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Flow Control in a Driven Cavity Incorporating
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Control of fluid flow is particularly difficult because of inherent nonlinearity in the Navier–Stokes equations
and high dimensionality of typical approximations of these equations. A control design is demonstrated for flow
restricted to creeping flow within a driven cavity. Such a restriction allows linear reduced-order models to be
generated as state-space systems. In particular, these models are generated as subspaces of the flow where each
model represents modes associated with phase differential between exogenous disturbances. A linear parameter-
varying controller is designed to account for the range of dynamics introduced by the phase differential among
subspaces. The controller is introduced to the reduced-order models, which contain individual phase-differential
subspaces, and the full-order model, which contains all phase-differential subspaces, for disturbance attenuation.
These closed-loop simulations show that the gain-scheduled controller, designed for individual subspaces, is able
to reduce the flow velocity along the centerline of the cavity significantly for the full-order flow.

Nomenclature
A = state matrix
B = input/excitation matrix
C = output/observability matrix
D = feedthrough matrix
f = characteristic frequency
gi = boundary functions
h0(t) = velocity along top boundary
K = controller
L = characteristic dimension
P = plant
Re = Reynolds number
Sr = Strouhal number
Vm = mean velocity at top boundary
Vs = characteristic velocity
V0 = static Stokes flow at top boundary
Wh = top disturbance input filter
Wk = control weighting
Wn = noise weighting
Wp = performance weighting
Wu = command input filter
Wy = sensor measurements output filter
α = original reduced-state variables
β(t) = velocity along bottom boundary
β� = control basis
� = boundary condition
δ = phase differential parameter
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� = flow shape basis
� = flow domain

I. Introduction

R ESEARCH into flow control techniques has been continually
evolving as related technologies mature. These technologies

include hardware development, such as sensors and actuators,1 and
software development, such as models and simulations,2 associated
with fluid dynamics. In each case, the technologies are being de-
veloped with careful consideration of the requirements for control
design and implementation.3

A particular challenge for flow control has been the development
of open-loop models for which controllers can be designed. The
primary difficulty lies with the inherent nonlinearity of the Navier–
Stokes equations that govern the fluid flow. Approximations of these
equations can have large dimensionality. Within the last decade,
studies of flow control have addressed specific flow regimes. These
regimes include the control of a driven cavity by the use of linear
quadratic regulator (LQR) control,4 the use of piezoceramic actua-
tors to control a channel flow,5 and the use of synthetic jets for flow
control.6 These applications demonstrate control for relatively sim-
ple systems, but no method of control design exists that can directly
utilize the full-order dynamics of a realistic flow.

A considerable amount of attention has been devoted in recent
years to generate reduced-order flow models. Two specific tech-
niques that employ a reduced basis are proper orthogonal decompo-
sition (POD)7 and fluid mode methods.3 POD is a model reduction
technique in which the most energetic modes are systematically ex-
tracted from numerical simulations. This method of reduction was
used to create the models used in this paper. The fluid mode method
uses basis functions that are closely related to the physics of the
problem being solved.

A recent study has shown that models can indeed be generated
that are amenable to control a specific type of flow.8 The system in
that study is restricted to creeping flow in a driven cavity. Specifi-
cally, the left and right sides of the cavity have zero flow velocity,
whereas the top and bottom boundaries are driven by exogenous
flow with fixed velocity and frequency. Models are generated by
the consideration of the linearized dynamics associated with modes
obtained via POD.9 These modes were used to derive controllers
for disturbance rejection. The derived controllers were able to keep
the flow nearly stationary at various points throughout the cavity for
varying flow regime, despite the exogenous input.4,10

This paper extends a previous work8 to consider different flow
conditions for the driven cavity. Specifically, open-loop models are
generated by consideration of the phase differential between the
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disturbances at the top and bottom of the cavity. The previous study
introduced an open-loop model that represented the flow conditions
for a phase differential of 180 deg between the upper and lower
disturbances. In reality, the upper and lower boundaries will vary
across a wide range of phase differentials. This paper will introduce
reduced-order models of the cavity flow associated with upper and
lower boundaries that are 210, 195, 180, 165, and 150 deg different
in phase to account for a realistic range of flow conditions.

