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Real-Time Identi� cation of Flutter Boundaries
Using the Discrete Wavelet Transform

Jeffrey D. Johnson,¤ Jun Lu,† and Atam P. Dhawan‡

University of Toledo, Toledo, Ohio 43606
and

Richard Lind§

NASA Dryden Flight Research Center, Edwards, California 92523

Real-time analysis of an airframe’s � utter boundaries during � ight testing can help ensure safety and reduce
costs. One method of identi� cation is to perform correlation � ltering using a set of singlet functions. The method is
able to identify accurately the frequency and damping coef� cient of the system to excitation, but the computational
time required can be too signi� cant to implement in real-time. An alternative method is presented for correlation
� ltering that employs a multiple-level discrete wavelet transform. The wavelet transform decomposes the response
signal into a set of subsignals that correspond to different frequency bands. The same operation is applied to each
entry in a dictionary of singlet functions. The transform results in a considerable reduction in the data and, thus,
to a reduction in the computational time needed to calculate the correlation. We demonstrate that our approach is
able to identify accurately frequency and damping characteristics of the impulse response of both a synthetically
generated test signal and actual � ight-test data. As a result, real-time identi� cation of � utter boundaries during
� ight testing may be possible with relatively low-cost computational resources.

Nomenclature
A = arbitrary scaling factor
Di H = i th subdictionary of high-frequency component
Di L = i th subdictionary of low-frequency component
f .t/ = test signal
g[n] = high-pass � lter
h[n] = low-pass � lter
n.t/ = unity-bounded random noise
R = set of real numbers
RC = set of positive real numbers
T = set of time translation indexes
t = time
x[n] = signal example
x 0

high[k] = detail component of signal
x 0

low[k] = approximation component of signal
Z = set of dampings
° = parameter vector
1t = time support range
1¿ = time period between two consecutive ¿ ¢ !

frequencies
³ = viscous damping ratio
³0 = damping of signal
N³ = damping associated with ·.¿ /
·° = matrix of correlation coef� cients
·.¿/ = highest correlation coef� cient during

the ¿ th time period
¿ = time translation index
9 = singlet function
9D or D0 = dictionary of singlet functions
Ã° .t/ = singlet function in dictionary
Ä = set of frequencies
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!0 = frequency of signal
N! = frequency associated with ·.¿ /

Introduction

M ODAL analysis is an important tool for a wide variety of engi-
neering applications including manufacturing,1 automotive,2

and aerospace.3 The information obtained from this analysis de-
scribes the natural frequencies and damping associated with rigid-
body and structural modes of a system. The information can then
be used to indicate properties of the system such as safe operating
condition,4 dynamic response behavior,5 and material damage.6

Flight � utter testing is an application that is dependent on in-� ight
modal analysis.7 Essentially, the testing expands the � ight envelope
to include new operating conditions in an effort to ensure that no
aeroelastic instabilities are encountered. Modal analysis is used to
indicate the properties of structural modes at test points throughout
the � ight envelope. The onset of instabilities is identi� ed by noting
adverse trends on the modal parameters as the envelope is expanded.
Thus, the quality and ef� ciency of modal analysis is critical for � ight
� utter testing.8

Freudinger et al. developed a method of modal analysis for � utter
identi� cation that involves time-domain correlation � ltering.5 They
created a dictionary of functions that have similar properties as the
impulse response of a single-mode linear system.9 (Freudinger et al.5

called their dictionary entries Laplace wavelets; however, we will
refer to them as singlet functions to avoid any confusion with the
wavelet transform that we apply to the entries in our method.) The
modal properties of the system are identi� edby noting the frequency
and damping characteristics of those singlet functions that are highly
correlated with the response signal. This method was shown to iden-
tify accurately parameters of modal dynamics for several aeroelastic
systems5; however, the computational requirements of this approach
prohibit a cost-effective real-time implementation.

