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Match-Point Solutions for Robust Flutter Analysis

Rick Lind¤

NASA Dryden Flight Research Center, Edwards, California 93523

The computation of robust � utter speeds presents a signi� cant advancement over traditional types of � utter
analysis. In particular, ¹-method analysis is able to generate robust � utter speeds that represent worst-case � ight
conditions with respect to potential modeling errors. Robust � utter speeds may be computed using a model for-
mulation that has been previously presented; however, that formulation has limitations in its ability to generate a
match-point solution. A model formulation is introduced for which ¹-method analysis is guaranteed to compute
a match-point solution. The match-point solution is immediately realized by analyzing a single model so the com-
putation time is reduced from the previous approach that required iterations. Also, the solution is able to consider
parametric uncertainty in any element, whereas the previous formulation did not consider mass uncertainty. The
match-point formulation is derived by properly treating the nonlinear perturbations and uncertainties that affect
the equation of motion. The Aerostructures Test Wing is used to demonstrate that the ¹-method analysis computes
match-point � utter speeds using this new formulation.

Nomenclature
A = aerodynamic force matrix
a = scaled force vector
C = damping matrix
K = stiffness matrix
L = aerodynamic force model
M = mass matrix
n = number of modes
P = plant model
p = coef� cient in density approximation
Q = aerodynamic force matrix
QN = force model
q = unscaled force vector
Nq = dynamic pressure
S = structural dynamic model
V = velocity
W = weighting matrix
w = input from uncertainty
z = output to uncertainty
¯ = lag pole
1 = uncertainty matrix
± = uncertainty parameter

Introduction

T HE study of aeroelasticity has been an important discipline
since the advent of � ight. In particular, one of the primary

goals of aeroelastic analysis is to predict the � ight conditions as-
sociated with the onset of an instability called � utter.1 The mech-
anism associated with this instability may be somewhat complex;
however, there are often some basic characteristicsassociated with
it. A common type of � utter is characterizedby a phasedcouplingof
modes in which dampingfor one mode decreasesas speed increases
near the onset of the instability. The extreme case, called explosive
� utter, occurs when this decrease in damping occurs suddenly and
dramatically.
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The � ight conditions associated with � utter, known as � utter
speeds, are dif� cult to predict. It is inherentlydangerous to attempt
to determine these conditions experimentally during � ight testing
becauseof the potentiallyunforeseendecrease in damping that may
suddenly occur. Such behaviors limit the ef� ciency of � ight testing
so that it is vital that advanced analytical methods be developed to
predict the onset of � utter.

The ¹ method is an advanced technique to analyze aeroelastic
dynamics and to predict the onset of � utter.2 This method is fun-
damentally different from traditional approaches.One difference is
that it is based on concepts from robust control theory.3 A second
difference is that it is able to utilize both theoretical models and
� ight data. A third, and most important, difference is that ¹-method
analysis introduces the concept of a robust � utter speed.

The basic concept of ¹-method analysis is to compute the small-
est perturbation to a � ight condition that incurs � utter. The robust
nature of the solution results by considering the effect of modeling
error during this computation.A traditional � utter speed can be in-
terpreted as an indication of the � ight conditions at which a model
is no longer stable. A robust � utter speed can be interpreted as an
indication of the � ight conditions at which a model is no longer
robustly stable.

A model formulation that considers perturbations to dynamic
pressure was originally derived for ¹-method analysis2; however,
this formulation has limitations. The most important limitation in
the original formulation is that the ¹-method analysisof these mod-
els is not guaranteed to compute match-point � utter speeds. The
robust analysis computes a worst-case perturbation to a single pa-
rameter; however, the model is actually a function of both dynamic
pressureand airspeed.This implies that the model needs to consider
multiple perturbations,or uncertainties,that are nonlinearlyrelated.
The original formulation only considers a perturbation to dynamic
pressureand ignores the requiredcorrespondingperturbation to air-
speed.Thus, the resultingsolution is a dynamic pressure for a model
with a nonmatch-point airspeed.

This paper introduces a model formulation that results in match-
point solutions from ¹-method analysis. The main difference be-
tween this formulation and the original formulation is the inclusion
of nonlinearuncertaintiesthat affectcoupledparameters in theequa-
tion of motion. In particular, the equation of motion is shown to be
a polynomial in terms of the uncertainties and, thus, can be written
in the ¹-method framework.4 The model formulationuses feedback
loops that are coupled through the feedthrough matrix of the plant
to account for the nonlinearities in the uncertain parameters.5;6

The key to getting a model that results in match-point � utter
speeds is to formulate this model so that a single parameter de-
scribes the � ight condition. This allows the ¹-method analysis to
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� nd the worst-case perturbation to that parameter without consid-
ering if there are related parameters that must be analyzed. The
formulation replaces the dynamic pressure with a polynomial func-
tion of airspeed.Thus, the � ight conditionof the model is expressed
entirely through a dependency on airspeed.

Note that this paper does not introduce changes to the basic con-
cept of ¹-method analysis; rather, it merely introduces a new mod-
eling formulation to be used with that analysis.The same de� nitions
and algorithms that compute robust � utter speeds are used for both
the originaland the new formulations.The limitationsin the original
models, not the ¹ method, are eliminatedby the results in this paper.

Furthermore, the ¹ method has several applications besides the
analysisof aeroelasticmodels. An online approach to use ¹-method
analysis during � ight testing is the basis for a tool called the
� utterometer.7 Another application is the analysis of aeroservoe-
lasticity for � ight vehicles.8 This paper considers the analysis of
� utter; however, the match-point formulation may be directly used
for all of the applications of ¹-method analysis.

