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Reducing Conservatism in Flutterometer Predictions Using
Volterra Modeling with Modal Parameter Estimation
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Accurate prediction of flutter speeds is essential to efficient and safe flight testing for envelope expansion. Such
accuracy is particularly difficult to obtain when analyzing flight data from speeds well below the critical speed at
which flutter occurs. The flutterometer was introduced as a tool that could predict the onset of flutter even at low-
speed conditions; however, the conservatism in those predictions reduced testing efficiency. A method to augment
the flutterometer to decrease the conservatism, and consequently increase the accuracy, of the predicted flutter
speeds is presented. The method incorporates a scheme for model updating that ensures consistency between the
analytical dynamics and the flight data. The tool is used to compute flutter speeds for the aerostructures test wing.
The speeds predicted with the model updating scheme are very close to the actual flutter speed and demonstrate
the benefits for improving efficiency of envelope expansion.

Introduction

T HE flutterometer is a tool designed to increase the efficiency
of flight flutter testing.1 The concept of this tool is to com-

bine model-based and data-based analysis to predict the onset of
flutter during envelope expansion. The procedure is to compute the
worst-case stability margins for a theoretical model with respect to
uncertainty as determined by flight data. The development for such
a procedure is based on µ-method analysis.2

The tool has been used to predict flutter speeds for a variety of
aeroelastic systems. The flutterometer was tested, along with a va-
riety of techniques, for a simple system that will be addressed again
in this paper.3 Also, the technique has been successfully applied to
the prediction of flutter for systems such as a wind-tunnel model4

and F-16 with stores.5

Flutter speeds predicted by the flutterometer have an inherent
level of conservatism resulting from the worst-case nature of the
predictions. This conservatism provides an inherent level of safety;
however, that conservatism can also adversely impact the efficiency
of the flight test. Some aircraft have relatively small flutter margins,
and so the envelope must be determined as accurately as possible.
Any conservatism in the prediction of this envelope could result in
time-consuming flight testing.

The conservatism in the flutterometer is directly related to the
model and its associated uncertainty. The only way to remove the
conservatism is to improve the accuracy of the model. The formula-
tion of a theoretically perfect model would guarantee the flutterom-
eter has minimal conservatism; however, such a formulation is not
yet feasible. The issue of model updating is, therefore, an important
objective for aeroelasticity research.6

This paper augments the flutterometer with a simple approach
for model updating. This approach actually builds on previous re-
search that used Volterra kernels to analyze flight data and reduce
uncertainty.7 The Volterra kernels are now coupled with a param-
eter estimation algorithm to derive modal properties that are more
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indicative of the true dynamics of the system. These properties are
used to update the model and associated uncertainty description.
The resulting formulation is an updated model that can represent the
system dynamics with more accuracy than the original model. Con-
sequently, the updated flutterometer predictions are more accurate
and have less conservatism than original flutterometer predictions.

The flutterometer is used to predict flutter speeds for the aerostruc-
tures test wing (ATW). The inclusion of model updating allows the
tool to account for a phase shift that was not indicated by preflight
computational analysis. The resulting predictions are highly accu-
rate and, thus, indicate a reduction in conservatism.

Parameter Estimation
Formulation

The basic problem of parameter estimation is to analyze data
and identify coefficients of an equation of motion. This prob-
lem is, in essence, a structured form of the more general prob-
lem of system identification.8 Parameter estimation has been espe-
cially successful when applied to rigid-body equations of motion
for an aircraft9; however, it has had only limited success when
applied to the flexible-body equations of motion associated with
aeroelasticity.

The difficulty with direct application of parameter estimation
for aeroelasticity arises from both the data and the equations of
motion. Flight systems have inherent difficulties generating aeroe-
lastic data because of issues such as poor excitation at high fre-
quencies, poor measurement of excitation force, and poor ob-
servability in dense modal spaces. Furthermore, the equations of
motion contain terms, such as lags, that have only small contri-
butions to the response at most flight conditions. The problem
is particularly difficult when an attempt is made to identify un-
steady aerodynamics separately from structural dynamics. Thus,
the estimation of all parameters in the model from flight data is
questionable.