In this paper we present an alternative method for correlation
� ltering that extends the original continuous-domain concept of
Freudinger et al.5 by employing wavelets. Wavelets have recently
been introduced in the context of � ight � utter testing.9;10 Wavelets
represent a type of processing that relaxes several constraints on
a measurement signal that are assumed to be satis� ed when using
traditional Fourier processing (see Ref. 11). Wavelet processing has
been used extensively for a variety of signal and image process-
ing applications12¡15; however, they are also receiving attention for
analysis of dynamic systems.5;16
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Our method uses the discrete wavelet transform (DWT) to decom-
pose the response signal into its low- and high-frequency compo-
nents. Only the low-frequency components that contain information
about modal dynamics are retained, and the signal is downsized to
reduce the number of points in its representation. The reduced signal
can then be further reduced by consecutively applying the discrete
wavelet transform or it can be reconstructed to obtain the original
time-domain signal. An identical multiresolution decomposition is
performed on the dictionary entries to generate a set of multireso-
lution singlet functions. Correlation � ltering is performed using the
reduced signal and dictionary entries.

Singlet Functions
In this section we introduce the singlet functions that are used

to build the dictionary. The derivation appears elsewhere,5;17 but
we include it here for the convenience of the readers. The singlet
function 9 is a complex, analytic, single-sided damped exponential
de� ned by
Ã.!; ³; ¿; t/ D Ã° .t/

D

8
<

:

A exp
£¡

¡³
¯p

1 ¡ ³ 2
¢
!.t ¡ ¿ /

¤

£ exp [¡ j!.t ¡ ¿ /] t 2 [¿; ¿ C 1t ]

0 otherwise (1)

The parameter vector is ° D f!; ³; ¿g. The elements of ° are related
to modal dynamic properties and are frequency ! 2 RC, viscous
damping ratio ³ 2 [0; 1] ½ RC , and time translation index ¿ 2 R.
The coef� cient A is an arbitrary scaling factor that is used to scale
each singlet function to a unity norm. The range 1t ensures that
the singlet function is compactly supported and has nonzero � nite
length, but the parameter 1t is generally not explicitly expressed.

Dictionary of the Singlet Functions
A dictionary is a set of singlet functions used for signal

decomposition.11 The dictionary approximates a basis assuming the
responses to be analyzed are similar in nature to the singlet func-
tions. The dictionary is de� ned by the following set of parameters:

Ä D f!1; !2; : : : ; ! pg ½ RC

Z D f³1; ³2; : : : ; ³qg ½ RC \ [0; 1]

T D f¿1; ¿2; : : : ; ¿r g ½ R (2)

The dictionary 9D is de� ned for the set of entries whose parameters
are denoted as follows:

9D D fÃ° .!; ³; ¿; t/ : ! 2 Ä; ³ 2 Z; ¿ 2 T g (3)

Correlation Filtering
The operation, hÃ° .t/; f .t/i D f .t/¤Ã° .t/, correlates a signal

with a singlet function in the dictionary. The operation produces
a measure of similarity between frequency and damping properties
of the dictionary entry Ã° and the system that generated the sig-
nal f .t/. A correlation coef� cient ·° 2 R is de� ned to quantify the
degree of correlation between each entry and the response signal,

·° D
p

2
jhÃ° ; f .t/ij
kÃ° k2k f k2

(4)

where ·° is a matrix whose dimensions are determined by the param-
eter vectors of f!; ³; ¿g. For online modal analysis, ·.¿ / is de� ned
as the peak correlation coef� cient at ¿ between the dictionary entries
and the response signal contained in a window that begins at t D ¿
and ends at t D ¿ C 1t . We also de� ne N! and N³ as the parameters of
the singlet function associated with the peak correlation

·.¿ / D max ·°
! 2 Ä

³ 2 Z

D ·f N!; N³ ;¿g (5)

The damping N³ and frequency N! indicate the modal properties
of the system that generated the data. A large dictionary of sin-
glet functions must be used to ensure that the dictionary contains
a reasonable approximation for the response data, otherwise the
correlation � ltering will not relate accurate information about the

important dynamics. Thus, the computational cost of the correla-
tion � lter with inner products can be quite high and can prohibit a
cost-effective real-time implementation of this approach.