Aeroelastic Dynamics
Equation of Motion

The nominal dynamics of an aeroelasticsystem at constantMach
number are described by the standard equation of motion as given
in matrix–vector notation

M Ŕ C C Ṕ C K ´ C Nq Q´ D 0 (1)

The equation of motion uses ´ 2 Rn to represent the elastic dis-
placements of a system with n modes. The structural dynamics
of the system are represented by M 2 Rn £ n as the mass, C 2 Rn £ n

as the damping, and K 2 Rn £ n as the stiffness. The aerodynamics
of the system are represented in the equation of motion as Nq 2 R for
the dynamic pressure and Q 2 Cn £ n for the unsteady aerodynamic
forces.

The aerodynamic forces Q are typically determined as a set of
frequency-dependent matrices.A set of thesematricesare computed
to represent the forces at a number of distinct values of reduced
frequency. As such, the forces are not predicted as a closed-form
analyticalsolutionand arenot suitablefor state-spacerepresentation
and ¹-method analysis.

There are several representationsthat may be used to describe the
unsteady aerodynamicforces. These formulations,often referred to
as rational function approximations, are essentially transfer func-
tions that may be expressedanalytically.This paperuses a particular
formulation, often referred to as Roger’s formulation,9 to represent
the forces as

Q D A0 C A1ik C A2.ik/2 C A3[ik=.ik C ¯1/] C A4[ik=.ik C ¯2/]

(2)

There are essentially two types of forces in Eq. (2). One type of
forces result from the quasi-steady aerodynamics. They are repre-
sented by A0 2 Rn £ n as the steady forces that act like an equiva-
lent aerodynamic stiffness, A1 2 Rn £ n as the forces that act like an
aerodynamicdamping, and A2 2 Rn £ n as the forces that act like an
aerodynamic inertia. The other type of forces consists of the purely
unsteady aerodynamic lags that are represented by Padé approxi-
mates (see Ref. 10). There are scaling matrices, A3; A4 2 Rn £ n , and
poles, ¯1; ¯2 2 R, used to de� ne the effects of each lag. The scaling
matrices are often computed such that the quasi-steady and purely
unsteady effects may not be completely separated11; however, the
results in this paper are not dependent on such separation and so
Eq. (2) is assumed to be valid without loss of generality.

Equation (2) is formulated with two lag terms, but this is not a
requirement. In practice, some sets of force matrices may be better
represented by using a single lag term, whereas other sets may re-
quire many lag terms. The model formulation in this paper uses two
lag terms, but it is noted in the appropriateareas how the derivations
are extended to include fewer or more lag terms.

Also, there are many methods to compute the coef� cientmatrices
in Eq. (2). One such methoduses a straightforwardleast-squaresap-
proach that can incorporate � ight data.12 Another common method

uses a minimum-state approximation that may reduce model
complexity.13 Other methods, including pure-lag models14 or com-
binationsof pure-lagmodelswith minimum-stateapproximations,15

can beused.The ¹-methodanalysisis not restrictedto anyparticular
method for choosing the model elements; instead, the computation
of robust � utter margins is actually more sensitive to the number
of uncertainties rather than the number of states in the state-space
approximation.

The frequency-varying nature of the unsteady aerodynamics is
providedin Roger’s9 formby thedependencyon k 2 R. This variable
is the reduced frequency of the system and can be related to the
traditionalLaplacevariable,s 2 C. The relationshipuses a reference
length, b 2 R, and an airspeed, V 2 R, as scaling parameters such
that ik D .b=V /s.

The equation of motion for a general aeroelastic system can be
written by combining Eqs. (1) and (2) with the de� nition for k. The
resulting system is described as follows and is used throughout this
paper as the baseline model:

M Ŕ C C Ṕ C K ´ D ¡ Nq
µ

A0 C A1
b

V
s C A2

b2

V 2
s2

C A3
.b=V /s

.b=V /s C ¯1
C A4

.b=V /s

.b=V /s C ¯2

¶
´ (3)

Parametric Uncertainty

There are several types of uncertaintyoperators that may be used
by the ¹ method to describe modeling errors2; however, this paper
will restrict the analysis to consider only parametric uncertainty.
Parametric uncertainty refers to operators that directly account for
errors in particular parameters in the equation of motion. This type
of uncertainty is typically represented by block-diagonal matrices
that are real and constant.

Consider a parametricuncertainty,1M 2 Rn £ n , that is associated
with the mass matrix. The mass in the equation of motion, M , is
actually assumed to be some nominal value, M0 , plus the weighted
uncertaintyoperator. The ¹-method considers only uncertainty op-
erators that have an H1 norm less than unity; thus, the weightings
are needed to scale the unity-boundoperator and admit the desired
magnitude of modeling error. The uncertain mass is

M D M0 C M1WM 1M (4)

The choiceof the scalingmass, M1 2 Rn £ n , may be chosen to re� ect
a desired type of uncertainty representation.For example, Eq. (4) is
the standardequation for multiplicativeuncertaintyif M1 D M0. Al-
ternatively,Eq. (4) is the standard equation for additive uncertainty
if M1 D 1.

The weighting matrix, WM 2 Rn £ n , is typically used to note the
size of the uncertainty. The actual uncertainty operator is not al-
lowed to have a norm greater than unity and so the total error in
the parameter is determined by WM . For example, if M1 D M0 and
WM D 0:1, then the mass is considered to have 10% uncertainty.