This paper adopts a simple approach to parameter estimation that
considers the aeroelastic dynamics. The concept is not to estimate
specific parameters in either the structural dynamics or unsteady
aerodynamics; rather, estimates are computed for the combined
aeroelastic dynamics. The correct parameters in the separated dy-
namics are obviously of interest, but they are not necessarily required
for the computation of flutter. The prediction of aeroelastic instabil-
ity can be accomplished by the use of the correct parameters for the
coupled dynamics.

The general formulation of the approach uses a state-space repre-
sentation of the model. This representation uses two sets of matrices,
{A, B, C, D}, and { Â, B̂, Ĉ, D̂}, as the realization of the theoretical
model. This model, P , relates the predicted value of a measurement
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Y in response to excitation given as u:

Y = Pu (1)

=
[

A + Â B + B̂

C + Ĉ D + D̂

]
u (2)

Assume flight data have been recorded as the measurements of
the aircraft in response to the excitation. A model P̄ can be identified
that relates these actual measurements Ȳ to the excitation u by the
use of another state-space realization

Ȳ = P̄u (3)

=
[

Ā B̄

C̄ D̄

]
u (4)

The objective of parameter estimation, as described in this paper,
is to choose optimal values of { Â, B̂, Ĉ, D̂} so that the predicted
value of Y is similar to Ȳ . This application is somewhat different
from traditional applications of parameter estimation that attempt
to identify specific parameters. In a sense, the approach discussed
here is a type of model updating that attempts to identify errors in
specific parameters.

Modal Parameter Estimation
The aeroelastic system can always be written in modal form as

a set of one-state convergences and two-state modes. The one-state
convergences are associated with the lag terms, and these will not
be updated because of observability difficulties.10 The two-state
modes are usually easy to observe, and so the parameter estima-
tion will concentrate on these modal dynamics. In this case, the
two-state modes are neither pure structural or aerodynamic modes
because they actually represent a model of the coupled aeroelastic
system.

Consider the model, including theoretical dynamics and update
matrices, formulated in this specific modal form. In this formulation,
R represents the real part of the eigenvalues and I represents the
imaginary part of the eigenvalues associated with modal parameters:

Y =




R + R̂ I + Î B1

−I − Î R + R̂ B2

C1 + Ĉ1 C2 + Ĉ2 D + D̂


 u (5)

=
(

D + D̂ +
{

[C1 + Ĉ1 C2 + Ĉ2]

×
(

s I −
[

R + R̂ I + Î

−I − Î R + R̂

])−1 [
B1

B2

]})
u (6)

=
[

D + D̂ + (C1 B1 + C2 B2 + Ĉ1 B1 + Ĉ2 B2)(s − R − R̂)

(s − R − R̂)2 + (I + Î )2
(7)

+ (C1 B2 − C2 B1 + Ĉ1 B2 − Ĉ2 B1)(I + Î )

(s − R − R̂)2 + (I + Î )2

]
u (8)

Similarly, consider the identified model in this modal form:

Ȳ =




R̄ Ī B̄1

− Ī R̄ B̄2

C̄1 C̄2 D̄


 u

=
{

D̄ + [C̄1 C̄2]

(
s I −

[
R̄ Ī

− Ī R̄

])−1 [
B̄1

B̄2

]}
u

=
[

D̄ + (C̄1 B̄1 + C̄2 B̄2)
s − R̄

(s − R̄)2 + Ī 2

+ (C̄1 B̄2 − C̄2 B̄1)
Ī

(s − R̄)2 + Ī 2

]
u (9)

The use of this modal form allows direct formulation of the updates
needed to the theoretical model. Actually, the values of the updates
can be chosen to match the models exactly and, consequently, ensure
that Y = Ȳ so that the predicted data match the measured data.

R̂ = R̄ − R

Î = Ī − I

D̂ = D̄ − D

Ĉ1 = (C̄1 B̄1 + C̄2 B̄2 − C1 B1)B1 + (C̄1 B̄2 − C̄2 B̄1 − C1 B2)B2

B2
1 + B2

2

Ĉ2 = (C̄2 B̄1 − C̄1 B̄2 − C2 B1)B1 + (C̄1 B̄1 + C̄2 B̄2 − C2 B2)B2

B2
1 + B2

2

(10)

Model Updating
The flutterometer is a tool to be used during flight testing for

envelope expansion. Thus, the issue of parameter estimation for
model updating must be addressed in that context. The application
of parameter estimation for model updating is considered for the
aircraft at the i th test point during an envelope expansion.