DWT
We present an approach to correlation � ltering using a multires-

olution decomposition of the response signal and the entries in the
dictionary. We apply the DWT to both the response signal and the
singlet functions in the dictionary and compute the correlation level
between their subsignal components.

The wavelet transform18 is a method for complete time–frequency
localization for signal analysis and characterization. The wavelet
transform of a signal is its decomposition on a family of real or-
thonormal bases Ãmn.x/ obtained through translation and dilation
of a kernel function Ã.x/ known as the mother wavelet,

Ãmn.x/ D 2¡m=2Ã.2¡m x ¡ n/ (6)

where m; n 2 Z are a set of integers. When the orthonormal property
of the basis functions is used, wavelet expansion coef� cients of a
signal f .x/ can be computed as

cmn.x/ D
Z 1

¡1
Ãm;n.x/ f .x/ (7)

The signal can be reconstructed from the coef� cients as

f .x/ D
X

m

X

n

cm ;nÃm;n.x/ (8)

In general a mother wavelet can be constructed using a scaling
function Á.x/ that satis� es the scaling equation

Á.x/ D
X

k

h.k/Á.2x ¡ k/ (9)

and the corresponding wavelet de� ning equation

Ã.x/ D
X

k

g.k/Á.2x ¡ k/ (10)

where g.k/ D .¡1/1 ¡ k h.1 ¡ k/. The coef� cients of the scaling
equation h.k/ must satisfy several conditions for the set of basis
functions to be unique, to be orthonormal, and to have a certain
degree of regularity. For the � ltering operations, h.k/ and g.k/ co-
ef� cients can be used as the impulse responses correspond to the
low- and high-pass operations.

As an O.N / algorithm, the discrete wavelet transform of a given
sampled signal is a fast algorithm for computing the wavelet ex-
pansion coef� cients of the signal. The DWT does not work over all
possible scales and locations, but by choosing the scales and loca-
tions of the wavelet based on the powers of 2, the accuracy of the
algorithm can still be maintained while the computational time is
signi� cantly reduced.19

Mallat algorithms are used to compute the discrete wavelet trans-
form of a sampled signal.20 Mallat showed that, using the scal-
ing function Á and the wavelet function Ã , the wavelet multiscale
representation of the sampled signal can be expressed as20

f .x/ D
X

k

a0k Á0k.x/ C
X

k

X

j

b jk Ã jk .x/ (11)

Equation (11) provides a multiscale representation of the signal at
the coarse scales f0; 1; : : : ; j; : : :g. The Mallat algorithm consists
of mapping the coef� cients at the single scale to the multiscale
coef� cients. This transform consists of convolution with a series of
� lter banks that de� ne the scaling and wavelet functions and down
sampling, as shown in Fig. 1.

Correlation Filtering with DWT
Proposed Algorithm

As introduced earlier, we � rst create a dictionary of time-domain
singlet functions. We use the family of signals de� ned in Eq. (1)
because of its similarity to the impulse response of the single-mode
system. The DWT is applied to each entry in the dictionary to obtain
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Fig. 1 Decomposition of original signal into low-frequency (approx-
imation) and high-frequency (detail) component using wavelet trans-
forms, h[n] and g[n], respectively.

Fig. 2 Method of correlation � ltering.

Fig. 3 Three-level multilevel decomposition tree using the wavelet
transform.

a wavelet-domain subdictionary (Fig. 2). Multiple levels of decom-
positions produce a new wavelet-domain dictionary in which the
size of each of its entries is signi� cantly reduced compared to the
entries in the original dictionary. Similarly, the DWT is applied
to the time-domain response signal to obtain the wavelet-domain
subsignal.