The damping matrix of the structural dynamics can also have
errors. Introduce a weighted uncertainty operator, 1C 2 Rn £ n , to
the nominal matrix, C0 2 Rn £ n , as shown in Eq. (5). There are real,
constant scaling matrices given by C1 2 Rn £ n and WC 2 Rn £ n:

C D C0 C C1WC 1C (5)

The stiffnessmatrix is anothersource of error in the equationof mo-
tion. Introduce 1K 2 Rn £ n as the uncertainty operator to associate
with stiffness. There are also real and constant scaling matrices for
the uncertainty that are given by K1 2 Rn £ n and WK 2 Rn £ n :

K D K0 C K1WK 1K (6)

The terms in the aerodynamic forces are also obvious choices for
associatingparametricuncertainty.Speci� cally, these lag termshave
a pole that is a real scalar that is often dif� cult to compute and may
be in error. Equation (7) presents the formulation for uncertainty in
the � rst lag term. The nominal pole ¯10 is affected by the operator
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1¯ 2 R. The weightings, ¯11 2 R and W¯1 2 R, are again introduced
to scale the size of the uncertainty,

¯1 D ¯10 C ¯11 W¯1 1¯1 (7)

Model Formulation
Parameterization Around Airspeed

The basic conceptof the ¹-methodanalysis is to � nd a worst-case
perturbation to a � ight condition that results in the onset of � utter.
This basic concept is used to develop the original nonmatch-point
formulation and the new match-point formulation presented in this
paper; however, the � ight condition of interest is changed between
the formulations.The original formulation considers a perturbation
to dynamic pressure, whereas the new formulation considers a per-
turbation to airspeed.

Assume that the model is formulated to describe the aeroelastic
dynamics at a true airspeed of V0 . Consider a perturbation ±V 2 R
that affects this nominal airspeed. The airspeed used in the model
is then a simple scalar addition,

V D V0 C ±V (8)

Introducing the expression of Eq. (8) into the equation of motion
is not suf� cient to guarantee a match-point solution. The equation
of motion in Eq. (3) demonstrates that the system, even at constant
Mach, depends on separate parameters that describe � ight condi-
tion. These parameters are the airspeed and the dynamic pressure.
Alternatively, the dynamic pressure can be expressed such that the
equation of motion depends on airspeed and density.

The key to computing match-point � utter solutions using ¹-
method analysis is to formulate the model as a function of a single
parameterthatdescribes� ightcondition.This formulationis accom-
plished by replacing the dependence on density with an equivalent
dependence on airspeed.

A function is introduced to approximate the density. This func-
tion is necessarybecausethere is no closed-formsolutionthat relates
density to airspeed for a wide range of values in a standard atmo-
sphere. There are many polynomials that may be used; however, a
third-orderpolynomialas given in Eq. (9) has been shown to provide
an excellentapproximationfor most values of density and airspeed:

½ ¼ p0 C p1V C p2V
2 C p3V

3 (9)

The value of density for any airspeed is determined by parameters
p0 , p1, p2 , p3 2 R that are the coef� cients in the polynomial. These
parameters are chosen by a least-squares � t of the polynomial to
known match-point atmospheric data. The density in the equation
of motion is simply replaced with the function in Eq. (9) so that the
resulting dynamics are expressed as a function of airspeed only.

Match-point � utter speeds are computed using the ¹-method
technique by considering the worst-case value of ±V . The result
is inherently a match-point solution because the � ight condition is
entirely determined by ±V . Thus, the computed � utter speed is in-
dependent of the choice of V0 and so no iterations are required to
compute a match-point solution.

A match-point formulation can be derived by considering a per-
turbation to a different parameter such as dynamic pressure. That
formulation would result by replacing the airspeed parameter with
an equivalent function that is dependent on dynamic pressure. The
algebra presented considers a perturbation to airspeed; however, it
is straightforward to derive the model with a perturbation to dy-
namic pressure.The match-point � utter speed is easily converted to
a match-point � utter pressure so that there is no need to derive and
present multiple formulations of the model.

Subsystems of the Equation of Motion

The equationof motion for a generalaeroelasticsystem is written
as a relationship of structural and aerodynamic forces as expressed
in Eq. (3). It is convenient to introduce parameters to replace some
expressions in the equation to motion. These parameters allow the
aeroelastic system to be expressed as several interconnected sub-
systems. Speci� cally, there are subsystems that can be written to

representthe structure,the dynamicpressure, the quasi-steadyaero-
dynamics, and the lag terms of the unsteady aerodynamics.

Introducea parameterq0 to represent the force that is contributed
by the quasi-steadyaerodynamics. This parameter replaces the ex-
pression that includes the steady component of the aerodynamics
and the equivalent damping and inertia associated with the quasi-
steady portion of the aerodynamic forces,

q0 D
£
A0 C A1.b=V /s C A2.b2=V 2/s2

¤
´ (10)

Parameters are also de� ned to replace the lag terms. These parame-
ters q1 and q2 are individuallyde� ned such that a separateparameter
is associated with a separate lag term:

q1 D A3
.b=V /s

.b=V /s C ¯1
´ (11)

q2 D A4
.b=V /s

.b=V /s C ¯2
´ (12)

The total aerodynamicforces that act on the system are a summation
of the quasi-steadyand unsteady effects. De� ne a new parameter q
to represent these total forces,

q D q0 C q1 C q2 (13)

The form of Eq. (3) is written to separate the structural and aerody-
namic effects.A parametera is de� ned to represent the contribution
of the aerodynamic effects. This parameter is de� ned by scaling
the aerodynamic forces, given by q in Eq. (13), with the dynamic
pressure,

a D Nqq (14)

The equation of motion is now written by relating the structural
dynamics to the parameter that represents the aerodynamic forces.
This relationship is demonstrated by

M Ŕ C C Ṕ C K ´ D ¡a (15)

The procedure that is used to formulate the aeroelastic system in
the ¹-method framework is to consider each subsystem.A model is
generated that describesa particular subsystemas a linear fractional
transformation(LFT). The LFT will relate the nominal dynamics of
the subsystem with any velocity perturbationsor uncertainties.The
total system is formulated by combining each LFT using standard
LFT operations.The result is a system that is representedas an LFT
between the total nominal dynamics and a structured operator that
contains all perturbationsand uncertainties.

