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Flight testing for envelope expansion remains dangerous and costly because of difficulties in accurately predicting
the onset of flutter. Approaches have been developed that are able to identify optimal models of the aeroelastic
dynamics based on flight data but are not able to predict the responses at all airspeeds. Those previous approaches
are extended to include parameter variations in the optimal models. Specifically, parameter-varying models of
Volterra kernels are identified for inclusion with theoretical models in aeroelastic analysis. The new approach
is applied to a pitch–plunge system to demonstrate the accuracy achieved in predicting the onset of flutter by
analyzing data obtained at lower airspeeds.

Nomenclature
C = structural damping matrix
D = aerodynamic stiffness matrix
E = aerodynamic damping matrix
F = input matrix
Fl = linear fractional transformation
f = function
h = Volterra kernel
K = structural stiffness matrix
M = structural mass matrix
P = plant with airspeed dependency
P̄ = plant with airspeed parameterization
Q = unsteady force matrix
q̄ = dynamic pressure
U = airspeed
u = input vector
w = signal
X = unknown dynamics with airspeed dependency
X̄ = unknown dynamics with airspeed parameterization
x = state vector
y = measurement vector
z = signal
δU = perturbation to airspeed
ζ = damping ratio
ω = natural frequency
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I. Introduction

A CCURATE knowledge of the aeroelastic dynamics is required
to predict airspeeds at which the onset of flutter will occur

for an aircraft undergoing flight testing. Such accuracy is difficult
to achieve using theoretically assumed dynamics or experimentally
estimated models.1 Approaches are being developed that inherently
use both flight data and theoretical models to analyze stability of
aeroelastic systems. Such approaches are beneficial because they
are based on measured properties of the aircraft while retaining the
structure of the theoretical equations of motion.

A fundamental approach called the µ-method analysis was de-
veloped for flutter prediction based on theoretical models and flight
data.2 Essentially, this approach uses flight data to indicate un-
certainty in the theoretical model and then predict a worst-case
flutter speed that is robust with respect to that uncertainty. Flight
tests indicate this method is able to predict flutter speeds with a
level of conservatism commensurate with the uncertainty. Unfortu-
nately that uncertainty, and consequently the conservatism, can be
significant so the approach restricts the flight envelope more than
necessary.

The approach was augmented to include a prefilter analysis of
the flight data using Volterra kernels.3 Such kernels are able to rep-
resent a variety of dynamic systems and have been shown to be
especially practical for aeroelastic systems.4−9 The augmented ap-
proach computed Volterra kernels to represent the flight data such
that linear and nonlinear components were separated. The kernels
corresponding to the linear components of the flight data were then
used to estimate uncertainty in a linearized model. The resulting
flutter speeds were less conservative because the effects of unmod-
eled nonlinearities were eliminated; however, the approach still did
not properly account for errors in the theoretical dynamics. This
approach only added uncertainty to account for errors rather than
updating the model to eliminate those errors.

A method to update the linearized dynamics was imple-
mented that incorporated a modal parameter estimation to the
flutterometer.10 This approach analyzed the properties of the
Volterra kernel associated with linear components of the data to
identify the underlying dynamics. In particular, the dynamics at fre-
quencies associated with the aeroelastic modes were used to identify
parameters of natural frequency and damping. The theoretical model
was updated to include these parameters, and the conservatism in
the resulting flutter speeds was indeed reduced; however, the up-
dating assumed corrections only to static parameters of the model,
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which do not change as airspeed changes. The approach only up-
dated modal parameters of the structural dynamics and was not able
to properly account for errors that are dependent on airspeed nor
properly account for unmodeled dynamics.

The approach was extended to account for the problem of unmod-
eled dynamics by identifying an operator that correlates to unknown
dynamics.11 This approach used higher-order Volterra kernels to ac-
count for errors and unmodeled dynamics associated with linear and
nonlinear dynamics. Unfortunately, this extended approach also as-
sumed static updates and was not able to account for the dependency
on airspeed of the unknown dynamics. The resulting model accu-
rately predicted the responses at a given flight condition but was
unable to predict the stability at a different flight condition.

This paper introduces parameter-varying models of the Volterra
kernels to account for the unknown dynamics. Basically, the un-
known dynamics are identified as Volterra kernels, using the previ-
ous procedure, at a set of flight conditions, and then a state-space
model with airspeed dependency is computed to represent those ker-
nels. The resulting model is able to predict the measured responses
at current and future airspeeds during a flight test.