As shown in Fig. 2, before � ltering, a multilevel decomposition
using the DWT is applied to both the sampled signal and the dic-
tionary of singlet functions. Correlation � ltering results in a match
between the singlet function that is the closest approximation of
the frequency and damping characteristics of the signal at a speci� c
point in time.

Correlation � ltering using a wavelet dictionary consists of, at each
¿ of the time-domain signal, the correlation coef� cient between the
subsignal and each entry in the subdictionary is computed. Peaks
of the coef� cients for a given ¿ indicate the singlet function with
the strongest correlation to the signal at t D ¿ . During the DWT, the
biorthogonal wavelet � lter is used as the low-pass and high-pass
� lter because of its properties of symmetry and compact support.

Multi-Resolution Decomposition Tree
In this section we show how to form the multiresolution decom-

position tree of the signal dictionary using the discrete wavelet trans-
form. The original dictionary can be viewed as the level-0 dictionary
D0 in the multiresolution decomposition tree of the discrete wavelet
transform as shown in Fig. 3. We apply the wavelet transform to the
level-0 dictionary and create the subdictionaries D1L and D1H ,
where L and H indicate the low- and high-frequency components
of the transformed data, respectively. For this study, we only uti-

lize the low-frequency component of each transform because the
high-frequency components lacked discriminatory information for
our speci� c task. Subdictionary D2L and D2H are obtained by
performing the discrete wavelet transform on D1L. The discrete
wavelet transform can be further applied to the low-frequency com-
ponent of each subdictionary entry to decompose further the dic-
tionary and to reduce the number of the points that represent each
entry. In this way, we create a multiresolution decomposition tree
that includes the subdictionaries D1L, D2L , and D3L . All of the
subdictionaries can be obtained of� ine once the parameter space has
been discretized.

When different scales for the wavelets are chosen, the wavelet
transform can achieve any desired resolution in time or frequency.
Each application of the DWT, increases the frequency resolution
of the signal. Thus, the subcomponents at node N of the DWT
decomposition tree have a � ner frequency resolution than the sub-
components at the node N ¡ 1, one level above N . Finer frequency
resolution implies better frequency localization allowing us to lo-
cate accurately the most prominent frequencies in the original sig-
nal. The ability of wavelet transforms to operate locally, that is,
extract frequency characteristics in window of a time-based signal,
is the signi� cant difference between wavelet transforms and Fourier
transforms.

The DWT is also applied to the sampled signal received from the
vehicle under test. A multiresolution decomposition tree is gener-
ated to obtain the subsignal in each level of resolution. The method
is the same as that applied to the entries in the dictionary and its
subdictionary already described.

Time-based correlation is computationally demanding. Thus, in-
stead of computing the correlation between the sampled signal and
each entry in the original dictionary in the time domain, our method
computes the correlation coef� cients between the subsignal and
each entry of the subdictionary in the lowest level of the decom-
position tree.

Experimental Results
Application 1: Test Signal

In our � rst application, we apply our approach by analyzing
the frequency and damping characteristics of a synthetically gen-
erated test signal. Our goal is to show that our approach is
as capable of identifying the modal parameters as the original
method of Freidinger et al.,5 but with greatly reduced computational
requirements.

The test signal f .t/, shown in Fig. 4, is used by Freidinger et al.5

and de� ned as

f .t/ D

8
<

:

exp
£¡

¡»0

¯p
1 ¡ ³ 2

0

¢
!0.t ¡ t0/

¤

£ sin[!0.t ¡ t0/] C 0:01 ¢ n.t/ t ¸ t0
0:01 ¢ n.t/ t < t0 (12)

where ³0 D 0:04, !0 D 10 Hz, and n.t/ is a unity-bounded random
noise weighted by 0.01. The sampling rate of signal is 200 Hz. The
impulse is applied at t0 D 0.