The procedure at the i th test point is to record flight data and
identify a state-space model P̄ that relates the measurements and
excitations. The theoretical model P is compared to this identi-
fied model, and the optimal values of modal estimates are com-
puted as {R̂i , Î i , D̂i , Ĉ i

1, Ĉ i
2}. The objective is to find the values of

{ Â, B̂, Ĉ, D̂} for model updating. Most importantly, the models P
and P̄ are expressed in the modal form described earlier, so that the
model updating is straightforward.

The easier, and most direct, approach to model updating is to
choose the model updates such that the theoretical model exactly
matches the model identified from flight data. Correspondingly, the
model updates are chosen as the optimal values from the modal
parameter estimation made with the i th data set. Note that B̂ can be
set to null because a single update to the observability matrix, given
as Ĉ , is sufficient to account for the effects of errors in both input
and output:

Â =
[

R̂i Î i

− Î i R̂i

]
(11)

B̂ =
[

0

0

]
(12)

Ĉ = [
Ĉ i

1 Ĉ i
2

]
(13)

D̂ = D̂i (14)

Such an approach has safety implications that must be considered
for flight testing. Essentially, this simple approach completely re-
places the theoretical dynamics with the identified dynamics. The
safety concerns arise given that the identified model may have sig-
nificant errors because of properties associated with the flight data.
Obviously such an erroneous model should not be used for flutter
prediction, and so the model updating must try to avoid this situation.

A reasonable approach for model updating can be chosen that uses
the parameter estimates while still retaining some level of safety. The
concept would be to update the model to correct errors that show
some consistency or pattern as the envelope is expanded.

Consider a possible situation for the natural frequency of a mode.
The theoretical model shows an error of 1.0 Hz at a test point, but
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shows an error of -1.0 Hz at another test point. The correct update to
the model is not clear. The model may indeed have an error that is
strongly dependent on the flight condition or, perhaps, the variations
in the data may indicate random errors that are not realistic.

Conversely, consider a different situation. The theoretical model
shows an error of 1.0 Hz at a test point and shows an error of 1.1 Hz
at another test point. The estimate of this error may be incorrect
at each test point; however, the consistency of the error indicates
the model probably has an inherent error of roughly 1.0 Hz in the
natural frequency.

The approach for model updating used in this paper is to adopt a
scheme based on running averages of errors. The errors at each test
point, indicated by the optimal values of modal parameter estima-
tion, are accumulated in a vector. The actual updates applied to the
model are then the average values of these vectors from the first to
the i th test point.

Â = mean

{[
R̂1 Î 1

− Î 1 R̂1

]
, . . . ,

[
R̂i Î i

− Î i R̂i

]}
(15)

B̂ =
[

0

0

]
(16)

Ĉ = mean
{ [

Ĉ1
1 Ĉ1

2

]
, . . . ,

[
Ĉ i

1 Ĉ i
2

] }
(17)

D̂ = mean{D̂1, . . . , D̂i } (18)

In this way, the updating will only reflect consistent errors. Random
errors, which are assumed to have an average near zero, will not be
reflected in the model update. Consistent errors will have a nonzero
average that will be reflected in the model update. Also, smoothly
time-varying errors will be reflected in the averages, and, thus, these
errors will result in model updates. The safety level is not overly
sacrificed with this approach because the model is only updated by
the use of errors whose consistency provides confidence that the
update is indeed valid.

This approach may seem simplistic in comparison to the advanced
techniques being investigated for the general problem of parame-
ter estimation; however, the simplicity presents distinct advantages
for this application. As mentioned earlier, the direct estimation of
structural and aerodynamic parameters from flight data is not feasi-
ble, but the simplistic estimation of aeroelastic modal parameters is
straightforward. Also as mentioned earlier, the direct utilization of
errors estimated at a single test point may lead to incorrect predic-
tions of flutter speeds, but a simplistic average will generate updates
that reflect consistent errors without sacrificing safety.

Flutterometer
Model Formulation

The initial process in the flutterometer is the formulation of a
model. This model must be a state-space description of the aeroelas-
tic dynamics. In particular, the model must be parametrized around
flight condition and associated uncertainties.