Structural Dynamics

Consider the equation for the structural dynamics from Eq. (15)
that relates the mass, stiffness, and damping matrices to the aerody-
namic forces. Each of the structuralmatrices is a potential source of
modeling error. This modeling error can be represented by uncer-
tainty operators. Speci� cally, the error is introduced in the expres-
sions for the mass matrix in Eq. (4), the damping matrix in Eq. (5),
and the stiffness matrix in Eq. (6). These expressions replace the
general matrices with relationships between nominal matrices and
their associated uncertainty operators.

Introduce error in the structural dynamics by substituting the un-
certain expressionsfor the generalmatrices.The equationof motion
for this subsystem is then expanded to separate the uncertain terms
from the nominal dynamics:

¡a D M Ŕ C C Ṕ C K ´ D .M0 C M1WM 1M / Ŕ

C .C0 C C1WC1C / Ṕ C .K0 C K1WK 1K /´ D M0 Ŕ C C0 Ṕ

C K0´ C 1M .M1WM Ŕ/ C 1C.C1WC Ṕ/ C 1K .K1WK ´/

D M0 Ŕ C C0 Ṕ C K0´ C 1M zM C 1C zC C 1K zK

D M0 Ŕ C C0 Ṕ C K0´ C wM C wC C wK (16)
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The equation of motion given in Eq. (16) is suitable for represen-
tation in the ¹-method framework. The equation has removed the
explicitdependenceon the uncertaintyoperatorswith an implicitde-
pendencethrough feedback.This removal is accomplishedby intro-
ducingsignals to representthe uncertaintyoperators.The output sig-
nals zM , zC , and zK are related to the input signals as wM D 1M zM ,
wC D 1C zC , and wK D 1K zK . The resultingsystem is a linear frac-
tional transformation that makes use of several inputs and outputs
to relate the nominal dynamics with the uncertainties.

A state-space model of the equation of motion is formulated to
derivea model in the ¹-methodframework.The state-spacemodel is
expressed in terms of a matrix quadruple.This model S and its asso-
ciatedquadruplefSA; SB; SC ; SDg are derivedby analyzingEq. (16).

The expression for the state matrix SA is expressed in terms of
the nominal dynamics:

SA D
µ

0 I

¡M¡1
0 K0 ¡M¡1

0 C0

¶
(17)

The input matrix SB is also expressed in terms of the nominal dy-
namics. There are four columns in this matrix to note the relation-
ship of the state derivatives to the three inputs from the uncertainty
relationship and the one input from the aerodynamic forces:

SB D
µ

0 0 0 0

¡M¡1
0 ¡M¡1

0 ¡M¡1
0 ¡M¡1

0

¶
(18)

The output matrix SC presents the contributions from the states to
the system outputs. These outputs are the three feedbacks to the
uncertainty operators and the three measurements of the position,
velocity, and acceleration of the modal displacements:

SC D

2

66666664

¡M1WM M¡1
0 K0 ¡M1WM M¡1

0 C0

0 C1WC

K1WK 0

I 0

0 I

¡M¡1
0 K0 ¡M¡1

0 C0

3

77777775

(19)

The remaining matrix SD is the feedthrough matrix. This matrix
presents the contributions from the inputs to the outputs:

SD D
2

66666664

¡M1WM M¡1
0 ¡M1WM M¡1

0 ¡M1WM M¡1
0 ¡M1WM M¡1

0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

¡M¡1
0 ¡M¡1

0 ¡M¡1
0 ¡M¡1

0

3

77777775

(20)

The system model S is related to the uncertainty operators by a
feedback relationship.This relationship is expressed graphically in
Fig. 1.

Fig. 1 Subsystem that represents
the structural dynamics.

Dynamic Pressure

The structural dynamics and the aerodynamics are related by the
dynamic pressure in the original equation of motion of Eq. (1).
The match-pointformulationrequires that the model is expressed in
terms of a single parameter for the � ight condition.This condition is
chosen to be velocityand so the dynamicpressuremust be expressed
in terms of velocity.The expressionuses the approximatingfunction
in Eq. (9) to represent the density,

a D 1
2 ½V 2q D 1

2

¡
p0 C p1V C p2V

2 C p3V
3
¢
V 2q (21)

The expression for the dynamic pressure is simply a combination
of velocity and the coef� cients in the density polynomial. The co-
ef� cients are assumed to be accurate over a given range of veloc-
ities; therefore, there are no uncertain variables in this subsystem.
The only parameter that must be introduced is a perturbation to
airspeed.