Fig. 4 Test signal (from Freudinger et al.5).
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a)

b)

c)

Fig. 5 Results of correlation � ltering of the test signal in Fig. 4 and
without wavelet decomposition: a) highest correlation coef� cient among
all singlet functions, b) frequency coef� cient, and c) damping coef� cient
plot of the singlet function with the highest correlation coef� cient at that
point in time.

We also use the dictionary de� ned by Freidinger et al.5 The sets
of the parameters are (expressed in the format of finitial value,
increment, � nal valueg) as

Ä D f5 : 0:5 : 20g; Z D ff0:005 : 0:005 : 0:2gf0:3 : 0:1 : 0:9gg

T D f¡5 : 0:1 : 5g

The support range of the correlation � ltering of the test signal f .t/
with the waveforms in the dictionary is 1t D 4 s. A biorthogonal
wavelet � lter is used to perform a four-level decomposition of the
test signal and dictionary entries. For our purposes, only the approx-
imation component (low-frequency component) is retained at each
level for further decomposition.

Results
Figure 5 presents the information obtained by correlation � ltering

the original (level 0) test signal f .t/ with the original dictionary 9D .
This method is equivalent to that of Freudinger et al.5 At the begin-
ning of the impulse, the values of ·.¿ / remain close to 1 for about
0.7 s. This demonstrates that there is a high correlation between the
signal and some entries in the dictionary. Figures 5b and 5c shows
the parameters of N! and N³ of the entries that were strongly correlated
with the test signal at each ¿ obtained from the correlation � ltering.

Figure 6a presents the correlation coef� cients ·.¿ / for each f .t/
obtained from the correlation � ltering between the low-frequency
components of the test signal and the dictionary after applying a
three-level DWT. Figures 6b and 6c show the parameters associated
with the strongest correlated entries. We can see from Fig. 6 that our
method correctly identi� es the frequency of the test signal as 10 Hz
and settles on the correct damping of N³ D 0:04. The results indicate
that the fundamental frequency (10 Hz) is included by the output of
the low-pass � lter at level 3 of the decomposition tree. Additionally
at level 3 of the decomposition tree, there are approximately one-
eighth the number of samples compared to the original signal. Thus,
we greatly reduce the computational requirements of correlation � l-
tering while maintaining the required accuracy. Levels 1 and 2 of

Table 1 Average computation time vs
DWT decomposition level (ms)

Level Test signal DAST signal

0 138.9 126.6
1 74.8 99.1
2 42.8 54.1
3 28.1 32.4

a)

b)

c)

Fig. 6 Results of correlation � ltering of the test signal using a three-
level discrete wavelet decomposition.

the decomposition tree also include the prominent frequency com-
ponent, and so correlation � ltering at those levels will also succeed.
However, because they contain more samples, their computational
requirements are higher than those at level 3.

We implemented our algorithm in the C programming language
on a 266-MHz personal computer running Windows NT and with
128 MB RAM. Table 1 shows a comparison of average time required
to perform correlation � ltering as a function of the level of discrete
wavelet transform decomposition. A level 0 decomposition is equiv-
alent to performing correlation � ltering on the untransformed signal
and dictionary entries. The sampling rate of the Drones for Aero-
dynamic and Structural Testing (DAST) program data requires that,
to accomplish a real-time � utter boundary identi� cation, correlation
� ltering must be performed within 100 ms. The original method can
not meet this requirement; however, all levels of wavelet decompo-
sition can be implemented in real time. Filtering with the original
signal and dictionary at each ¿ required about 139 ms. After ap-
plying levels 1-3 DWT, the average times for correlation � ltering
at each level were 74.8, 42.8, and 28.1 ms, respectively. For these
cases, the dictionary was transformed in advance and is not included
in the recorded time, whereas the signal was transformed in real time
and is included in the recorded time. Transformation of the signal
in real time does not result in an excessive computational burden.
We estimate that about 0.57 ms of time is required for a three-
level DWT. A hardware implementation would be considerable
faster.