A linear parameter-varying (LPV) controller is designed for the
models corresponding to the range of various phase differentials.
The group of models can be considered to lay within a parameter
space, with the parameter being the phase differential between the
excitation and disturbance. In this way, a controller is designed that
varies with the phase differential noted in the flow.

The objective of this paper is to demonstrate a methodology for
flow control based on subspaces. Essentially, each reduced-order
model is generated for a particular phase differential and, thus, rep-
resents a subspace of the full-order flow. The LPV controller is
scheduled across phase differential, thus, it is actually scheduled
across subspaces. A closed-loop simulation of the full-order model,
which contains many phase differentials, is used to demonstrate the
applicability of the approach. The controller is able to satisfy the per-
formance objectives on multiple reduced-order models, represent-
ing individual subspaces, and also on the single full-order model,
representing the combination of all subspaces, for the cavity flow.

The control design is demonstrated on Stokes, or creeping, flow
within a cavity. The use of Stokes flow limits the flow to being in-
compressible with Reynolds number less than one. One side effect
of lowering a flow’s Reynolds number is that the acceleration term
within the Navier–Stokes governing equation becomes small com-
pared to the viscous force term. This change allows the equation
to be simplified into the linear Stokes equation.11,12 Thus, creeping
flow within a cavity provides an excellent system for demonstrating
the methodology of LPV control.

II. Driven Cavity Geometry
This paper will investigate flow control for a cavity, shown

in Fig. 1, where h0(t) is the velocity along the top of the cav-
ity, β(t) is the velocity along the bottom of the cavity, and
� = �L ∪ �R ∪ �T ∪ �B is the boundary of the domain. This cav-
ity is enclosed by rigid walls with no-slip boundary conditions on
the right and left sides. The top and bottom, however, have nonzero
boundary conditions, in general.

The flow at the top and bottom boundaries have uniform spatial
distribution. This restriction implies that the flow at any point along
the upper boundary is identical to the flow at any other point along
the upper boundary. Similarly, the flow at any point along the bottom
boundary is identical to the flow at any other point along the bottom
boundary. Such a perfect distribution is not possible because of the
singularity at the points on the corners where the flow is moving on
the horizontal boundary, but is stationary on the vertical boundary.
Such a situation is obviously an approximation, but this example
does serve as an initial problem to demonstrate the methodology.

Fig. 1 Stokes driven cavity flow problem.

The approximation within the two-dimensional cavity is based
on a grid with an index of 21 by 21 points. It is assumed that the
measurements of the flow velocity are taken at 19 points along the
horizontal centerline of the cavity, with the outer points lying one
grid point away from the closest boundary wall. These measure-
ments only provide the horizontal velocity of the flow. Also, the
sensors generating these measurements are assumed to exist within
the cavity without altering the flow. Again, such a situation is obvi-
ously an approximation, but the example serves to demonstrate the
methodology.

III. Nonlinear Dynamics
This section derives the reduced-order models of the creeping

flow within a driven cavity. The derivations presented here are actu-
ally an outline taken from a rigorous presentation in the references.8

A. Governing Equations of Motion
Consider first the unsteady Navier–Stokes equations

ρ
∂V
∂t

+ ρV · ∇V = −∇ p + µ
V

subject to boundary conditions described in the past section. The
parameter V is the velocity field, p is the pressure, ρ is the density,
and µ is the viscosity of the fluid. The constants that will be used to
nondimensionalize the problem include a characteristic dimension
L , characteristic velocity Vs , and characteristic frequency f . We
define the following nondimensional variables:

x∗ = x/L , y∗ = y/L , V∗ = V/Vs

p∗ = p/ρLVs, t∗ = t f

We can write the resulting nondimensional Navier–Stokes equation
as

Re · Sr
∂V∗

∂t∗ + Re(V∗ · ∇∗V∗) = −Re · Sr∇∗ p∗ + 
∗V∗

where Sr is Strouhal number defined as

Sr = L f /Vs

Define

λ = Re · Sr = ρL2 f /µ

This paper will consider flow such that λ ∼O(1) and the Reynold’s
number is Re = 0.1. In this case, the terms on the right-hand side
will balance the first term on the left-hand side and the second term
will be neglected.

