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The investigation of aeroelastic/aeroservoelastic stability through flight testing is an essential part of aircraft
certification. The stability boundary prediction is especially difficult when the instability is associated with non-
linearities in the dynamics. An approach is presented for the characterization of the nonlinear dynamics by
noniterative identification algorithms. Two different block-oriented nonlinear models are considered to aug-
ment existing linear models with nonlinear operators derived by analyzing experimental data. Specifically, fo-
cuse is placed on the identification of Hammerstein or Wiener block-oriented models from a N-point data record
{ūk, ȳk}N

k = 1 of observed input–output measurements from an aeroelastic/aeroservoelastic system. Central in the
identification of block-oriented models is the use of an a priori set of orthonormal bases tuned with the dynamics
of the aeroelastic/aeroservoelastic system. In both cases, a method is proposed to generate the orthonormal bases
that is based on the cascade of input-normal balanced state-space realizations of all-pass filters. Case studies with
a simulated structurally nonlinear prototypical two-dimensional wing section and actual F/A-18 active aeroelastic
wing ground vibration test data are presented.

Nomenclature
Bl(q) = orthonormal basis function
bl = unknown matrix parameters
C = damping matrix
e = error or unmodeled dynamic signal
F = input matrix
f (·) = nonlinear operator
G(q) = linear component of the block-oriented model
gi = known vector fields
K = stiffness matrix
L = linear operator
M = mass matrix
N (·) = nonlinear component of the block-oriented model
P = nominal plant
q = forward shift operator
s = number of Kautz filter
ū = measured input signal
w = input from nonlinear operator
y = linear model output signal
ȳ = measured output signal
z = output to nonlinear operator
αi = unknown matrix parameters

Subscripts

i = vector field index
k = sample index
l = orthonormal basis index
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Introduction

I NTENSE research has been observed recently in the field of
nonlinear data-based modeling for aeroelastic/aeroservoelastic

(AE/ASE) systems within the flight test community.1,2 Some of
the current generation fighter aircrafts carrying external stores tend
to develop nonlinear oscillations of fixed frequency and amplitude,
defined as limit-cycle oscillations (LCO), in the high subsonic to low
supersonic airspeed regime.3,4 Linear flutter engineering tools only
are able to predict divergent oscillations, whereas the observed in
flight dynamic behavior is of limited amplitude. Hence, some kind
of nonlinear AE/ASE modeling capability must be developed to
update production flutter analysis tools to explain in-flight observed
nonlinear dynamic system behavior.

This work proposes the estimation of the observed nonlinear dy-
namics within an interconnected feedback framework, where the
unknown dynamics turn out to be a function of the measured state
vector x(t) and/or the measured input vector u(t) of the AE/ASE
model. To this end, a class of nonlinear models called block-oriented,
which consists of the interconnection of linear time invariant (LTI)
systems and memoryless nonlinearities, is used. In particular, this
paper focuses on the identification of Hammerstein, or Wiener,
block-oriented models from an N -point data record of observed
input–output measurements from an AE/ASE system.

The approach adopted here is motivated by Gómez and Baeyens.5

The implemented identification algorithms are noniterative. These
identification algorithms are composed of least square estimation
(LSE) and singular value decomposition (SVD) stages. Specific
identification strategies are formulated in accordance with the na-
ture of the available data set. In general, actuator nonlinearities give
rise to Hammerstein models, whereas output nonlinearities can be
represented using Wiener models.

The focus of this work seeks to augment existing linear mod-
els with nonlinear operators derived by analyzing flight-test data.
The analytical models developed by commercial packages, such as
ZAERO,6 are currently able to generate highly accurate represen-
tations of the linear dynamics, and so this information must be in-
cluded. Thus, these models would be suitable for analyzing AE/ASE
data if the unknown nonlinearities could be included. Moreover, if
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the identified memoryless nonlinearity is an odd function, it can
be replaced by its single input describing function (SIDF), and the
resulting models could be used to compute robust stability margins
using the µ method to predict LCO.7

Promising results were obtained when this data-based modeling
approach was applied to a structurally nonlinear two-dimensional
wing section as well as to a set of F-18/AAW ground vibration test
(GVT) data. The results indicate that this procedure reproduces, with
a high degree of fidelity, the nonlinear dynamic system behavior
present in the observed measurement set.

Nonlinear AE/ASE Feedback System
In Ref. 8, a general AE/ASE nonlinear linear fractional transfor-

mation (LFT) feedback setup for identification purposes is estab-
lished. In particular, the proposed interconnected nonlinear feed-
back framework allows an expedient and efficient estimation of the
unknown dynamics, or errors from flight data measurements. In the
devised procedure, the unknown dynamics are denoted by the op-
erator f (z) with z(t) being a function of the measured state vector
x(t) and/or the measured input vector u(t) of the AE/ASE model.

Specific formulations were derived for two different unmodeled
dynamic identification scenarios. One scenario assumes that the
unknown dynamics are purely a function of the measured states
f (z) = f (x), whereas the other assumes that the unknown dynam-
ics are purely a function of the measurement inputs f (z) = f (u). In
this paper, the former scenario is discussed; the latter was already
considered in Ref. 9.