The model updating, both for theoretical dynamics and uncer-
tainties, is performed by comparison of theoretical and measured
transfer functions at a flight condition. Thus, the theoretical model
must be formulated at a reference condition matching the test point.
This formulation is easily done by the use of one of several meth-
ods, including the approaches used standard software packages like
NASTRAN and ZAERO; however, the model must retain its param-
eterization around flight condition and uncertainty.

The procedure used for model formulation in the flutterometer
is actually straightforward. The preflight theoretical dynamics are
generated at a reference condition V 0 with standard approaches.
A state-space model P(V 0) is generated and parametrized around
flight condition δV and uncertainty �. This parameterization makes
it trivial to formulate the model at any reference condition. Thus,
the model associated with the velocity V i at the i th test point is
generated by simple replacement of δV with δV + V i − V 0. The

resulting model can be expressed as P(V i ) with feedback signals
relating these dynamics to δV and �.

Also, the model needs to be expressed in modal form to facilitate
the parameter estimation. This modal form is generated by standard
routines for state transformations.10 The final model describes the
aeroelastic dynamics at V i with 2 × 2 and 1 × 1 modal blocks that
are parametrized around flight condition and uncertainty.

Data Filtering
The next process in the flutterometer is the filtering of flight data.

This step is vital because aeroelastic flight data are typically of
very poor quality. In general, these data do not satisfy linearity re-
quirements due to nonlinearities in the aircraft dynamics and high
levels of noise in the measurements. The process of model updat-
ing requires data that accurately reflect the linear dynamics of the
aeroelastic system. Thus, the data must be filtered to provide the
required information.

The filtering process used in this paper is based on Volterra mod-
eling. The concept of Volterra modeling is to represent data as a set
of signals that describe different orders. In other words, the data can
be described by a linear component, plus a quadratic component,
plus higher-order components. The dynamics of each component
are given by a Volterra kernel.11,12

Volterra kernels are identified whose input–output characteris-
tics match the flight data.7 These kernels are identified by the
use of a wavelet-based approach that makes use of multiresolu-
tion decomposition.13 Volterra kernels have been used to represent
many aeroelastic systems and demonstrate that the linear, quadratic,
and third-order terms often provide sufficient accuracy.14,15 Thus,
this paper will only consider the identification of low-order terms
to represent the aeroelastic dynamics.

The data are filtered by the extraction of the linear component.
This component is found by compution of optimal values of the
Volterra kernels from the flight data. The first-order kernel represents
the linear dynamics. The desired linear component of the data is,
thus, generated by a simple convolution of the excitation signal with
the kernel.

This type of filtering is only one approach from a multitude of
possibilities. Any filtering can be used; however, previous expe-
rience has shown that Volterra-based filtering works particularly
well. Standard approaches, such as low-pass filtering, or advanced
approaches, such as time-frequency feature filtering, may be used,
but they are not necessarily optimal for this type of application.
The Volterra filtering is appropriate because it inherently considers
transfer functions for data representation, which are exactly what is
required by the flutterometer.

Model Updating
The process of model updating makes direct use of the prod-

ucts of model formulation and data filtering. Essentially, the pa-
rameters of the formulated model are altered based on information
from the filtered data. An important issue to note is that model
updating actually refers to both the nominal dynamics and the as-
sociated uncertainty. These elements are both part of the uncer-
tain model used for µ-method analysis, and so they should both be
updated.

The first step of model updating is to alter the theoretical dynam-
ics. This alteration is done by perturbation of the state-space ma-
trices by the use of the modal parameter updates. More precisely,
the updates are the running averages of the differences between the
theoretical and estimated dynamics at each test point. The altered
dynamics are now considered the nominal dynamics.

The other step of model updating is to compute the uncertainty
associated with the nominal dynamics. This step is done via the
test of a condition for model validation. Essentially, the effect of
uncertainty is to allow the analytical dynamics to vary within a
bounded range. The model updating occurs by an increase in the
size of uncertainty until the flight data lie within the range of dy-
namics. The actual data used for this process may vary such that
consideration of a single test point will reduce conservatism, but
also safety margins, whereas consideration of many test points will
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increase conservatism, but also safety margins, for the resulting flut-
ter predictions.1

In this way, the data filtered via Volterra kernels are actually used
multiple times. This data are used for parameter estimation because
they contain only the desired linear component. These data are also
used for model validation because they relate a realistic measure of
linear uncertainty.7 Essentially, the filtered data contain only infor-
mation about the linear dynamics, and so they are optimal for use
for parameter estimation and model validation of linear models.