An example is presented to demonstrate the procedure involving
these parameter-dependent Volterra kernels. This example simulates
response data taken from a standard pitch–plunge model whose dy-
namics are not entirely known. The system is restricted to linear
dynamics such that only first-order kernels are needed to account
for the modeling errors. The procedure can be extended to con-
sider higher-order kernels; however, the restriction to first-order ker-
nels allows the concept to be sufficiently presented and explained.
Also, procedures do not currently exist that can properly compute a
stability margin with respect to parameter-dependent second-order
kernels whereas the µ-method analysis can be directly applied to
parameter-dependent first-order kernels.

II. Concept
A. Formulation

The basic representation of an aeroelastic system under consid-
eration is given in Eq. (1):

Mẍ + Cẋ + K x + q̄ Qx − Fu = X (z) (1)

This general formulation uses x ∈Rnx as the modal displacement
vector and u ∈Rnu as the input vector. The dynamics are described
by M ∈Rnx × nx as the structural mass matrix, C ∈Rnx × nx as the
structural damping matrix, K ∈Rnx × nx as the structural stiffness
matrix, F ∈Rnx × nu as the input matrix, Q ∈Rnx × nx as the unsteady
aerodynamic force matrix, and q̄ as the dynamic pressure. Also,
the element X :Rnz →Rnx is dimensioned as a mapping between
z ∈Rnz and the states.

The function X (z) represents an unknown, possibly nonlinear,
contribution to the dynamics. This mapping may represent errors
in the linear model or unmodeled nonlinearities. The element is
described as a function of the states and inputs whose linear com-
bination is described by z.

The dynamics in Eq. (1) can be expressed as a pair of opera-
tors that are related by feedback.11 Such an expression essentially
separates the known from unknown dynamics to facilitate identifi-
cation of these unknown dynamics. The operator used to represent
the known dynamics can be realized as a state-space model; how-
ever, the actual model cannot be written without knowing the exact
finite-state representation of the unsteady aerodynamic force.12 A
suitable finite-state representation can generally be found such that
operators P̄ and X̄ can be formulated and related as in Fig. 1.11

Fig. 1 Feedback relationship of
operators.

a)

b)

Fig. 2 Parameterized models of a) known and b) unknown dynamics.

Fig. 3 Block diagram.

An aeroelastic system is described by the known dynamics in
Fig. 1 along with an appropriate operator for the unknown dynamics.
A procedure was formulated to compute optimal estimates of these
unknown dynamics11; however, that procedure only accounted for
the dynamics at a given value of airspeed. In reality, both the known
dynamics and unknown dynamics will vary with airspeed.

The dynamics can be parameterized around airspeed by in-
troducing a perturbation δU to a nominal airspeed Uo such that
U = Uo + δU . The known dynamics and unknown dynamics can
then be expressed as in Fig. 2 by using standard operations.13

The aeroelastic system represented in Fig. 3 results from com-
bining the relationship in Fig. 1 with the parameterization in Fig. 2.

B. Optimal Estimates
Optimal estimates for the unknown dynamics are needed to en-

sure the model in Fig. 3 can accurately predict the stability of the true
system. These optimal estimates are computed by comparing mea-
sured responses and predicted responses. In this way, the unknown
dynamics are determined from flight data.

A simplified notation is used to describe the dynamics at a partic-
ular airspeed. The notation Fl is used to describe two operators that
are related through the lower loop, and Fu is used to describe two op-
erators that are related through the upper loop. In this way, the known
dynamics in Fig. 2 are described by [y, z] = Fu(P, δU )[u, w], and
the unknown dynamics are described by w = Fl(X, δU )z.

Furthermore, the notation indicates dynamics and associated re-
sponses at distinct airspeeds. Let yi represent the predicted response
and ȳi represent the measured response at airspeed of U i . Note this
airspeed corresponds to a perturbation of δi

U = U i − Uo for a model
that is formulated at the nominal airspeed of Uo.

Define P̄ i = Fu(P, δi
U ) as the known dynamics and X̄ i =

Fl(X, δi
U ) as the unknown dynamics that are related as in Fig. 2.

In this case, these elements represent the known dynamics and un-
known dynamics at the airspeed of U i .

