Specific formulations are derived for two different models.
One model assumes the unknown dynamics are purely a func-
tion of the states. Another model assumes the unknown dy-
namics are purely a function of the inputs. These formulations
are presented to demonstrate that the generalized formulation
in Figure 1 does indeed converge to formulations common to
specific types of models.

Unknown Function of State

Consider a formulation that assumes the unknown dynamics
are functions of the states. Such an assumption implies that�«�o
 and, consequently, I���� �¬�7IE��
�� . The open-loop
model can thus be written to reflect this specific formulation.

a � bdde f g f f� �XW]Y � � �XWZY  �XW]Y � �XWZYg f f fg f f f
h iik (15)

This model can also be expressed as the matrix of transfer
functions. Noting the relationship between each input and
output allows the system to be written as in Equation 16.

a � n a YtY a Yvqa YtY a Yvq u (16)

Obviously the model has a redundancy in that both outputs
are identical. As such, the system could be simpified from the
general representation in Figure 1 to the reduced representa-
tion in Figure 2.

X

 a YpY a YvqK®lx

m
ll u

Figure 2: Model with Unknown Function of States

This graphical representation demonstrates an important fea-
ture of the measured data. Namely, the measurements, 
 , are
affected by a nonlinearity that is itself a function of 
 . Thus,
the dynamics inherently have a feedback relationship that is
easily symbolized using the general representation in Figure 1
or specific representation in Figure 2.

Unknown Function of Input

Consider a formulation that assumes the unknown dynamics
are a function of the input. Such an assumption implies that�«�o� and, consequently, I���� �¬�7IE����� . The open-loop
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model can thus be written to reflect this specific formulation.

a � bdde f g f f� �XWZY � � �XW]Y  �XWZY � �XWZYg f f ff f g f
h iik (17)

A matrix of transfer functions is again a convenient repre-
sentation for this model. Such a representation is given in
Equation 18. a � n a YpY a Yrqg f u (18)

This formulation indicates the second output of the system, as
expected, is simply the first input of the system. The system
can thus be greatly simplified from the general block diagram
of Figure 1 to the reduced block diagram in Figure 3.

a Yvq I
a YtY¯°lx ± l

l
u

Figure 3: Model with Unknown Function of Inputs

This graphical representation is particularly relevant to the use
of Volterra kernels. Specifically, the Volterra kernels assume
the measurement can be separated into a linear and nonlinear
component. The block diagram in Figure 3 clearly shows the
measurement, 
 , is simply the added outputs of a linear sys-
tem and an unknown system. Allowing the unknown system
to include the nonlinearity allows Figure 3 to exactly match
the assumptions associated with Volterra modeling.

Interpreting Unknown Element

The formulation of a linear model will always have some er-
rors. An obvious source of error is the omission of the nonlin-
ear dynamics but another source of error is incorrect estimates
of the linearized dynamics. The unknown element, IE��
�� , is
Equation 4 can be interpreted in terms of these errors.

Consider a particular situation in which the linearized compo-
nent of the structural dynamics is modeled accurately except
for the stiffness. Introduce a term, ²\³ !,# % ' -.% ' , to rep-
resent the error in the linearized stiffness of the model. Es-
sentially, relate the terms in the model of Equation 4 to the
terms in the system dynamics of Equation 1 using the simple
relationships in Equations 19-22.� � �

(19) �  (20)� � �´� ² ³ (21)� � � (22)

The model is thus described as in Equation 23.�	�
��  �
��Nµ �´� ²B³:¶ 
�� �H�¬�·IE�J�3� (23)

The model in Equation 23 is equivalent to the system dynam-
ics in Equation 1 for a special case of the unknown dynamics
given in Equation 24.IE�J�3�=�«�F��� �]� ² ³ 
 (24)

The meaning of the unknown dynamics is clear in this case.
Specifically, the term, IE�J�3� , represents the error caused by
unmodeled nonlinear dynamics and the error caused by inac-
curate linear dynamics. The formulation in Equation 24 con-
siders error in stiffness but the derivation is easily extended to
consider error in mass and damping also.

Example

Pitch-Plunge System

The process of estimating a model to describe aeroelastic dy-
namics is applied to a pitch-plunge system. This system is
comprised of a rigid airfoil, whose motion is restricted to
pitching and plunging, mounted in a wind tunnel at Texas
A&M University.