Define the constant

θ = 1/λ = 1/(Re · Sr)

Finally, we get the governing equations for the approximation of
Stokes flow

∂V∗

∂t∗ − θ
V∗ + ∇ p̂ = 0 (1)

For convenience, we will write the preceding equation as

∂V
∂t

− θ
V + ∇ p = 0 (2)

while keeping in mind that these are nondimensional variables.
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B. Reduced-Order Linear Dynamics
For the geometry depicted in Fig. 1, define the flow domain as �.

The boundary of the fluid flow domain is given by

∂� = �T ∪ �B ∪ �L ∪ �R

It is assumed that the input velocity imparted by the moving wall
can be represented in term of Nc functions gi , i = 1, . . . , nc. Each of
the functions gi are defined on the entire domain �, but are assumed
to exhibit specific properties on the boundary. We require that

gi |∂�(x) =
{

1 for x ∈ �B

0 for x ∈ ∂� \ �B

We additionally require that∫
∂�

gi · n̂ dS = 0

for i = 1, . . . , Nc. This last condition is required to guarantee com-
patibility of the flowfield with the continuity equation.

The dynamics for incompressible, two-dimensional creeping
flows can be represented in the strong form of Stokes equation by
rewriting Eq. (2).

∂V
∂t

− θ
V + ∇ p = f

Likewise, the strong form of the continuity equation for incompress-
ible flow is

∇ · V = 0

In these equations, V is the flow velocity, p is the pressure, and f
is the body force. We assume that spatially varying functions Φi ,
for i = 1, . . . , Ns have been determined from the POD procedure,
which will be discussed in detail later. The functions φi consti-
tute the reduced basis used to represent the Ns states in the control
model, which include phase differential information. There is a dif-
ferent set of φi functions associated with each parameter within the
phase differential subspace δ = [150, 210], which is used to create
reduced-order models at specific phase differentials. Similarly, we
assume that spatially varying functions gi , for i = 1, . . . , Nc, have
likewise been derived from a simulation or experiment. The func-
tions gi comprise the influence functions that determine the controls
acting on the fluid flow. It is assumed that these functions satisfy
the following conditions, which are conventional in many reduced
basis formulations:

∇ · φi = 0, i = 1, . . . , Ns

∇ · gi = 0, i = 1, . . . , Nc

φi |∂� = 0, i = 1, . . . , Ns

gi = 0, for x /∈ �B

In terms of these reduced basis functions, the velocity appearing in
the Stokes equations is assumed to take the form

V(x, y, t) = VM (t) +
NC∑

i = 1

gi (x, y)βi (t) +
NS∑

i = 1

φi (x, y)αi (t)

To derive a reduced-order model appropriate for control synthesis,
it is necessary to convert the strong form of the governing equations
to weak form. We define the inner product, bilinear form a(·, ·),
respectively, as

(u, v)[L2(�)]2

=

2∑
i = 1

∫
�

uivi dx

a(u, v)

= θ

2∑
i = 1

2∑
j = 1

∫
�

∂ui

∂xk

∂vi

∂xk
dx

By substituting the velocity into the strong form of the governing
equations, taking the inner product of the resulting expression with
an arbitrary basis function φi , and integrating over the domain �,
we obtain[

NC∑
i = 1

gi (x, y)β̇i (t) +
NS∑

i = 1

φi (x, y)α̇i (t),φ j

]
[L2(�)]2

+ a

[
VM +

NC∑
i = 1

gi (x, y)βi (t) +
NC∑

i = 1

φi (x, y)αi (t),φ j

]

= ( f ,φ j )[L2(�)]2

We can gather terms and put the equations in a canonical form
appropriate for control synthesis:

NC∑
i = 1

(gi ,φ j )[L2(�)]2 β̇i (t) +
NS∑

i = 1

(φi ,φ j )[L2(�)]2 α̇i (t) + a(VM ,φ j )