The derivation of the identification procedure is simplified by
considering a particular representation of P̄ i This model can be
presented as a matrix of transfer functions. In this case, P̄ i is de-
scribed as matrix of four transfer functions relating the two inputs
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to the two outputs:

P̄ i =
[

P̄ i
11 P̄ i

12

P̄ i
21 P̄ i

22

]
(2)

The unknown operator X̄ i (z) can be identified as a mapping be-
tween the z and w signals. As such, these signals must be isolated.
Such an isolation can be accomplished using the elements P̄ i

11 and
P̄ i

12 of the transfer function matrix. These elements are used to com-
pute the expected output measurements of the model by noting that
w = X̄ i (z) in Fig. 1:

yi = P̄ i
11x + P̄ i

12 X̄ i (z) (3)

The operator is chosen such that the expected output of the model,
yi , matches the measurements from the system, ȳi , acquired by
flight data. Consequently, the unknown element can be identified as
an optimization:

X̄ i = arg min
f

∥∥ȳi − P̄ i
11x − P̄ i

12 f (z)
∥∥ (4)

This formulation in Eq. (4) is a particularly attractive approach for
flight-test programs. Essentially, the minimization is based on the
difference between measured and simulated data. The measurement
data ȳi represents the nonlinear system and the simulated data P̄ i

11x
represents the linearized model.

The approach needs to be augmented to account for the nominal
value of the unknown dynamics X that is independent of the airspeed
through the relationship X̄ i = Fl(X, δi

U ). This value is computed by
extending the minimization to account for multiple airspeeds as in
Eq. (5):

X = arg min
f

∑
i

∥∥ȳi − P̄ i
11x − P̄ i

12 Fl

(
f, δi

U

)∥∥ (5)

A representation for X (z) can be computed as a set of Volterra
kernels. These kernels allow linear and nonlinear elements of the un-
known dynamics to be identified. Of course, several techniques for
system identification can be applied but this paper restricts attention
to Volterra kernels.

III. Volterra Kernels
A. Formulation

Volterra series representations provide a convenient framework
for the analysis of nonlinear dynamic systems. The Volterra the-
ory of nonlinear systems states that the system output w can be
expressed in terms of an infinite series of integral operators of in-
creasing order14,15:

w(t) = w1(t) + w2(t) + · · · + w∞(t) (6)

In practice, the series is often truncated to include only the first-order
and second-order operators. For a causal, time-invariant, single-
input/single-output system, these operators take the form in Eqs. (7)
and (8):

w1(t) =
∫ t

0

h1(ξ)z(t − ξ)dξ (7)

w2(t) =
∫ t

0

∫ t

0

h2(ξ, η)z(t − ξ)z(t − η)dξdη (8)

The input is denoted as z, and h1 and h2 denote the first-order and
second-order Volterra kernels. Collectively, the Volterra kernels pro-
vide a model of the system, because once the kernels have been
identified, the response to any arbitrary input can be determined.
The first-order kernel represents the linear dynamics of the system,
and the higher-order kernels characterize the nonlinear dynamics.
It should be noted that, for a linear system, the first-order kernel
is equivalent to the impulse response of the system, and the output

is given by Eq. (7). Therefore, the Volterra theory can be viewed
as an extension of the concept of linear convolution to nonlinear
systems.

B. First-Order Parameter-Varying Expression
The kernels as expressed in Eqs. (7) and (8) are expressed only

as a function of time. As such, they are formulated to represent the
aeroelastic dynamics at a constant flight condition. Models must be
derived that can represent these kernels but also retain information
about the variation with airspeed for the associated dynamics. The
derivation here is restricted to only the first-order kernel because
finite-state representations are easily derived for flutter analysis.

A straightforward approach simply notes how the function com-
prising the kernel varies with airspeed. Such an approach uses, a
first-order kernel as h1(ξ, U ). The computation of the kernel could
then be computed by curve fit to the kernels computed at various
airspeeds. This approach is relatively easy to implement, but the
resulting kernel still needs to be represented in a fashion suitable
for state-space modeling and µ-method analysis.