Robust Flutter Speeds
The final process in the flutterometer is the computation of a ro-

bust flutter speed. This process is a direct application of µ-method
analysis to the model with optimal parameter and uncertainty up-
dates. The resulting analysis is a robust stability computation that
considers the worst-case flutter speeds of the model with respect to
the uncertainty.

Flight Test
ATW

The ATW was developed at NASA Dryden Flight Research
Center.16 This testbed was specifically designed for testing methods
to predict the onset of flutter. The ATW was essentially a wing and
boom assembly that was flown by using an F-15 aircraft and asso-
ciated flight-test fixture. The ATW was mounted horizontally to the
fixture and the resulting system attached to the undercarriage of the
F-15, as shown in Fig. 1.

The ATW was flown to several test points during envelope ex-
pansion. These points included altitudes of 20000 (6096 m); 15000
(4572 m); and 10000 ft (3048 m) and Mach numbers of 0.50,
0.55, 0.60, 0.65, 0.70, 0.75, 0.80, and 0.825. The final flight ended
with destruction of the ATW due to flutter at flight conditions of
10,000 ft and 0.83 for Mach number. Equivalently, the flight con-
ditions at which flutter occured correspond to 460 kn of equivalent
airspeed (KEAS).

Envelope Expansion
Estimates of modal parameters were computed from the flight

data. At each test point, a standard frequency-domain method of
system identification was used to formulate a model whose magni-
tude and phase characteristics were similar to the transfer function.
The modal parameters of that model were then extracted and used
as representative of the ATW parameters.

The modal dampings that were extracted at each test point are
given in Fig. 2. The flutter instability affecting the bending mode is
clearly evident in the data trends.

The modal frequencies for the ATW are given in Fig. 3.
The actual mechanism of flutter is somewhat difficult to discern

from the flight data. The dampings in Fig. 2 seem to indicate the
mechanism is a classical type of flutter such that one mode is becom-
ing less stable, whereas the other mode is becoming more stable.
Conversely, the frequencies in Fig. 3 do not appear to coalesce,
as expected for classical flutter, until a possible coalescence at the
airspeed very close to the onset of flutter.

Also note in Figs. 2 and 3 is that only 15 estimates are shown,
even though the flights operated at 21 test points. The responses

Fig. 1 Mounting of the ATW.

Fig. 2 Measured modal dampings for bending mode, + and torsion
mode, �.

Fig. 3 Measured modal frequencies for bending mode, + and torsion
mode, �.

from several of the test points were unable to present sufficient
information about the bending mode. The response levels were quite
low at these test points, and so accurate modal estimates could not
be obtained. The reason for the poor data quality at some points
was unclear but possibilities included high levels of turbulence and
noise or unexplained high damping.

Data Filtering
The flight data are filtered to extract the linear component by

the use of Volterra kernels. Previous analysis of the ATW has indi-
cated that its dynamics are relatively linear; therefore, only first- and
second-order terms in the Volterra expansion were used to reflect
the linear and quadratic dynamics.

The actual computation of kernels required several parameters,
such as memory length and resolution,7 to be chosen. Several
sets of parameters were tested, and the results indicated a range
within which the results were fairly consistent and reasonable.
Consequently, the kernels were identified with a 1-s duration and
256 points. These parameters indicate the kernel decayed within 1-s
and comprised 256 wavelet coefficients.

Figure 4 shows a measurement from the flight data that is rep-
resentative of the measurements taken throughout the flight. These
data show the response to a chirp excitation for the accelerometer
located in the boom near the trailing-edge endcap. This chirp is gen-
erated by variation of the sinusoids, commanded to the excitation
mechanism on the system, between 5 and 35 Hz (Ref. 16).