The dynamics of the system are described to within a high
degree of accuracy by Equation 25.¸5¹ q�º¼» be ��½¼¾À¿\ÁÃÂ�� YÄ �� �Pµ Yq �GÅ ¶ º YÄ �ÂÇÆ\�E½s¾ÉÈ ©½¼Ê�¿�Á�Â�� YÄ �� �Pµ Yq �GÅ ¶�ËÄ �ÂÌÆ\�E½¼ÊÍÈ ©

hk
� n Î¬Ï Î¬Ð 
�Ñ ºÎ Ð 
 Ñ º g Ñ u n �� �Â u�"n ½�Ò ff ½ Ñ u n �� �Â u �ÓnBÔ Ò ff Ô Ñ u n �Â u� n fÔ Ñ2Õ Â q u (25)

These dynamics describe the complete aeroelastic system.
The degrees of freedom of the rigid airfoil are described by
the plunge, � , and the pitch, Â , parameters. The left side of
the equality describes the quasi-steady aerodynamics that are
generated in response to motion of the airfoil and commanded
rotations, © , of a flap. The right side of the equality describes
the structural dynamics.

The system has been constructed to include a nonlinearity in
the structural dynamics. Specifically, the stiffness affecting
pitch motion is a nonlinear function of the pitch angle. The
dynamics used in this paper consider a quadratic nonlinearity
for this stiffness term.

The parameters describing the dynamics of the system are
given in Table 1. These parameters are generally indicative
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of those presented in several references [7, 9]; however, the
value of pitch damping has been increased simply to ensure
the identified kernels decay within 4 sec for ease of computa-
tion.

parameter parameter
U = 6 m/s a = -0.6
b = 0.135 m ¸ = 1.225 kg/ Î �

m = 12.387 kg 
�Ñ = 0.2466g Ñ = 0.065 Î q
kg Ô Ò = 2844.4 N/m½�Ñ = 0.180 Î q
kg/s ½�Ò = 27.43 kg/s½s¾À¿ = 6.28 ½¼Ê�¿ = -0.628½¼¾ÉÈ = 3.358 ½�ÊÍÈ = -0.635Ô Ñ = 2.82 Ô Ñ Õ = 14.1

Table 1: System Parameters

Model Formulation

Models of the aeroelastic system are developed from the the-
oretical equations of motion. This model has the exact form
of the linearized dynamics in Equation 25. Essentially, the
model contains all of Equation 25 excepting the nonlinear
contribution of Ô Ñ Õ Â q to the moment.

The model is formulated using the equivalent matrices as in
Equation 4. These equivalent matrices are straightforward to
derive by combining terms in ¦ C L Â ¨ and ¦¼�C L �Â ¨ .� � n Î�Ï Î¬Ð 
�Ñ ºÎ¬Ð 
�Ñ º g Ñ u0�ÓÖ n ½ Ò ff ½ Ñ u �G¸ º¼» ¹ n ��½¼¾À¿ �:� Yq �×Å.� º ½s¾�¿º ½¼Ê�¿ � Yq �×Å.� º q ½¼Ê�¿ u.Ø�Ó� Ö n Ô Ò ff Ô Y[u �Ùn f ��¸.¹ q º¼» ½s¾À¿f ¸.¹ q º q » ½¼Ê�¿ u Ø�V�on ��¸5¹ q º¼» ½s¾jÈ¸5¹ q º q » ½¼ÊÍÈ u
Also, a sensor is included that allows pitch angle to be mea-
sured. Define the standard basic vector, Ú Ïq �N¦ fÜÛ ¨ , such thatC��P¦ C�Â ¨ÝÚ q represents this measurement.

A state-space plant model, a , is thus created.

a � bdde f g f f� �XWZY � � �XWZY  �XWZY � �XW]Y Ú qÚ Ïq f f fÚ Ïq f Û f
h iik

The model, a , is related to the unknown dynamics, I ,
through a feedback relationship as shown in Figure 1.

A pair of models are developed to describe the linearized dy-
namics using the values from Table 1. The only difference
between these models is the value of the pitch stiffness. One
model is formulated using the correct value of pitch stiffness

model Ô Ñ
accurate 2.82

inaccurate 2.26

Table 2: Model Parameters

while the other model is formulated using an incorrect value
of pitch stiffness as shown in Table 2.

The unknown dynamics associated with these models are
computed using separate approaches. The first approach will
consider the unknown dynamics as a function of pitch angle
while the second approach will consider the unknown dynam-
ics as a function of input flap command.

Estimating IE��
�� with Accurate Linear Model

The procedure discussed in this paper is used to estimate the
unknown dynamics associated with a linear model of the sys-
tem. This linear model is formulated as an accurate represen-
tation of the linearized dynamics of the pitch-plunge aeroe-
lastic system. Thus, the estimation of the unknown dynamics
are actually an estimation of the nonlinearity in the dynamics.

Response data is simulated from the nonlinear dynamics by
commanding a chirp signal to the flap. This chirp command
ranges from 0.0 to 5.0 Hz over 32 sec. The magnitude of the
flap command is 10 deg.