An alternative approach first computes state-space representa-
tions of the unknown dynamics at a set of airspeeds and then finds a
parameter-varying model to encompass those representations. This
approach ensures the resulting model is directly applicable to µ-
method analysis to predict the onset of flutter. Define the model,
P̄ i , as the unknown dynamics at airspeed of U i and restrict the
derivation to first-order systems for convenience:

wi = wi
1(t) (9)

=
∫ t

0

h1(ξ)z(t − ξ)dξ (10)

= P̄ i zi (11)

A parameter-varying model of the unknown dynamics can be
computed by directly varying a transfer function based on values
of P̄ i at different airspeeds. Such a model is formulated by directly
relating a set of transfer functions to the unknown dynamics as in
Eq. (13):

wi = P̄ i zi (12)

= [
Po + P1U i + P2(U

i )2
]
zi (13)

A parameter-varying model can also be computed by varying the
elements of a state-space model. Essentially, the transfer function in
Eq. (13) can be expressed as a state-space model formed by a matrix
quadruple. Each of these matrices can be written as a function of
airspeed and combined to generate a parameter-varying state-space
model as in Eq. (16):

wi = P̄ i zi (14)

=
[

Āi B̄i

C̄ i D̄i

]
zi (15)

=
[

Ao + A1U i + A2(U i )2 Bo + B1U i + B2(U i )2

Co + C1U i + D2(U i )2 Do + D1U i + D2(U i )2

]
zi (16)

IV. Stability Analysis
Flutter speeds of the aeroelastic dynamics are predicted by an-

alyzing stability of the system in Fig. 3. A stability margin is the
smallest perturbation to airspeed, δ∗

U , which results in the onset
of flutter. Such a margin is computed from a minimization using
Eq. (17) as applied to the system in Fig. 3:

δ∗
U = min

δU

such that Fl(Fu(P, δU ), Fl(X, δU )) is unstable

(17)
The flutter speed corresponds to U ∗ = Uo + δ∗

U . Such a speed
is also considered the critical flutter speed because it represents the
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Table 1 System parameters

Parameter Value

a −0.6
b 0.135 m
m 12.387 kg
kα 2.82 Nm/rad
cα 0.180 m2 kg/s
clα 6.28
clβ 3.358
Iα 0.065 m2 kg
ρ 1.225 kg/m3

xα 0.2466
kh 2844.4 N/m
ch 27.43 kg/s
cmα −0.628
cmβ

−0.635

lowest speed at which a mode becomes unstable. The formulation in
Eq. (17) can easily be extended to compute subcritical flutter speeds
corresponding to perturbations at which the system has multiple
unstable modes.

Also, the problem in Eq. (17) can be written in the format of the
structured singular value for systems in which P and X are linear.
In this case, the elements are expressed as state-space systems, and
the tools for robust analysis are directly applied.

V. Example
A. System

The process of estimating a model to describe aeroelastic dynam-
ics is applied to a pitch–plunge system. This system is composed of
a rigid airfoil, whose motion is restricted to pitching and plunging,
mounted in a wind tunnel. This model is not necessarily reflective
of a physical system; rather, it presents a representative model for
simulating an envelope expansion. The dynamics used as a truth
model for this simulation are shown in Eq. (18):[

m mxαb

mxαb Iα

][
ḧ

α̈

]
+

[
ch 0

0 cα

][
ḣ

α̇

]
+

[
kh 0

0 kα

][
h

α

]

= ρU 2bs


−clα

[
α + (1/U )ḣ + (

1
2 − a

)
b(1/U )α̇

] − clβ β

cmα
b
[
α + (1/U )ḣ + (

1
2 − a

)
(b/U )α̇

] + cmβ
bβ




(18)

These dynamics describe the complete aeroelastic system. The
degrees of freedom of the rigid airfoil are described by the plunge h
and the pitch α parameters. The left side of the equality describes the
structural dynamics, and the right side of the equality describes the
quasi-steady aerodynamics that are generated in response to motion
of the airfoil and commanded rotations β a flap.

The parameters describing the dynamics of the system are given in
Table 1. These parameters are generally indicative of those presented

P =




0 I [0 0 0] 0 0

M−1
(
U 2

o D − K
)

M−1(Uo E − C) [M−1 0 M−1] M−1U 2
o F −M−1eT

2Uo D

D

0





E

0

0





0 0 0

0 0 0

0 I 0





2Uo F

F

0





0

0

0




I 0 [0 0 0] 0 0

e 0 [0 0 0] 0 0




(26)

in several references16,17; however, the value of pitch damping has
been increased simply to ensure the identified kernels decay within
4 s for ease of computation. The resulting flutter mechanism remains

fairly traditional with the two modes coalescing in natural frequency
as damping becomes unstable.