+
NC∑

i = 1

a(gi ,φ j )βi (t)+
NS∑

i = 1

a(φi ,φ j )αi (t) = (f ,φ j )[L2(�)]2

We define a new set of states that include both the original reduced-
state variables and the amplitude of the controls

X (t) =
{

α(t)

β(t)

}

The new set of controls is defined to be the time derivative of the
original controls

u(t) = {β̇(t)}
With these definitions of the state X (t) and controls u(t), it is pos-
sible to write the weak form of the governing equations as

[M̃]Ẋ(t) = [ Ã]X (t) + [B̃]u(t) + [C̃(t)]

Note that the matrix [M̃] will be diagonal if the reduced basis vectors
are derived from a POD. We can obtain the final form of the reduced-
state equations by premultiplying by the inverse of the matrix [M̃]:

Ẋ(t) = [M̃]−1[ Ã]X (t) + [M̃]−1 Q̃[X (t)] + [M̃]−1[B̃]u(t)

which can be rewritten in the final form as

Ẋ(t) = [A(θ)]X (t) + [B]u(t) + [E(θ, t)] (3)

where [A(θ)] is a linear function of θ , [B] is a constant matrix, and
[E(θ, t)] is a function of h0(t).

C. Creeping Flow in a Driven Cavity
Because the dynamic model is linear, we can construct VM (t) as

VM (t) = V0 · h0(t)

where V0 is the velocity field of creeping flow when constant hori-
zontal velocity is imposed on the top of the cavity. We require that

V0|∂�(x) =
{

1 for x ∈ �T

0 for x ∈ ∂� \ �T

Also, we choose Nc = 1 and g as the velocity field that corresponds
to a constant horizontal velocity imposed on the bottom wall of the
cavity. We require that

V0|∂�(x) =
{

1 for x ∈ �B

0 for x ∈ ∂� \ �B
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The velocity can subsequently be decomposed as

V(x, y, t) = V0h0(t) + g(x, y)β(t) +
NS∑

i = 1

φi (x, y)αi (t)

Thus, the reduced-order model in Eq. (3) can be rewritten explicitly
as{

α̇

β̇

}
=

[
[A1(θ)] [A2(θ)]

0 0

]{
α

β

}

+
[

[E1(θ)] [E2]

0 0

]{
h0

ḣ0

}
+

[
[B1]

1

]
β̇ (4)

Consider just the partition associated with the time-domain equation
for α,

α̇ = A1(θ)α(t) + A2(θ)β(t) + B1β̇(t) + E1(θ)h0(t) + E2ḣ0(t)

Formulate the equivalent frequency-domain expression

sα(s) = A1(θ)α(s)+ A2(θ)β(s)+s B1β(s)+ E1(θ)h(s)+s E2h(s)

We can now solve for a transfer function representation of the inputs
to outputs:

α(s) = s E2 + E1(θ)

s − A1(θ)
h0(s) + s B1 + A2(θ)

s − A1(θ)
β(s)

=
[
A1(θ) E1(θ) + A1(θ)E2

I E2

]
h(s) +

[
A1 A2 + A1 B1

I B1

]
β(s)

=
[

A1(θ) E1(θ) A2(θ)

I E2 B1

]{
h(s)

β(s)

}
= P(s)

{
h(s)

β(s)

}
(5)

The reduced-order model described by P is a fairly accurate repre-
sentation of the open-loop dynamics for Stokes flow in the driven
cavity with θ ∼O(1). All of the models will be based on a θ = 1
in this paper. There is a decrease in accuracy as θ changes from
unity because of unmodeled nonlinearities. The LPV controller is
designed and tested for models over the range of phase differentials
δ = [150, 210].

IV. Excitation Phase Differential
Open-loop models of the flow dynamics are generated by analysis

of the simulated responses of the driven cavity. This simulation uses
the Stokes flow as the fluid dynamics. Separate models are gener-
ated for each set of flow conditions that corresponded to different
relationships between the upper and lower boundaries.