The pitch angle simulated in response to this chirp signal is
shown in Figure 4 for the nonlinear dynamics and the lin-
ear model. Clearly these responses differ indicating the chirp
command is exciting the nonlinearity. Consequently, the re-
sponse of the nonlinear dynamics should contain sufficient
information to allow estimation of the nonlinearity.

0 5 10 15 20 25 30
−6

−4

−2

0

2

4

6

Pi
tc

h 
(d

eg
)

Time (sec)

nonlinear system
linear model

Figure 4: Response of Nonlinear Dynamics and Linear Model

The difference between measured data from the nonlinear
system and simulated data from the linearized model is used
to identify the unknown dynamics. Essentially, the Volterra
kernels attempt to represent the dynamics that may have gen-
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erated this difference. The approach using wavelets is used to
generate the kernels. The resulting signal is shown to compare
quite closely with the computed difference between linear and
nonlinear responses as shown in Figure 5.

0 5 10 15 20 25 30 35
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measured from data
simulated from Volterra

Figure 5: Difference in Measurements from Nonlinear Dynamics
and Linear Model

The unknown dynamics associated with the linearized model
are represented by the first-order kernel in Figure 6 and the
second-order kernel in Figure 7.
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Figure 6: Estimated First-Order Volterra Kernel

Figure 7: Estimated Second-Order Volterra Kernel

These kernels demonstrate the validity of the estimation pro-
cess. Consider that the model as formulated included an accu-
rate representation of the linear dynamics but did not include
any nonlinearities. Accordingly, the first-order kernel, which
represents the linear components of the unknown dynamics,
is small while the second-order kernel, which represents the
nonlinear component of the unknown dynamics, is large. The
small size of the first-order kernel indicates that no linear dy-
namics are unknown so indeed the model must contain the
accurate linearized dynamics. The large size of the second-
order kernel indicates that the system definitely includes a
nonlinearity which is not contained in the model. Both of
these statements agree with the model formulation.

Another demonstration of the validity of the estimation pro-
cess is to generate responses from the identified model. Esti-
mates of pitch angle are generated in response to a chirp com-
mand to the linear model with the Volterra kernels in feed-
back. These estimated responses are shown with the original
simulated responses in Figure 8. Clearly the nonlinear model
is able to reproduce this response of the nonlinear dynamics.
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Figure 8: Response of Nonlinear Dynamics and Nonlinear Model

Estimating IE��
�� with Inaccurate Linear Model

The procedure is also applied to compute the unknown dy-
namics associated with an inaccurate linearized model. As
mentioned, the linearized model is computed using an incor-
rect value of pitch stiffness. Thus, the unknown dynamics are
actually representative of the unmodeled nonlinearity and the
error in pitch stiffness.

The responses of the nonlinear system and the linearized
model to chirp inputs are shown in Figure 9. The response
of the nonlinear system is identical to that in Figure 4 but the
response of the linearized model is different. That difference
is caused by the change in pitch stiffness for the linearized
model.
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Figure 9: Response of Nonlinear Dynamics and Linear Model

Volterra kernels are computed to represent the dynamics asso-
ciated with the difference between the responses in Figure 9.
As shown in Figure 10, these kernels are able to match the
difference in response as a function of the pitch angle.
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Figure 10: Difference in Measurements from Nonlinear Dynamics
and Linear Model

The Volterra kernels identified from the response difference
are shown in Figure 11 and Figure 12. Again, these kernels
represent the first-order and second-order dynamics.

These kernels are demonstrative of the capabilities of the ap-
proach. Note particularly the differences between the first-
order kernel in Figure 6 and the first-order kernel in Figure 11.
The kernel in Figure 6 is small to indicate the linearized model
matches the linearized dynamics of the system. Conversely,
the kernel in Figure 11 is large and indicates the linearized
model does not match the linearized dynamics of the system.
Thus, the approach is able to compute unknown dynamics that
account for both errors in unmodeled nonlinearities and errors
in inaccurate linearization.
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Figure 11: Estimated First-Order Volterra Kernel

Figure 12: Estimated Second-Order Volterra Kernel

Estimating IE���Z� with Accurate Linear Model

An estimate of the unknown dynamics is again computed for
the linear model; however, these unknown dynamics are now
considered as a function of the input.

Data is generated in response to summation of several chirp
signals between 0 and 4 Hz. The difference in responses, as
shown in Figure 13, is reproduced by Volterra kernels.
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Figure 13: Difference in Measurements from Nonlinear Dynamics
and Accurate Linear Model

8



The dynamics which generated the difference in Figure 13
are identified as first-order, second-order and third-order ker-
nels. These kernels are shown in Figures 14 - 16. Note that,
since the third-order kernel exists over a three-dimensional
domain, only one slice of the kernel at � � �ßÞ sec is shown in
Figure 16.
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Figure 14: Estimated First-Order Volterra Kernel
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Figure 15: Estimated Second-Order Volterra Kernel
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Figure 16: Slice of Estimated Third-Order Volterra Kernel

From Figure 14, the first-order kernel is essentially zero, in-
dicating that there are no unmodeled linear dynamics. This is
consistent with the assumption that the linear model is accu-
rate. The second and third-order kernels, on the other hand,
are not zero and represent a model of the system nonlinearity.