The corresponding simulated data, as computed by the first-order
Volterra kernel, are shown in Fig. 5. Clearly, the data filtering has
reduced a significant portion of the energy in the response. Some
of this energy was random noise, whereas some of this energy re-
sulted from excitation of nonlinearities. Either way, the second-order
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Fig. 4 Response of the trailing-edge boom accelerometer to a chirp
excitation.

Fig. 5 Simulated response to chirp input from first-order Volterra
kernel.

kernel was negligible, and so it is assumed that nonlinearities do not
play a prevalent role in the dynamics and, thus, can be ignored for
in the prediction of the onset of flutter.

Clearly, the data filtering has reduced a significant portion of the
noise. Some of this noise may have actually resulted from nonlin-
earities that were not represented by the first-order kernel; however,
the second-order kernel is negligible, and so nonlinearities can be
ignored.

Model Updating
The filtered data were used for model updating. This updating

altered the theoretical dynamics to match properties estimated from
the data. Specifically, the damping and natural frequencies, along
with observability, are updated for each mode.

The updates to the damping for each mode are of particular in-
terest because damping is traditionally used to indicate flutter. The
differences, and running average of the differences, between the the-
oretical and measured damping are given in Fig. 6 for each test point.

The errors in damping for the bending and torsion modes shown
in Fig. 6 seem to show different trends. The error in damping for
the bending mode is small at the low-speed test points but gener-
ally increases as the envelope is expanded. Conversely, the error in
damping for the torsion mode is small at the low-speed test points
and actually decreases to even smaller levels as the envelope is
expanded. These trends suggest that the theoretical model of the
torsion mode is more accurate, at least in terms of damping, than
the theoretical model of the bending mode.

Such behavior is extremely important for flutter prediction. The
onset of flutter results in an unstable bending mode that is character-
ized by zero damping. The magnitude of damping for the bending,

Fig. 6 Error, + and running average of the error, —— in modal damp-
ing of the theoretical model for bending mode and error, � and running
average of the error, – – – for torsion mode.

Fig. 7 Error, + and running average of the error, —— in natural fre-
quency of the theoretical model for bending mode and error, � and
running average of the error, – – – for torsion mode.

as seen in Fig. 2, is decreasing as the envelope is expanded. Thus,
the increasing error indicates that the theoretical model does not
correctly predict the flight conditions at which flutter occurs and the
bending mode becomes unstable.

Also, the running averages in Fig. 6 show the updates used to
alter the theoretical model. The running average is seen to be an
excellent indicator of the error in the torsion mode and a reasonable
indicator of the error in the bending mode. In particular, the running
average represents the error well for low- and high-speed test points
and smooths out the effects of the inconsistently large errors at some
of the test points.

The updates to the natural frequency for each mode are of related
interest because natural frequency provides additional information
that may be used to predict flutter. The differences between the the-
oretical and measured natural frequencies for each mode are shown
in Fig. 7 along with the corresponding running averages.

The errors in natural frequency, like the errors in damping, show
differing trends between the torsion and bending modes; how-
ever, the trends in Figs. 6 and 7 are actually opposite. Specif-
ically, the bending mode shows an increasing error in damping
and a decreasing error in natural frequency as the envelope is ex-
panded. Conversely, the torsion mode shows a decreasing error in
damping and an increasing error in natural frequency as the en-
velope is expanded. These trends are quite interesting and suggest
frequency and damping were modeled with very different levels
of accuracy.

The updates to observability of each mode are shown in Fig. 8.
The differing trends between errors in bending and torsion dynamics
is further exemplified by these results.
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a) b)

Fig. 8 Error, � and average error, —— in observation of first state and error, + and average error, – – – in observation of second state of the
theoretical model for a) bending mode and b) torsion mode.

Fig. 9 Uncertainty in updated model for structural stiffness and
damping, �; aerodynamic forces, *; excitation, +; and measurement, �.

Figure 8 shows another significant difference between the model-
ing of the bending and torsion modes. The error in observability of
the two states associated with the bending mode are changing signs.
Conversely, the error in observability of the two states associated
with the torsion mode remain the same sign. Such a difference in
sign for the bending mode implies a change of phase.