Each of these models have physical limitations associated with
them. The Reynolds number for each model is Re = 0.1. The com-
bination of the low Reynolds number and the approximation of the
Navier–Stokes equation creates a flow that is dominated by viscous
effects.

The fluid at the upper and lower boundaries was constrained to
move at a sinusoidal frequency with constant amplitude. The fre-
quency of this sinusoidal is essentially considered a nondimensional
unity because the timescales in the dynamics are all normalized. This
excitation acts as a disturbance that affects the entire flow within the
cavity.

The variations between the flow conditions used for model de-
velopment were phase relationships between the upper and lower
boundaries. Specifically, the sinusoidal flows differed in phase by
210, 195, 180, 165, and 150 deg between the upper and lower bound-
aries. These phase differences induced different modal structures
within the flow so that the various models were generated to repre-
sent a basis for this range of flow conditions.

The reduced-order models associated with each phase differen-
tial, which contain three states, can actually be considered as sub-
spaces of the full-order flow, which contains 623 states. The ex-
ogenous disturbances will, in general, not have a constant phase

differential, and so the flowfield will contain modes associated with
many phase differentials throughout any time evolution. As such,
each reduced-order model represents a subspace of the modes ob-
served in that full-order flowfield. Thus, the synthesis of controllers
for these models with phase differentials is essentially the design
compensators that are optimal with respect to each subspace.

V. Control Design
A. Control Objectives

The objective of flow control in this paper is to reject the effects of
the exogenous disturbance at the top of the driven cavity. Physically,
the control seeks to minimize the horizontal component of the fluid
velocity at a set of sensor locations. These sensors are located at 19
sites evenly distributed along the horizontal centerline of the cavity.
The end sensors are located one grid point away from the boundary
wall, as seen in Fig. 2.

The controller is designed for disturbance rejection by the use
of the model shown in Fig. 3. This model contains the open-loop
dynamics as described by {Vm, �, �, P}. The weighting functions
used for loop shaping are given as {Wp, Wn, Wk, Wy, Wh, Wu, Wd}.
The mathematical objective of the control design is to choose a
K such that the closed-loop transfer function from disturbances to
errors has an induced norm less than unity for all plants within the
parameter space.

The system has three input vectors and three output vectors. The
inputs are the random noise n ∈R19 that affect the sensor mea-
surements, the exogenous disturbance h ∈R that affects the upper
boundary of the cavity, and the control input u ∈R that affects the
lower boundary of the cavity. The outputs are the frequency-domain
weighted horizontal velocity measurements e1 ∈R19, the frequency-
domain weighted control effort e2 ∈R, and the sensor measurements
y ∈R19 used for feedback to the controller.

The open-loop dynamics consist of the cavity’s velocity at the
top, a control basis and flow shape basis. The part of the open-loop
dynamics known as Vm is the mean velocity along the top of the
cavity and has the equation Vm = h0(t)V0, where h0 is the initial top
disturbance and V0 is a static Stokes flow along the top. The control
basis for the plant takes the form �β(t), which was depicted as
g(x, y)β(t) in the equations presented in the preceding sections,
and coincides with the controlled velocity along the bottom of the
cavity. The shape of the fluid flow within the cavity is determined
by the flow shape basis �. The flow shape can take several forms;
for example, the flow could be one large vortex circling the entire

Fig. 2 Sensor placement in cavity.

Fig. 3 Controller block diagram.
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cavity, or two vortices of equal size with opposite rotation that meet
along the horizontal centerline of the cavity.

The filter given as Wp serves to normalize the measurement of
flow velocity collected by the sensors. This filter achieves loop-
shaping that defines the design specifications in the frequency do-
main. The filter Wp is chosen to reflect the inverse of acceptable
velocities in response to unity disturbances. The actual filter is real-
ized as Wp = 100, which implies that the flow velocities should be
less than 0.01 in the closed-loop system.

The filter Wk is used to normalize the penalty placed on the amount
of actuation commanded by the controller. This filter reflects the
capabilities of the actuation system. The magnitude of motion for the
control actuator is allowed to be 0.2 in the nondimensional system.
The weighting is chosen as the inverse so that Wk = 5.