The subsystemfordynamicpressuremust be expressedas an LFT
between the nominal subsystem and the perturbation to velocity.
The � rst step in the derivation of this LFT is to replace the velocity
parameter with the relationship between the nominal velocity and
its perturbation,

a D 1
2

¡
p0V

2 C p1V
3 C p2V

4 C p3V
5
¢
q D 1

2

£
p0.V0 C ±V /2

C p1.V0 C ±V /3 C p2.V0 C ±V /4 C p3.V0 C ±V /5
¤
q

D
©£

1
2

¡
p0V

2
0 C p1V

3
0 C p2V

4
0 C p3V

5
0

¢¤
C

£
1
2

¡
p02V0

C p13V 2
0 C p24V 3

0 C p35V 4
0

¢¤
±V C

£
1
2

¡
p0 C p13V0

C p26V 2
0 C p310V 3

0

¢¤
±2

V C
£

1
2

¡
p1 C p24V0 C p310V 2

0

¢¤
±3

V

C
£

1
2 .p2 C p35V0/

¤
±4

V C
¡

1
2

p3

¢
±5

V

ª
q (22)

The formulation of Eq. (22) separates the nominal terms from the
uncertain terms. In particular, the uncertain terms are separated into
terms that depend on different orders of the velocity perturbation.
De� ne parameters for the scaling values of each of these separated
terms to simplify the presentation:

NQ0 D 1
2

¡
p0V

2
0 C p1V

3
0 C p2V

4
0 C p3V

5
0

¢
(23)

NQ1 D 1
2

¡
p02V0 C p13V 2

0 C p24V 3
0 C p35V 4

0

¢
(24)

NQ2 D 1
2

¡
p0 C p13V0 C p26V 2

0 C p310V 3
0

¢
(25)

NQ3 D 1
2

¡
p1 C p24V0 C p310V 2

0

¢
(26)

NQ4 D 1
2

¡
p2 C p35V0

¢
(27)

NQ5 D 1
2

p3 (28)

Introduce these expressionsinto Eq. (22) and arrange the groupings
of velocity perturbations:

a D
¡

NQ0 C NQ1±V C NQ2±
2
V C NQ3±

3
V C NQ4±

4
V C NQ5±5

V

¢
q D NQ0q

C
£ NQ1 C

¡ NQ2 C
© NQ3 C

£ NQ4 C
¡ NQ5

¢
±V

¤
±V

ª
±V

¢
±V

¤
±V q

(29)

The ¹-method framework requires that the explicit dependence of
Eq. (29) on the uncertainty perturbations be replaced with an im-
plicitdependence.This replacementis accomplishedby introducing
� ctitious input and output signals that relate the nominal dynamics
to the perturbations.This process is essentially identical to that used
when formulating the structuralsubsystem;however, there is an im-
portant difference.The dynamic pressure subsystemhas terms with
nonlinear perturbations, whereas the structural subsystem was en-
tirely linear.

An LFT model, which uses feedback of linear perturbations, can
be written to describe some systems with nonlinear dependencies
on those perturbations.4 In particular, an LFT can be expressed for
systems that contain polynomials in the perturbations.The standard
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process for expressing the LFT is to replace the nonlinearities by
the introductionof coupled feedback signals.5;6

De� ne z1 D q and w1 D ±V z1 as a set of feedback signals that
depend linearly on the velocity perturbation. These signals are de-
terminedby theouterscalingof the parentheticalportionofEq. (29).
De� ne anotherset of signals, z2 D w1 and w2 D ±V z2, that are related
by thevelocityperturbation.These signalsshowa linearrelationship
but actuallyrepresenta second-ordernonlinearity.This nonlinearity
is evidenced by substituting the expression for w1 into the expres-
sion for z2 . Similarly, de� ne z3 D w2 and w3 D ±V z3 for the cubic
nonlinearity, de� ne z4 D w3 and w3 D ±V z4 to represent the fourth-
order nonlinearity, and de� ne z5 D w4 and w5 D ±V z5 to associate
with the � fth-order nonlinearity.

The equation that describes the dynamic pressure subsystem,
given in Eq. (29), is now expressed in a form that is suitable for
LFT representation. Replace the explicit dependence on the non-
linear perturbationswith an implicit dependencethat uses feedback
signals:

a D NQ0q C [ NQ1 C . NQ2 C f NQ3 C [ NQ4 C . NQ5/±V ]±V g±V /±V ]±V q

D NQ0q C NQ1w1 C NQ2w2 C NQ3w3 C NQ4w4 C NQ5w5 (30)

The subsystem for dynamic pressure is expressed as a model. This
model NQ is the matrix that relates the inputs w1 –w5 and q to the out-
puts z1 –z5 and a, for the systemgiven in Eq. (30). The formulationof
NQ can be expressed using the de� nitions given in Eqs. (23–28):

NQ D

2

66666664

0 0 0 0 0 I

I 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0
NQ1

NQ2
NQ3

NQ4
NQ5

NQ0

3

77777775

(31)

The model NQ is related to the velocity perturbation by the LFT
shown in Fig. 2. Note that there are 5n repeated instances of the
velocity perturbation in this LFT. This number is a result of the
signals w1–w5 , each of dimension n, being related to the signals
z1 –z5, also of dimension n, by ±V .

Quasi-Steady Aerodynamics

A subsystem is also formulated to represent the quasi-steady
aerodynamics. This subsystem describes the relationship given in
Eq. (10) and equivalently in Eq. (32). The equivalent expression is
presented to remove the fractional terms and to simplify the deriva-
tions that follow,

q0 D
£
A0 C .b=V /s A1 C .b2=V 2/s2 A2

¤
´

V 2q0 D V 2 A0´ C V A1bs´ C A2b2s2´

V 2q0 D V 2 A0´ C V A1b Ṕ C A2b
2 Ŕ (32)
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Fig. 2 Subsystem that represents the
dynamic pressure.

The expression for the quasi-steadyaerodynamics is obviously de-
pendent on the velocity perturbation and, like the expression for
dynamic pressure, does not contain any terms with which paramet-
ric uncertainty may be associated. The only parameters that could
have errors are the reference length b and the A0 , A1 , and A2 ma-
trices. The reference length is a known quantity from the modeling
process and so it will not have any errors. The matrices are deter-
mined by computationalanalysis and so may have errors; however,
it is dif� cult to model these errors as parametric uncertainty. Thus,
the modeling of this subsystemonly considers the LFT to relate the
nominal dynamics to the velocity perturbation.