Note the updates to observability. The observability is directly
related to mode shape and, consequently, the flutter mechanism.
The data in Fig. 8 indicate that the theoretical predictions of mode
shape are distinctly different than the data indicate. Such an error
is probably the reason that computational analysis was unable to
predict the onset of flutter to within 50 KEAS. The ATW experienced
a phase change in the aeroelastic dynamics that was not predicted
by preflight modeling.

Uncertainty Estimation
The theoretical model is generated with an uncertainty descrip-

tion. This description allows for variation in the parameters of the
structural stiffness and structural damping matrices. Also, the de-
scription includes terms for magnitude and phase variations of the
aerodynamic forces. Finally, the uncertainty description accounts
for errors in magnitude and phase of the excitation energy and data
measurements due to unmeasured quantities such as wind gusts and
noise.

The uncertainty levels required to ensure the updated models are
not invalidated by the flight data are shown in Fig. 9. These uncer-
tainty levels are computed automatically by the flutterometer. The
range of transfer functions from the model with these levels of uncer-
tainty are sufficient to bound the transfer functions of the flight data.

Fig. 10 Flutter speeds predicted by damping extrapolation, +; original
flutterometer, *; and updated flutterometer, �.

The maximum amount of uncertainty needed at any test point
was 9.5% for the structural stiffness and damping, 149% for the
aerodynamic forces, 4.7% for the excitation, and 1.5% for the
measurement.16 The updated models did not require much uncer-
tainty for most parameters; however, the uncertainty associated with
the aerodynamic forces was quite large. This situation was accept-
able because the flutter speeds were considerably more sensitive to
structural parameters than to the variations in aerodynamic forces.
Thus, these uncertainty levels do not correspond to excessive con-
servatism in the model.

Note that these uncertainty levels correspond to the model with
updating of the average perturbations. If the models are updated
with the exact perturbation needed to match theoretical and ex-
perimental transfer functions, then no uncertainty is needed for
the model, but the results would be accepted with less confi-
dence. As stated earlier, the averaging approach for model up-
dating reduces local effects at a single test and, thus, increases
confidence in the results by identifying errors trends at many test
points.

Flutter Prediction
Flutter speeds are predicted for the ATW with several techniques.

One set of predictions results from standard extrapolation of damp-
ing parameters. Another set of predictions results from the original
implementation of the flutterometer that only updates uncertainty
descriptions. The final set of predictions results from the new im-
plementation of the flutterometer that uses Volterra modeling of the
data and includes modal parameter estimation. These predictions
are shown in Fig. 10.
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The predictions from the new implementation of the flutterom-
eter are clearly superior to either of the other sets of predictions.
Specifically, the flutterometer now estimates a flutter speed that is
within 10 KEAS of the true flutter speed when flight data from any
test point of the envelope expansion are used.

The flutterometer with model updating has clearly removed most
of the conservatism in the predictions that were associated with the
original flutterometer. The predictions are now able to account for
the flight data by estimation of parameters for the model for which
less uncertainty is required to validate the flight data. The result of
this updating is a flutterometer that computes accurate predictions
of flutter speed.

Conversely, the flutterometer with model updating has not re-
moved too much conservatism or caused the predictions to be overly
optimistic. The predictions in Fig. 10 show that the predictions re-
main very close to the true flutter speed. The inclusion of model
updating has increased the accuracy of the flutterometer without
sacrificing the safety provided by considering a worst-case flutter
mechanism.

The extensions to the flutterometer presented in this paper make
the tool especially valuable in comparison to the traditional method
of extrapolation of damping trends. The predictions from damping
are seen in Fig. 10 to be widely scattered and not very accurate until
the envelope expansion has reached test points above 350 KEAS.
The flutterometer now accurately predicts the flutter speed at both
low- and high-speed test points.

Conclusions
This paper has introduced an approach to improve the accuracy

of the flutter speeds predicted by the flutterometer. Such accuracy
results from augmention of the tool to include a scheme for model
updating based on modal parameter estimation by the use of Volterra
kernels. The updates are optimal in the sense that they reflect consis-
tent errors between the theoretical dynamics and the linear dynam-
ics associated with the first-order Volterra kernels that represent the
flight data. Flutter speeds are computed for the ATW by the use of
the new version of the flutterometer. The model updates are able to
correct a phase shift that was not predicted by computational analy-
sis. Consequently, the flutterometer predicted highly accurate flutter
speeds.
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