The creation of a LPV controller requires that an output fil-
ter be used because a certain part of the observation matrix and
feedthrough matrix vary with the different plants within the param-
eter space. The filter Wy is used as the output filter for this synthesis.
The filter was chosen as Wy = 1E5/(s + 1E5).

Also, the input matrix varies among the different plant models
within the parameter space. This variation necessitates input filters
within the synthesis. The filters shown as Wu and Wh are used as
input filters and have the value of 1E5/(s + 1E5).

Multiplicative uncertainty was introduced into the control ac-
tuation to represent the effects of unmodeled dynamics and dis-
turbances. The uncertainty is represented in the synthesis as 
a

such that ‖
a‖∞ ≤ 1. A weighting, Wa = 0.2, was used to limit the
amount of uncertainty to 20% allowed into the control actuation.

Also, the filter Wn is included to account for noise that corrupts
measurements by the sensors. The inclusion of noise is needed to
provide a minimal level penalty on the sensors. The noise filter
was chosen as Wn = 0.001, so that only a small amount of noise is
considered by the control synthesis.

B. Synthesis
Robust controllers and an LPV controller have been designed for

the system in Fig. 3. The techniques ofH∞ control are used to reduce
the induced norm from exogenous inputs to weighted errors.13 In this
case, a set of individual controllers14 are designed for each model,
along with a gain-scheduled LPV controller15 for all models.

Separate controllers are synthesized for each of the open-loop
models based on excitation phase differentials. For each model, the
same weightings are used to reflect the desirability of achieving the
same performance level for each phase differential. The resulting
induced norms achieved by the controllers are shown in Table 1.

The closed-loop norms are all greater than unity. Intuitively, these
magnitudes imply that the controller is not able to achieve the desired
performance and robustness objectives. Realistically, it must be kept
in mind that there are 20 inputs and 20 outputs, creating a large
number of transfer functions. This suggests that the magnitude of
the norms is not unreasonable. The resulting closed-loop properties
are studied in more detail shortly. It is shown that the large norms
are caused by excessive control actuation. Essentially, the controller
is not able to achieve the desired disturbance attenuation without
exceeding the actuation limits. Fortunately, this violation is at low
frequencies and is not expected to have a dramatic impact on the
closed-loop simulations.

Also, the values in Table 1 are interesting in the sense that the
induced norms increase as the level of phase differential increases.
Such behavior indicates that the excitation phase differential does

Table 1 Induced norms
of closed-loop system

Phase differential, deg H∞ norm

150 7.475
165 8.177
180 7.647
195 10.143
210 10.829
150–210 12.785

indeed have a large impact on the fluid dynamics. The increas-
ingly poor performance of the controllers demonstrates that the flow
modes for a phase differential of 210 deg have properties that are
more difficult to control than those for a phase differential of 150 deg,
for example.

The last entry in Table 1 is the norm associated with the LPV con-
troller. When the phase differential is allowed to be time-varying,
the norm increases as expected. Note that this norm did not raise
much above the norm associated with the H∞ controller for the
210-deg phase differential model. This condition indicates that
the LPV controller is able account for the time-varying nature of
the phase differential without excessive loss of performance.

VI. Simulation
A. Open-Loop Simulation

A series of open-loop simulations are performed to demonstrate
the fluid qualitative response resulting from the disturbance for both
full-order and reduced-order models. These simulations are similar
in the sense that the same magnitude of disturbance is used for
the boundary conditions on the top of the domain. Conversely, the
simulations involving the reduced-order models differ in that the
flow on the bottom boundary has different values of phase lag with
respect to the flow on the top boundary.

The flow conditions resulting from these simulations are visual-
ized to demonstrate the dynamics. The data in Figs. 4–16 present
the horizontal velocity as a function of time. In each case, the data
are three-dimensional to show the velocity measured at each of the
19 sensors as a function of time.

Again, note that all measurements are nondimensional. This char-
acteristic applies to both the time and velocity component, and so
no units are noted for the simulations.