Application 2: Flight-Test Data
In this application, we applied our proposed method on actual

� ight-test data from NASA’s DAST program. The � ight data from
the DAST aircraft � ight is shown in Fig. 7. The data is accelerometer
data measured in gravitational acceleration. There is a series of
impulse responses in these data that are caused by a pulse to the
ailerons approximately every 5 s. The vehicle is increasing speed
throughout the data set, becomes unstable at t D 0 s, and � nally, at
t D 2:5 s, the vehicle is lost. The sampling rate of the data is 500 Hz.

The dictionary used in this application has 1780 dictionary entries
de� ned as follows in the format of finitial value, increment, � nal
valueg:
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Fig. 7 Flight-test data collected from a NASA DAST.

Fig. 8 Results of correlation � ltering of the DAST signal without using
wavelet decomposition; time required to perform correlation � ltering of
every element in the signlet dictionary with the signal at time t is 126 ms.

a)

b)

c)

Fig. 9 Results of correlation � ltering of the DAST signal with a three-
level wavelet decomposition; time required to perform correlation � l-
tering of every element in the singlet dictionary with the signal at time
t is reduced to 32.4 ms.

Ä D f10 : 0:25 : 30g; Z D f0 : 0:003 : 0:063g

T D f¡42 : 0:1 : 2:5g
The support range is 1t D 2 s.

In the following results, we employ the same biorthogonal wavelet
� lter used in the test case to implement a four-level DWT decompo-
sition. Only the approximation component of the signal is used in
decomposition. We also implement our method using a Daubechies
wavelet � lter to test the effects of different wavelet � lters.

Results
Figure 8 presents the results of correlation � ltering of the orig-

inal � ight data (level 0) with the original dictionary. They are ob-
tained from using the Freudinger et al. method.5 Figure 9a presents

the correlation coef� cient ·.¿/ between the level-3 decomposition
components of the � ight data and the dictionary. Figures 9b and
9c present the parameters of N! and N³ obtained from the correlation
� ltering. At this level, the signal and dictionary entries still retain
enough information for us to identify correctly the signal properties
of interest.

We also recorded the time required to perform the correlation
� ltering for each case as we did for the test signal. We used the
same 266-MHz personal computer with 128-MB RAM, and the al-
gorithm was implemented in the C programming language. For this
algorithm to operate in real time, the computation time for corre-
lation � ltering at each ¿ must be less than 1¿ , which is the time
period between two consecutive correlation operations. In both ap-
plications presented here, 1¿ is 0.1 s. As shown in the Table 1 the
average computation time for the original method (without DWT) is
approximately 126.57 ms, which exceeds 1¿ . As a result, the origi-
nal method cannot be used in real time (without dedicated hardware
or faster computers). However, using a multresolution approach,
we � nd the system modal dynamics in the average time of 99.1,
54.1, and 32.4 ms for a level-1, level-2, and level-3 decomposition,
respectively. Because these times are less than 1¿ , it is possible
to perform these calculations in real time, even with the low-cost,
general-purpose system we employed.

Conclusions
We have presented a method for real-time identi� cation of � utter

boundaries. The method using the discrete wavelet transform to
reduce signi� cantly the computational time required for correlation
� ltering. As a result, low-cost real-time implementation is feasible.

For the application presented here, a traditional approach todown-
sampling, for example, eliminating every second data point, would
also be successful in identifying the � utter boundaries and reducing
the computational time required. However, such an approach will
result in lost information. The DWT results in lossless data reduc-
tion, thus allowing for the signal to be accurately reconstructed, if
necessary. Furthermore, although low-frequency information was
important in the applications presented here, the DWT allows for
the identi� cation of higher-frequency signal components as well.
This is an important point considering that the DAST � ight data is
sampled at 500 Hz and contains frequency components signi� cantly
higher than those important for � utter testing.
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