Let us consider the generalized AE/ASE equation of motion

M ẍ + C ẋ + K x − Fu = f (z) (1)

where x(t) ∈ R
nx and u(t) ∈ R

nu are the state and input vectors and
M ∈ R

nx × nx , C ∈ R
nx × nx , K ∈ R

nx × nx , and F ∈ R
nx × nx are the gen-

eralized mass, damping, stiffness and input matrices of the nominal
AE/ASE system, respectively. The additional signal z(t) ∈ R

nz is
dimensioned such that f : R

nz → R
nx is in general a nonlinear

mapping of appropriate dimension. As shown in Fig. 1, this model
is now represented as a nonlinear data-sampled feedback LFT:

ȳk = Fl [P, f (zk)]ūk (2)

P =
[

P11 P12

P21 P22

]
(3)

where P is the nominal plant and Pi j , i, j = 1, 2, are the trans-
fer functions related to the input {ūT

k wT
k }T and output {ȳT

k zT
k }T

signals. These transfer function matrices are built from the M , C ,
K , and F matrices of the nominal AE/ASE model. By LFT algebra,
the known and unknown elements of the model are related through
a feedback interconnection by the signal wk = f (zk).

In what follows, the identification procedure focused on where the
signal zk is measured and can be inferred only from the knowledge of
the measured output ȳk . This means that measurements at the input
of the possible nonlinear dynamic system f (xk) are accessible. Let
us consider that the complete state vector xk is available from the
measured output, that is, xk ≡ ȳk , then

xk = Fl [P, f (xk)]ūk (4)

Consequently, we can express the relationship as

xk = P11ūk + f (xk) (5)

Fig. 1 Generic nonlinear feed-
back framework.

Fig. 2 LFT with unmod-
eled dynamic f (x).

Fig. 3 Nonlinear LFT modeling of ȳk with Hammerstein model.

Fig. 4 Nonlinear LFT modeling of ȳk with Wiener model.

where P11ūk characterizes the linear component of the measured
output signal xk and in addition it is assumed that P12 = I , as shown
in Fig. 2. The key point is to visualize that the unmodeled dynamic
system f (xk) will give rise to a nonlinear operator that can be re-
placed with the Hammerstein, f (xk) = G N (xk), or a Wiener, N (vk),
model with the signal vk = Gxk , respectively. This model presents a
clearly visible block structure of a memoryless nonlinear gain N (·)
and a LTI system G in cascade connection.

Nonlinear Aeroelastic Feedback System by Using
Block-Oriented Models

The proposed interconnected nonlinear feedback model shown
in Fig. 1 results in an extension of LFT models, and it can be used
to model systems that exhibit limit cycles, subharmonics, nonlinear
damping, and other nonlinear phenomena.10

In this section, we employ block-oriented models to augment ex-
isting linear models with nonlinear operators derived by analyzing
experimental data. They consist of the interconnection of a LTI sys-
tem with a memoryless nonlinearity. Several combinations of these
two elements are possible, hence, giving rise to a set of different
models. A model with a static nonlinearity at the input is called a
Hammerstein model, and it can be associated with nonlinear actua-
tors in the AE/ASE system. A Wiener model is defined if the static
nonlinearity is located at the output, and this can be the case if the
AE/ASE system has sensors with nonlinear behavior.

Figures 3 and 4 show the proposed AE/ASE model updating
process. Then the nonlinear measured response ȳk is obtained as
the result of adding the output yk from the linear discrete-time
model L(zk), with the error signal ek coming from a Hammerstein
or Wiener nonlinear model, respectively. Additionally, Figs. 3 and
4 show the input and output signals related with the nominal plant
P and the nonlinearity f (·) in the nonlinear LFT representation
in Fig. 1. Specifically, the nominal plant P , associated with the
Hammerstein and Wiener models are as follows.
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Hammerstein:

PH =
[

L G
I 0

]

Wiener:

PW =
[

L I
G 0

]

Note that the signals zk and wk are incorporated to relate the non-
linearity to the nominal linear plant in a feedback interconnection.
By closing the lower loop in Figs. 3 and 4, the input–output behavior
of the proposed updated AE/ASE models are as follows:

For LFT with a Hammerstein model PH ,

ȳk = Fl [PH , N (zk)]ūk (6)

ȳk = Lūk + G N (ūk) (7)

For LFT with a Wiener model PW ,

ȳk = Fl [PW , N (zk)]ūk (8)

ȳk = Lūk + N (Gūk) (9)

In this way, the wind-tunnel or flight-test data can be used to update
the linear flutter tool, represented by L , by using the proposed block-
oriented nonlinear models.

Block-Oriented Model Identification
It is assumed that nonlinearities in actuators and sensors can be

represented by the interconnection of static nonlinearities and LTI
systems. The outcome of the block-oriented identification problem
will be the set of unknown parameters characterizing the nonlinear,
N (·), and linear, G, blocks using the N -point data record {ūk, ȳk}N

k = 1
of input–output measurements.