The open-loop flow for the full-order model is used as a compari-
son for the reduced-order model simulations and is shown in Fig. 4.
Figure 4 clearly shows the sinusoidal nature of the flow that results
from the top exogenous disturbance changing with a sine function,
h0(t) = sin(2π t). The flow near the center of the cavity, near point
11, shows the largest velocity with a magnitude near −0.2 at t = 0.3
to +0.2 at t = 0.7.

The flow for the reduced-order model with a phase differential of
165 deg is shown in Fig. 5. Figure 5 also demonstrates a sinusoidal
nature, but has a smaller open-loop magnitude compared to the full-
order flow with the highest velocity being 0.07.

The flow for the reduced-order model with an phase differential of
210 deg is shown in Fig. 6. The flow again demonstrates a sinusoidal
nature, and the velocities are slightly larger than those of the full-
order model.

A sinusoidal trajectory of phase differentials shown in Fig. 7 is
used in a simulation that shows the open-loop characteristics of the
reduced-order flow as phase differential changes.

The flow velocities for the reduced-order model throughout the
time-varying phase trajectory are shown in Fig. 8. The sinusoidal
nature that is apparent in all of the other open-loop flows is slightly
different for this open-loop flow. This difference is due to the chang-
ing of the parameter through the trajectory. The formation of the
full-order flow involved the bottom of the cavity being allowed to

Fig. 4 Open-loop flow velocities for full-order model.
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Fig. 5 Open-loop flow velocities for reduced-order model with 165-deg
phase differential.

Fig. 6 Open-loop flow velocities for reduced-order model with 210-deg
phase differential.

Fig. 7 Trajectory of phase differential.

move freely. As a result, the full-order flow incorporates all phase
differentials. This feature makes the full-order flow have no de-
pendence on phase differential; therefore, the velocities for the full-
order model’s flow over the phase differential trajectory are the same
as those plotted in Fig. 4.

Note that the flow for each reduced-order model with phase differ-
ential has a similar shape, but significantly different magnitude. The
maximum velocity measured at the center of the cavity is smaller
in magnitude for the models with phase differentials located at the
beginning of the range than the models with phase differentials near
the end of the range. This feature indicates the flow is indeed strongly
dependent on phase differential; therefore, phase differential should
be considered for control design.

B. Reduced-Order Closed-Loop Simulation
The closed-loop dynamics are also simulated to demonstrate the

performance of the controller for the reduced-order models in this
section and for the full-order model in the next section. The diagram
of the closed-loop system for both the reduced-order models and
the full-order model is show in Fig. 9. These simulations use the
same open-loop dynamics, but include the LPV controller that was

Fig. 8 Open-loop flow velocities for reduced-order model over a tra-
jectory of phase differentials.

Fig. 9 Closed-loop system.

Fig. 10 Closed-loop flow velocities for reduced-order model with
165-deg phase differential.

synthesized over the range of phase differentials, which contains
24 states. In each simulation, the flow on the upper boundary is
the same, but now the flow on the lower boundary results only from
the commands issued by the controller. In this section, the controller
was tested with reduced-order models for two specific cases of phase
differential and over a time-varying trajectory of phase differentials.

The measured velocities for the reduced-order model with a phase
differential of 165 deg in response to the LPV controller with a phase
differential of 165 deg is shown in Fig. 10. The comparison of these
velocities with the open-loop measurements in Fig. 5 demonstrate
a reduction of velocity along the center of the cavity, where the
velocity is greatest, of roughly 70%.

The measured velocities for the reduced-order model with a phase
differential of 210 deg in response to the LPV controller with a
phase differential of 210 deg is shown in Fig. 11. The reduction in
velocities is apparent by comparison of the closed-loop velocities
in Fig. 11 with the open-loop velocities in Fig. 6, which shows a
reduction along the center of the cavity of roughly 90%.

The closed-loop simulation of the reduced-order models over the
phase differential trajectory, which also effects the LPV controller,
is shown in Fig. 12. The velocity magnitude shows a clear reduction
in magnitude compared to the open-loop simulation of flow over



FITZPATRICK ET AL. 69

Fig. 11 Closed-loop flow velocities for reduced-order model with
210-deg phase differential.