B. Model
A model is generated to approximate the dynamics of the pitch–

plunge system. This model represents a best-guess approximation of
the true dynamics as is commonly generated for any flutter analysis.
In this case, the model has the correct equations of motion to describe
the simulated truth model but an incorrect coefficient for torsional
stiffness as indicated by the model parameters: true kα = 2.82 and
model kα = 2.26. The parameter-varying Volterra kernels are used
to identify this error and predict an accurate value of flutter speed.

The formulation of the model uses several matrices to simplify
the notation. These matrices are generated by using the definitions
in Eq. (19):

M =
[

m mxαb

mxαb Iα

]
, C =

[
ch 0

0 cα

]
, K =

[
kh 0

0 kα

]

D =
[

0 −clα ρb

0 cmα
ρb2

]
, E =

[−clα ρb −clα ρb2(0.5 − a)

cmα
ρb2 cmα

ρb3(0.5 − a)

]

F =
[−clβ ρb

cmβ
ρb2

]
(19)

The equation of motion, including an unknown dynamic, is writ-
ten in Eq. (20) using these matrix definitions and the state vector
defined as x = [h, α]:

Mẍ + Cẋ + K x + X = U 2 Dx + U Eẋ + U 2 Fβ (20)

The model needs to be expressed in a form that includes feed-
back relationships between the known dynamics and the unknown
dynamics along with a perturbation to airspeed. The derivation of
the required expression is accomplished by introducing the pairs of
signals, defined in Eqs. (21–24), to the dynamics. Also, the airspeed
is replaced with a nominal value plus perturbation as U = Uo + δU :

zx = x, wx = X (zx ) (21)

z1 = 2Uo Dx + Eẋ + 2Uo Fβ, w1 = δU z1 (22)

z2 = Dx + Fβ, w2 = δU z2 (23)

z3 = w2, w3 = δU z3 (24)

These definitions allow Eq. (20) to be written as Eq. (25):

Mẍ = (
U 2

o D− K
)
x +(Uo E −C)ẋ +U 2

o Fβ −wx +w1 +w3 (25)

The final plant model P is expressed in state-space form in
Eq. (26). Note the vector e = [0 1] is used such that ex = α. The
resulting model interacts with the unknown dynamics X and the
perturbation to airspeed δU as in Fig. 3. The first set of inputs and
outputs, as grouped by brackets, are the signals relating P to δU . The
second set of inputs and outputs correlate to the input command and
sensor measurements. The third set of inputs and outputs relate P
to X :

C. Responses
Responses of the dynamics are simulated to illustrate the differ-

ences between the true system and assumed model. Volterra kernels
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a)

b)

Fig. 4 Pitch angle in response to a chirp input at a) U = 3 m/s and
b) U = 8 m/s.

are computed to represent these differences at various values of
airspeed. In this way, the estimation process actually identifies the
unknown dynamics in the model that account for the differences
between measured and predicted responses.

A chirp signal is commanded to the flap to generate responses
from the simulation. This chirp command ranges from 0.0 to 5.0 Hz
over 32 s. The magnitude of this flap command is 10 deg. The signal
was chosen to have a frequency range that encompasses the modal
dynamics and a magnitude that excites those dynamics to generate
large responses.

Responses are computed at airspeeds ranging from U = 3 m/s to
U = 11 m/s. Consequently, a total of nine responses are computed.
The values of pitch angle and plunge are simulated; however, only
the pitch angle is used for data analysis. The plunge could be used
also but the pitch angle is sufficient to provide information about
the unknown dynamics.

The pitch angle in response to the chirp command is shown in
Fig. 4 for airspeeds of U = 3 m/s and U = 8 m/s. As shown, the
assumed dynamics of the model differ from what is considered the
true dynamics. The model responses differ in both magnitude and
period of oscillation from the true responses. This difference, for
the simulated example, obviously results from the erroneous value
of torsion stiffness used to generate the model.

The unknown dynamics in the model are estimated by analyzing
the difference between predicted and actual response of the dynam-
ics. This difference constitutes a measure of prediction error and is
shown in Fig. 5.

Clearly the unknown dynamics associated with the model vary
with airspeed. The error in the model is actually the static parameter
of torsion stiffness; however, the parameter affects the modal prop-
erties of the model. The modal properties obviously change with
airspeed so the unknown dynamics can also be considered as de-
pendent on airspeed. The identification of unknown dynamics could
be simplified in this particular case because the error is known to be
static but, in general, such an assumption cannot be justified.