Introduce the velocity perturbation to Eq. (32) and present an
equation that solves for q0:
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The expression in Eq. (33) presents the computation of q0 as a
nonlinear function of the velocity perturbation. This function is a
polynomial dependenceon nonlinearperturbation terms and so can
be expressed as an LFT. The model formulation de� nes signals and
inputs and outputs that relate the nominal model to the velocity
perturbation.

The dynamicsdemonstratea lineardependencythat is straightfor-
ward to rewrite. De� ne z1 D 2.1=V0/A0´ C .1=V 2

0 /A1b Ṕ as the out-
put signal and w1 D ±V z1 as the related input signal that replace this
linear dependency.There are also nonlineardependenciesthat must
be removed. The � rst nonlinearity ±2

V is removed by introducing
z2 D ´ and w2 D ±V z2 along with z3 D .1=V 2

0 /A0w2 and w3 D ±V z3.
The remainingdependencyis removedby de� ning z4 D q0 and w4 D
±V z4 to represent the linear portion and z5 D .1=V 2

0 /w4 and w5 D
±V z5 to represent the nonlinear portion.

The output q0 of the quasi-steady aerodynamics subsystem is
expressed in terms of these inputs and outputs. Simply replace the
explicit dependenceon ±V in Eq. (33) with the de� nitionsof the new
signals to derive

q0 D A0´ C .1=V0/A1b Ṕ C
¡
1
¯

V 2
0

¢
A2b2 Ŕ

C w1 C w3 ¡ 2.1=V0/w4 ¡ w5 (34)

The subsystem model L0 is now de� ned by the system that relates
q0 to the modal states and state derivatives. The relationship is ex-
pressed as a constant matrix:

Figure 3 graphically expresses the subsystem that represents the
quasi-steadyaerodynamics.This subsystem is now an LFT that re-
lates the nominal dynamics L0 to the velocity perturbation. Note
that this subsystem, similar to the subsystem for dynamic pres-
sure, requires 5n instances of the velocity perturbation to ac-
count properly for the nonlinear dependence of the subsystem on
airspeed.
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Fig. 3 Subsystem that represents the
quasi-steady aerodynamics.

Aerodynamic Lag

The formulation used in this paper considers two lag terms in
the unsteady aerodynamics; however, they are of similar form. A
general formulation is developed that is applicable to any lag term
of this form. Consider the general formulation for the i th lag term.

L i D

2
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qi D A2 C i
.b=V /s

.b=V /s C ¯i
´ (36)

The analysis of the lag dynamics is simpli� ed by de� ning a signal
and introducing it to Eq. (36). This signal x is composed of the
dynamic portion of the lag expression,

qi D x (37)

The expression for x can be simpli� ed by removing the fractional
nature and removing the terms in s,

x D
bs

bs C V¯i
´; .bs C V¯i /x D bs´

b Px C ¯i V x D b Ṕ; Px D ¡ 1
b

V¯i x C Ṕ (38)

Equation (38) demonstrates that x is actually a state of the lag sub-
system. Thus, the output of the subsystem requires both Eqs. (37)
and (38).

An LFT model of the lag subsystem requires that the nominal
dynamics have only an implicit dependency on any uncertainties
or perturbations through feedback. There are two parameters that
appear as explicit dependencies in Eq. (38). These parameters are
±V and ±¯i and represent the velocity perturbation and the error in
the lag pole.Expand the expressionfor Px to note thesedependencies
and replace them with feedback signals:
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Equation (39) uses several inputs and outputs to express the implicit
dependence on uncertainties through feedback. The � rst set of sig-
nals is z1 D x and w1 D ±V z1 and relates the nominal dynamics to
the linear dependency on the velocity perturbation.The next set of
signals, z2 D w1 and w2 D 1¯i z2, relates the velocityperturbationto
the uncertainty in the lag pole. The last set of signals, z3 D x and
w3 D 1¯i z3 , relates the nominal dynamics to the linear dependency
on the uncertainty in the lag pole.

The subsystem that describes a lag term is expressed in terms
of the input and output groups. Speci� cally, there are three sets of
inputs and outputs. Two of the sets are related by feedback and are
associated with the velocity perturbation and the uncertainty in the
lag pole. The last input and output represents the derivative of the
modal displacement and the force from the lag term. De� ne L i as
the model for the i th lag.

The relationship between L i and the feedback parameters is shown
in Fig. 4. Figure 4 shows that the feedback matrix uses only n
instances of the velocity perturbationbut 2n instances of the uncer-
tainty in the lag pole.

The formulation of the subsystems that represent the lag terms
is straightforward to accomplish using the de� nition of L i . Simply
replace each i th variable with its � rst or second counterpart. For
example, replace ¯i0 with ¯10 when formulating the model of L1

from the de� nition of L i .

LFT Formulation

The aeroelastic system is formulated by combining the subsys-
tems together into a single model. The relationships between the
subsystems is easily demonstrated graphically. The single model
results by combining the structuraldynamics in Fig. 1, the dynamic
pressure in Fig. 2, the quasi-steadyaerodynamics in Fig. 3, and the
lag terms of the unsteadyaerodynamicsin Fig. 4. These systems are
related as shown in Fig. 5.

Figure 5 shows a convenient feature that results by considering
subsystems,namely, the ability to considerany numberof lag terms.
The model is formulatedfor a systemwith two lags, but it is straight-
forward to change that number. For example, a system with a single
lag results by simply removing L2 from the model. Also, a system
with three lags results by simply adding an additional block that
is similar in nature to L1 and L2. Thus, the tediousness associated
with changingthe numberof lags in the model formulationis greatly
alleviated.