Fig. 12 Closed-loop flow velocities for reduced-order model over a tra-
jectory of phase differentials.

the phase differential trajectory, which was shown in Fig. 8. The
reduction along the center is roughly 80%.

The disturbance rejection is significant for the LPV controller
with the reduced-order models. These reductions confirm that the
LPV controller will work not only for reduced-order models at spe-
cific phase differentials, but also over a time-varying trajectory of
phase differentials. The simulations did show some differences be-
tween each of the reduced-order models. In particular, the amount
of attenuation was slightly less for the reduced-order model with
a phase differential of 165 deg, but much higher for the reduced-
order model with a phase differential of 210 deg. This decrease in
attenuation seems almost contradictory, given that the open-loop
simulations showed a decrease in flow velocities for the same mod-
els. The cause of this phenomenon may be the controller not being
able to reduce the lower-phase differential models’ velocity magni-
tude by a large percentage due to their smaller open-loop velocity
magnitude.

C. Full-Order Closed-Loop Simulation
The simulations that were performed for the reduced-order mod-

els were repeated with the full-order model. The reduced-order mod-
els are subspaces of this full-order model, and so the performance
of the controllers on the full-order model is actually of predominant
interest.

The measured velocities in response to an H∞ controller, created
specifically for the full-order model, are shown in Fig. 13. Clearly,
the magnitude of the velocity is dramatically decreased below the
open-loop level. The velocities in Fig. 13 are several orders of mag-
nitude less than the corresponding open-loop velocities in Fig. 4.
This response will be used as a comparison for the responses from
the full-order model controlled by the LPV controller.

The velocities for the full-order model in response to the LPV
controller with a phase differential of 165 deg is shown in Fig. 14.
Though the velocities were not reduced to the extent of the full-order
simulation in Fig. 13, they were reduced by an amount comparable to
the response shown by the reduced-order model at a 165-deg phase

Fig. 13 Closed-loop flow velocities for full-order model.

Fig. 14 Closed-loop flow velocities for full-order model with controller
associated with 165-deg phase differential.

Fig. 15 Closed-loop flow velocities for full-order model with controller
associated with 210-deg phase differential.

differential. The reduction in the velocity magnitude is evident along
the center of the cavity and is roughly 80%.

The velocity magnitudes for the full-order model in response to
the LPV controller for a phase differential of 210 deg is shown in
Fig. 15. The reduction in velocity compared to the open-loop flow
of the full-order flow in Fig. 4 is very clear. The velocities along the
centerline of the cavity were reduced by 60%. Though the velocities
were not reduced as much as those in the simulation in Fig. 13, the
velocities were reduced by an amount comparable to the reduced-
order model at a 210-deg phase differential.

The closed-loop simulation of the full-order model controlled by
the LPV controller over the phase differential trajectory is shown
in Fig. 16. The velocities show a clear reduction in magnitude
compared to the open-loop full-order flow in Fig. 4. The flow along
the center of the cavity is reduced by 66%.

The disturbance rejection is significant for both the reduced-order
models and the full-order model. These reductions confirm that the
LPV controller, created for a phase differential parameter, will work
not only for the reduced-order models, which are dependent on phase
differential, but also for the full-order model.
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Fig. 16 Closed-loop flow velocities for full-order model over a trajec-
tory of phase differentials.

VII. Conclusions
Flow control is an exceedingly difficult challenge because of the

nonlinearities and time variations inherent in flowfields. These in-
herent difficulties can be avoided when the flow to creeping Stokes
flow within a driven cavity, is restricted. This paper has introduced
a control methodology suitable for such a system. In particular, the
controllers are designed under consideration of subspaces of the
flowfield that describe modes associated with phase differential be-
tween exogenous disturbances. The models of these subspaces are
realized as state-space systems, and a controller can be designed
that uses the LPV framework. The resulting controller is shown to
decrease the flow velocities within the cavity significantly for both
the reduced-order subspaces, which have single phase differentials,
and also for the full-order flow, which encompasses all phase dif-
ferentials.
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