D. Volterra Kernels
Volterra kernels are identified to account for the unknown dynam-

ics in the model of the aeroelastic system. In this case, the kernels
are estimated as the mapping between the pitch angle and the error

a)

b)

Fig. 5 Difference between predicted pitch angle and measured pitch
angle at a) U = 3 m/s and b) U = 8 m/s.

Fig. 6 Volterra kernels to represent the error in pitch angle at ——,
U = 3 m/s; –·–, U = 5 m/s; – – –, U = 7 m/s; and · · · ·, U = 9 m/s.

in Fig. 5. The kernels represent the dynamics X that need to be
added to the modeled dynamics as in Eq. (26) such that the modeled
dynamics accurately predict the response of the true dynamics.

A set of kernels are computed to account for the unknown dynam-
ics at airspeeds from U = 3 to 9 m/s. A separate kernel is computed,
using the procedures previously documented,11 at each airspeed.
These kernels have the expected shapes of impulse responses as
shown in Fig. 6.

The error in predicted responses, shown in Fig. 5, and conse-
quently the kernels representing the error, shown in Fig. 6, clearly
demonstrate variation with airspeed. The most notable variation is
a decrease in the period of the oscillations in the impulse response.
The kernels are simply indicating that the modal frequency of the
unknown dynamics is increasing as the airspeed increases. This
increase in modal frequency correlates to the increase in natural
frequency of the pitch mode as the system approaches flutter.

E. State-Space Representation of Kernels
State-space models are computed as finite-state representations

of the Volterra kernels. In this case, the models are assumed to be
single-mode models for each kernel. The basic form of the model
uses a natural frequency ω, damping ζ , and magnitude α in the
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Table 2 Modal properties of kernel representations

V ω, rad/s ζ α

3 5.9841 0.2125 −0.2000
4 6.1002 0.1951 −0.1877
5 6.0415 0.1968 −0.2062
6 6.2210 0.2125 −0.2100
7 6.3467 0.2241 −0.2071
8 7.3920 0.2295 −0.1856
9 7.5701 0.2177 −0.1797
10 8.0554 0.2381 −0.1740

a)

b)

Fig. 7 Volterra kernels and state-space representations for the un-
known dynamics identified at a) V = 3 m/s and b) V = 8 m/s airspeeds.

formulation. The model X̄ is formulated in Eq. (27):

X̄ =


 0 1 0

−ω2 −2ζω αω2

1 0 0


 (27)

The impulse response of the unknown dynamics w is computed
in Eq. (28):

w = α
(
ω
/√

1 − ζ 2
)
e−ζωt sin

(
ω
√

1 − ζ 2t
)

(28)

Optimal parameters for the state-space models are computed us-
ing a least-squares fit. The resulting parameters, given in Table 2,
illustrate variation with airspeed. The most noticeable variation is
an increase in natural frequency with increase in airspeed. The re-
maining parameters of damping and magnitude scaling do not show
any clear trends with airspeed.

The quality of these state-space models is demonstrated by com-
paring the impulse response of the state-space model and the actual
kernel. Examples of such comparisons are shown in Fig. 7 and in-
dicate the state-space models are reasonable representations of the
Volterra kernels.

F. Parameter-Varying Representation
A parameter-varying model of the unknown dynamics is com-

puted so that flutter speeds can be predicted. This model is formu-
lated by assuming the dynamics vary quadratically with airspeed as

Table 3 Models and airspeeds

Model Airspeed, m/s

X5 U ∈ {3, 4, 5}
X6 U ∈ {3, 4, 5, 6}
X7 U ∈ {3, 4, 5, 6, 7}
X8 U ∈ {3, 4, 5, 6, 7, 8}

in Eq. (29). The matrices are chosen as least-squares fit to the data
in Table 2:

X =
[

Ao + A1U + A2U 2 Bo + B1U + B2U 2

[1 0] 0

]
(29)

The model needs to be parameterized around a nominal airspeed
Uo by introducing a perturbation such that U = Uo + δU . This pa-
rameterization results by relating the nominal model to the pertur-
bation using the signals defined in Eqs. (30–32):

z1 = (A1 + 2A2Uo)x + (B1 + 2B2Uo)u, w1 = δU z1 (30)

z2 = A2x + B2u, w2 = δU z2 (31)

z3 = w2, w3 = δU z3 (32)