Clearly, these kernels are capable of predicting the nonlinear
component of the response that cannot be accounted for in the
linear model.

Also, these kernels are quite smooth. This feature results from
an advantageous choice of input signal. Essentially, the mul-
tichirp input, composed of several chirps summed together,
is able to provide better excitation than a single chirp. Thus,
the kernels in Figure 14-16 seem geometrically smoother than
those in Figure 11-12.

Estimating IE���Z� with Inaccurate Linear Model

In this example, Volterra kernels are now used to estimate
the unknown dynamics associated with an inaccurate linear
model. Once again, these dynamics are modeled in terms of
functionals of the input flap deflection. Since the linear model
is now assumed to be inaccurate, the unknown dynamics are
due to both the nonlinearity in the system and error in the
linear model.

Response data is simulated by using the same input signal as
in the previous example. The unknown dynamics in this case
are obtained as the difference between the simulated response
and the response predicted by the inaccurate linear model.
Once again, first, second, and third-order kernels are identi-
fied from the unknown dynamics. The response predicted by
the identified kernels is compared to the the unknown dynam-
ics in Figure 17. From the figure, it is clear that the kernels
accurately reproduce these dynamics.
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Figure 17: Difference in Measurements from Nonlinear Dynamics
and Inaccurate Linear Model

The identified kernels are shown in Figures 18 - 20. The first-
order kernel in Figure 18 is no longer zero, indicating that
there is a linear component in the unknown dynamics. This is,
of course, due to the error in the linear model. The response
predicted by the first-order kernel is compared to the error in
the linear model in Figure 21. Clearly, the first-order kernel
is able to account for the error in the linear model.

9



0 1 2 3 4
−0.5

−0.25

0

0.25

0.5

Time (sec)

K
er

ne
l

Figure 18: Estimated First-Order Volterra Kernel
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Figure 19: Estimated Second-Order Volterra Kernel
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Figure 20: Slice of Estimated Third-Order Volterra Kernel

The identified second and third-order kernels are virtually
identical to those obtained in the previous example. This is
expected since the nonlinear component of the response did
not change in this example. Collectively, then, the identified
Volterra kernels are able to account for both error in the linear
model as well as the unmodeled nonlinear component of the
dynamics.
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Figure 21: Simulated Response from First-Order Volterra Kernel

Validation of Volterra Kernels

An important consideration in identifying Volterra kernels is
to verify that the kernels are an accurate representation of the
system and not merely a curve-fit of the training data. The
kernels can be validated by evaluating their ability to predict
the response of the system to novel inputs. The kernels iden-
tified in the previous examples were validated using several
novel data sets. One such example is shown in Figures 22 and
23 for a sine input of frequency

Û
Hz and amplitude Þ5�ßà deg.

In this example, the ability of the identified second and third-
order kernels to model the nonlinear component of the re-
sponse is examined. The response predicted by the second-
order kernel is shown in Figure 22 while the total response
predicted by both the second and third-order kernels is shown
in Figure 23.
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Figure 22: Nonlinear Component of Response Predicted by the
Second-Order Kernel

Several observations can be made from these plots. First, the
kernels are capable of reproducing the nonlinear component
of the response. Although only a coarse representation of
the third-order kernel was identified, it still provides a no-
ticeable improvement in the prediction over the second-order
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Figure 23: Nonlinear Component of Response Predicted by the
Second and Third-Order Kernels

kernel alone. Errors in the prediction are due to errors in the
identified kernels as well as contributions from the kernels of
fourth-order and higher, which are not included in the model.
In general, the truncation error in the Volterra series grows
with the input amplitude. Therefore, the identified Volterra
model is valid provided that the input amplitude is sufficiently
bounded.

Conclusion

This paper presents a method for identifying the unknown dy-
namics, or errors, in a linear model. These errors generally in-
clude errors due to incorrect parameters for the linearized dy-
namics and unmodeled parameters for the nonlinearized dy-
namics. The approach considers a general formulation that
relates a linearized model to the unknown dynamics through
a feedback relationship. These unknown dynamics are then
identified as a set of Volterra kernels. The approach is applied
to a nonlinear aeroelastic system by considering both accurate
and inaccurate models of the linearized dynamics. The un-
known dynamics are identified and, in each case, demonstrate
any errors in the linearized dynamics and the unmodeled non-
linearities in the system.
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