Anotherconvenientfeatureof the subsystemsapproachis demon-
strated in Fig. 5. This feature is the ability to change easily uncer-
tainty descriptions. Each subsystem is dependent on different ele-
ments of the aeroelastic dynamics and so is dependent on different
uncertainties.For example, uncertainty parameters associated with
stiffness can be introduced or eliminated by simply changing the S
subsystem. The remaining subsystems do not need to be analyzed
and formulated again. This feature simpli� es the process of consid-
ering differentuncertaintycon� gurations for an aeroelastic system.

Fig. 4 Subsystem that represents a
lag term.
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Fig. 5 Aeroelastic model that is formulated by combining subsystems.

Fig. 6 Model that is used for ¹-method
analysis.

The subsystemapproachis alsoconvenientfor model formulation
because of the properties of LFTs. Speci� cally, systems composed
of LFT elements can be expressed as a single LFT. This property
enables Fig. 5 to be represented by Fig. 6.

The nominal dynamics in Fig. 6 are related to the velocity pertur-
bation and uncertainties through a feedback relationship. In partic-
ular, there are 12n instances of the velocity perturbation that result
from the 5n instances associated with the dynamic pressure, the 5n
instances associated with the quasi-steady aerodynamics, and the
n instances from each of the lag terms. The uncertainty matrix 1
is de� ned as a block-diagonal matrix that contains the parametric
uncertainties as the elements:

1 D

2
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0 0 1K 0 0

0 0 0 1¯1 0

0 0 0 0 1¯2

3

777775
(41)

It is possible that the descriptions in Figs. 5 and 6 are not of mini-
mal dimensions. This would imply that the number of uncertainty
instances may be reduced below the numbers that are shown. Con-
sequently, the computation time for ¹-method analysis, which de-
pends on the uncertainty description, may be reduced. There are
formal techniques that may be applied to reduce the size of these
LFT systems16; however, it is not clear that there would be much
bene� t. An informal analysis of the derivation shows that it is dif� -
cult to reduce the size of 1.

Match-Point Robust Flutter Speeds
Match-point � utter speeds are actually quite straightforward to

compute. Indeed, the procedure that is used to analyze the new
formulation in this paper with the ¹ method is exactly the same as
the procedure that is presented for the original formulation.2 The
main concept here is not to reformulate the ¹-method analysis;
rather, it is simply to reformulate the plant model.

The ¹ methodcomputes� utter speedsby � nding the smallestper-
turbation to airspeed for which the plant is not robustly stable. This
analysis requires considerationof both the perturbation to airspeed
and the uncertainty in the model formulation. The following theo-
rem is presented to describe the condition that is used to compute a
robust � utter speed.

Theorem: Given the plant P derived at a nominal velocity V0

that is related to a perturbationin velocity ±V and a set of uncertainty
operators D (as in Fig. 6) de� ne the plant NP using the scaling WV :

NP D P

µ
WV I12n 0

0 I

¶

Then Vrob D V0 C WV is the least-conservative match-point robust
� utter speed if and only if ¹. NP/ D 1.

Proof: The proof follows directly from Theorem 8.1.3 of
Ref. 20.

The reason that the preceding theorem results in a match-point
� utter speed is essentiallybecauseof the model formulation.In par-
ticular, the dynamic pressure is replacedwith a function of velocity.
This formulation requires that the density be expressedas a polyno-
mial in terms of velocity; however, the expression can be chosen to
approximate closely density for a large range of velocities. The re-
sulting formulationis a functionof a single parameter that describes
� ight condition. Thus, the model, despite any perturbations to that
parameter, is always a match-point formulation.

Example
Aerostructures Test Wing

The Aerostructures Test Wing (ATW) structure is being utilized
at NASA Dryden Flight Research Center.17 This wing serves as a
testbed for investigatingpre� ight and online methods of predicting
the onset of � utter. The ATW is essentially a wing and boom as-
sembly. The system has a span of 18 in. and weighs approximately
2.66 lb.

A model is formulatedto representtheATW dynamics.The model
was computed by combining a theoretical mass distribution matrix
with frequencies and modes shapes from a ground vibration test.
This model was computed using a doublet-latticeapproach with the
ZAERO code.18 In particular, rational function approximations of
the unsteady aerodynamics are generated using the minimum-state
approach.13 State-spacemodels are formulatedusing these approxi-
mationsusingboth the original nonmatch-pointformulationand the
new match-point formulation so that solutions from each approach
can be compared.

The structural matrices that describe the primary modes of the
ATW are computed from the model. These matrices are M to rep-
resent the mass matrix, C to represent the damping matrix, and K
to represent the stiffness matrix:

M D diag.0:0158; 0:0080; 0:0003/ (42)

C D diag.0:0068; 0:0079; 0:0010/ (43)

K D diag.117:1808; 150:4427; 67:9218/ (44)
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The model is used to compute aerodynamicin� uence coef� cients at
a Mach 0.8 � ight condition.These coef� cients are used to determine
the matrix coef� cients that are needed for Roger’s9 formulation of
Eq. (2). A least-squaresapproach is used to computea set of optimal
matrices with respect to parameters of b D 0:55 ft for the reference
length and ¯1 D 0:1 and ¯2 D 0:5 for the poles:
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2

4
0:1562 0:4833 ¡0:0912

¡0:0027 0:0504 ¡0:0076
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3

5 (45)

A1 D

2

4
0:6295 0:6959 ¡0:1671

0:1605 0:3509 ¡0:0507

¡0:1527 ¡0:1397 0:0604

3

5 (46)

A2 D

2

4
0:2837 0:0120 ¡0:0418

0:1743 0:0437 ¡0:0282
¡0:0427 0:0090 0:0139

3

5 (47)