These definitions allow Eq. (29) to be written in state-space form
as in Eq. (33). This form interacts with the known dynamics as in
Fig. 2:

X =




A0 + A1Uo + A2U 2
o Bo + B1Uo + B2U 2

o [I 0 I ]

[1 0] 0 [0 0 0]
A1 + 2A2Uo

A2

0





B1 + B2Uo

B2

0


 [

0 0 0
0 0 0
0 I 0

]


(33)

An envelope expansion is simulated with this model using the
traditional concept of test points; namely, flutter speeds are pre-
dicted at each of a set of increasing airspeeds. At each airspeed, a
parameter-varying model is computed based on a least-squares fit of
the Volterra kernels identified at each previous airspeed. The models
at test points of progressively increasing airspeeds are computed by
accounting for the data measured at that airspeed along with data
from the previous airspeeds. In this way, a set of parameter-varying
models are computed such that each accounts for more information
than was available to the previous. Define Xi as the parameter-
varying model that is computed to account for data at airspeeds
U <= i m/s as in Table 3.

The parameter-varying models are used to predict the unknown
dynamics at any airspeed. As such, the objective is to analyze data
from a set of airspeeds and predict the response at higher airspeeds.
The predicted values of the unknown dynamics will not be identical
to the actual values of the unknown dynamics because of errors in
the identification and modeling process. Any difference between the
predicted dynamics and actual dynamics will obviously cause error
in the resulting prediction of flutter speeds.

The impulse response of the unknown dynamics at U = 8 m/s is
computed using several parameter-varying models. Figure 8 shows
the actual impulse response along with the predicted impulse re-
sponses from four models. These responses show the predictions
clearly improve as more data are used to generate the unknown
dynamics. The predicted response at U = 8 m/s that is generated
using only data from U ≤ 5 m/s is not as accurate as using data from
U ≤ 7 m/s. Actually, the predicted responses seem to converge to
the actual response as the airspeed increases.

G. Flutter Prediction
Flutter speeds of the aeroelastic system are predicted during the

simulated envelope expansion. Essentially, the best-guess model of
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Table 4 Flutter speeds predicted by models
with parameter-varying volterra kernels

Model Flutter speed, m/s

True 12.14
Fl (P, 0) 12.45
Fl (P, X5) 9.64
Fl (P, X6) 12.29
Fl (P, X7) 12.29
Fl (P, X8) 12.29
Fl (P, X9) 12.29

Fig. 8 Volterra kernel and predicted representations by using
parameter-varying models of: +, X5; –·–, X6; – – –, X7 and · · · ·, X8
for the unknown dynamics at V = 8 m/s.

the aeroelastic dynamics are coupled with the parameter-varying
model of the unknown dynamics at a particular airspeed. Flutter
speeds are predicted by computing the smallest perturbation to the
resulting parameterized dynamics, which results in the onset of
flutter.

The speeds at which flutter is predicted to occur are shown in
Table 4. The best-guess model, with the inaccurate value of pitch
stiffness, predicts a flutter speed higher than the true dynamics with
about 2.55% error. The unknown dynamics are predicted using the
parameter-varying representations of Volterra kernels and alter the
flutter speeds. The speed predicted using data from U ≤ 5 m/s pre-
dicts a flutter speed considerably different than the true flutter speed;
however, the models generated using any data with U > 5 m/s are
able to predict flutter speeds to within 1.23% of the true flutter speed.

Also, the computational requirements for this approach are rea-
sonable in that all steps, including kernel estimation and stability
analysis, can be performed within a minute on a desktop machine.
That cost would increase if the amount of data, both number of chan-
nels and samples, were to increase significantly beyond the simple
example. As such, the approach could potentially be implemented
into current practices for online analysis during flight testing pro-
vided that only signals of prime importance would be evaluated.

VI. Conclusion
This paper presents a foundation by which Volterra kernels can

be easily integrated into flutter prediction. Specifically, parameter-

varying models of Volterra kernels are introduced. Such models are
sufficient to describe unknown, and possibly nonlinear,dynamics
that vary as a function of airspeed. This approach allows models that
are identified by updating theoretical dynamics to account for errors
and unmodeled dynamics. The resulting parameter-varying models
allow flutter speeds to be predicted using flight data from stable test
points. A pitch–plunge model demonstrates that this approach is
able to estimate unknown dynamics and alter the model to accurately
predict the onset of flutter.
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