A3 D

2

4
0:0007 ¡0:0055 0:0013

¡0:0002 0:0018 ¡0:0004

¡0:0003 0:0021 ¡0:0005

3

5 (48)

A4 D

2

4
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0:0086 0:0231 ¡0:0067

3

5 (49)

Also, a model is formulated that replaces density with a function of
airspeed. The models are only formulated to describe the dynamics
at Mach 0.8and so the correspondingcoef� cients are used.Note that
this approximation is only valid for a range of airspeeds between
830 and 1050 ft/s:

½ D ¡0:1287 C .4:839 £ 10¡4/V ¡ .6:1575 £ 10¡7/V 2

C .2:6675 £ 10¡10/V 3 (50)

Parametric uncertainty is associated with the nominal dynamics to
account for potential modeling errors. This uncertainty is restricted
to consideringerrors in the stiffness matrix. In particular, there may
be 5% error in the � rst bending mode, 10% error in the � rst torsion
mode, and 20% error in the second bendingmode. A weightingma-
trix WK is used to re� ect these levelsof potentialerrorand normalize
the uncertainty for ¹-method analysis.

WK D diag.0:05; 0:10; 0:20/ (51)

Nonmatch-Point Flutter Speeds

Flutter speeds are computed by applying the ¹-method analysis
to the originalformulationthat doesnotguaranteethe resultingsolu-
tions are match-point� utter speeds.These speeds are computed and
presented to demonstrate the bene� ts of using the new formulation
that is derived in this paper.

A set of models are used to compute nonmatch-point � utter
speeds. Each model is formulated with a different value, V0 , of
airspeed. The original formulation changes dynamic pressure but
does not change airspeed and so there is no guarantee that the anal-
ysis will compute a match-point � utter speed. The values of V0 that
are used to formulate models are 893, 860, 838, and 795 ft/s.

Flutter speeds are computed for the ATW models.The true � utter
speed Vvg is computed by a standard V–g analysis of the nominal
model. The applicationof ¹-method analysis to the nonmatch-point
formulation results in nominal � utter speeds Vnom that consider the
assumed dynamics and robust � utter speeds Vrob that consider the
effect of the stiffness uncertainty. The resulting speeds that corre-
spond to models formulated at different values of V0 are given in
Table 1.

Table 1 Flutter speeds for the
nonmatch-point formulation

V0, ft/s Vnom , ft/s Vrob, ft/s Vvg , ft/s

893 859 836 860
860 860 837 860
838 860 838 860
795 861 839 860

Table 2 Flutter speeds for the
match-point formulation

V0, ft/s Vnom , ft/s Vrob, ft/s Vvg , ft/s

893 859 836 859
859 859 836 859
836 859 836 859
795 859 836 859

Clearly the approach that is used to formulate these models can
cause the ¹-method analysis to compute results that are not match-
point solutions. For example, the model that is formulated using
conditions at sea level, V0 D 893 ft/s, generates a nominal � utter
speed with an error of 1 ft/s. This error is not overly large; however,
it does indicate that the approach can compute nonmatch � utter
speeds.

The speedsin Table1 indicatethat it ispossible,althoughnotguar-
anteed, to computea match-pointsolutionevenusing the nonmatch-
point formulation. The model that is chosen with a nominal � ight
conditionof V0 D 860 ft/s results in a � utter speedof Vnom D 860 ft/s.
This represents a match-point condition but is, of course, limited to
the model that is formulated with this particular value of nominal
airspeed.An iterative approach can be used such that a match-point
solution is computed despite the initial value of nominal airspeed;
however, this approach is computationally expensive and does not
provide a guarantee of convergence.

The robust � utter speeds indicate the same basic result as the
nominal � utter speeds. Namely, this formulation is able, but not
guaranteed, to generate a match-point solution. The only situation
that results in an unstable airspeed that matches the airspeed in the
model is when V0 D 838 ft/s. The models at other airspeeds do not
result in match-point solutions.

Match-Point Flutter Speeds

Flutter speeds are computed by applying the ¹-method to the
match-point formulation presented in Fig. 6. Both nominal and
robust � utter speeds are computed to allow a complete compari-
son between the nonmatch-point formulation and the match-point
formulation.

There are several models that are used for the robust analysis.
These models are formulated at the same values of V0 that are used
in the models from the nonmatch-point formulation. The purpose
of using the models at these airspeeds is to demonstrate that the
match-point formulation does not depend on the nominal airspeed.

Table 2 presents the � utter speeds that are computed using ¹-
method analysis for the match-point formulation.The nominal � ut-
ter speeds Vnom and the robust � utter speeds that consider uncer-
tainty, Vrob, are given for the models derived at different values of
V0 . Clearly the � utter speeds in Table 2 demonstrate that the new
formulation guarantees the computation of match-point solutions.
These results differ dramatically from those in Table 1 because the
� utter speeds that result from this formulationare now independent
of the nominal � ight conditions. Note that, as expected, both the
nominal and robust speeds are independent of the value of V0 .

Conclusions
The model formulation that is introduced in this paper guar-

antees that the ¹-method analysis computes a match-point � utter
speed. This formulation is clearly bene� cial in comparison to a pre-
vious formulation that requires iterations to compute a match-point
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solution. The match-point nature of this formulation is a result of
the proper treatment of nonlinear uncertainties and perturbations.
Also, this formulation is advantageousto previous formulationsbe-
cause of the subsystem approach that allows portions of the model
to be changed easily without requiring laboriousalgebra. The ATW
is presented as an example that demonstrates the properties of the
new formulation.The ¹-method analysis computes match-point so-
lutions for both nominal and robust � utter speeds.
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