The next two subsections closely follow the general identification
framework developed by Gomez and Baeyens5 for the estimation
of block-oriented models using a set of orthonormal basis func-
tions. In this work, the orthonormal basis set is generated from the
cascade connection of two-parameters Kautz filters (see Ref. 11)
tuned with the modal parameters contained in the measurements set
{ūk, ȳk}N

k = 1.

Hammerstein Model Identification
Consider the multivariable Hammerstein nonlinear model shown

in Fig. 5. The model consists of a static nonlinearity in series con-
nection with an LTI system. The nonlinear operator is

N (ūk) =
r∑

i = 1

αi gi (ūk) (10)

where gi ∈ R
n → R

n, i = 1, . . . , r , are vector fields chosen by the
designer, and αi ∈ R

n × n , i = 1, . . . , r , are the unknown matrix pa-
rameters to be estimated. The LTI system is described by its transfer
function matrix,

G(q) =
p − 1∑
l = 0

bl Bl(q) (11)

Fig. 5 Hammerstein model.

where G(q) ∈ Hm × n
2 (T), T is the unit circle, q is the forward shift

operator, bl ∈ R
m × n are unknown matrix parameters, and {Blq}p − 1

l = 0
is the set of orthonormal basis. The input–output relationship, shown
in Fig. 5, is then given by

ȳk = G(q)N (ūk) + ηk (12)

where ȳk ∈ R
m , ūk ∈ R

n , and ηk ∈ R
m represent the system output,

input, and measurement noise vectors at time k, respectively. When
Eqs. (10) and (11) are substitute into Eq. (12), the input–output
relationship is written as

ȳk =
p − 1∑
l = 0

r∑
i = 1

blαi Bl(q)gi (ūk) + ηk (13)

A unique parameterization is obtained if the parameter matrices
αi are normalized, that is, ‖αi‖2 = 1. Lets now define

θ
�= [b0α1, . . . , b0αr , . . . , bp − 1α1, . . . , bp − 1αr ]T (14)

φk
�= [

B0(q)gT
1 (ȳk), . . . , B0(q)gT

r (ȳk), . . . , Bp − 1(q)gT
1 (ūk),

. . . , Bp − 1(q)gT
r (ūk)

]T
(15)

When Eqs. (14) and (15) are placed into Eq. (13), the latter results
in the regression vector

ȳk = θ T φk + ηk (16)

Now, with the data set {ūk, ȳk}N
k = 1 and defining the matrices YN

�=
[ȳT

1 , . . . , ȳT
N ], �N

�= [ηT
1 , . . . ,ηT

N ] and �N
�= [φ1, . . . , φN ], we

obtain

YN = �T
N θ + �N (17)

Consequently, by the least-squares criterion, an estimate θ̂ of θ
can be computed. When �ab is defined as

�αb
�=



αT

1 bT
0 · · · αT

1 bT
p − 1

... · · ·
...

αT
r bT

0 · · · αT
r bT

p − 1


 = αbT (18)

withα
�= [α1, . . . ,αr ]T and b

�= [bT
0 , . . . , bT

p − 1], the parameter ma-
trix can be expressed as θ = blockvec(�ab) (Ref. 12). Therefore, an
estimate of α̂ and b̂ is obtained from the SVD of �̂ab (Ref. 5).

Wiener Model Identification
A block scheme of a process with output nonlinearity in input–

output representation is shown in Fig. 6, and it can be considered as
a special case of the Volterra series. In Fig. 6, ȳk ∈ R

m , ūk ∈ R
n , and

ηk ∈ R
m are the system output, input, and process noise vectors at

time k, respectively.
Let us now consider the multivariable feedback nonlinear model

which consists of an LTI system described by Eq. (11). The nonlinear
function N (·) : R

m → R
m is assumed to be invertible and given by

N−1(ȳk) =
r∑

i = 1

αi gi (ȳk) (19)

Fig. 6 Wiener model.
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with gi (·) : R
m → R

m , i = 1, . . . , r , the assumed vector fields that
typically turn out to be a polynomial and αi ∈ R

m × m , i = 1, . . . , r ,
the unknown matrix parameters. In what follows, it will be assumed
that a1 = Im . In Fig. 6, the intermediate variable vk can be written as

vk = G(q)ūk + ηk (20)

In addition, it can be expressed as

vk = N−1(ȳk) (21)

When the right-hand sides of the two preceding equations are made
equal and the parameterizations given by Eqs. (11) and (19) are
considered,

g1(ȳk) = −
r∑

i = 2

αi gi (ȳk) +
p − 1∑
l = 0

bl Bl(q)ūk + ηk (22)

Let us define

θ
�= [α2, α3, . . . , αr , b0, b1, . . . , bp − 1]T (23)

φk
�= [−gT

2 (ȳk), −gT
3 (ȳk), . . . ,−gT

r (ȳk),

B0(q)ūT
k , . . . , Bp − 1(q)ūT

k

]T
(24)

It is clear that the vector g1(ȳk) noted by Eq. (22) can be written in
linear regression vector form as

g1(ȳk) = θ T φk + ηk (25)

By considering the N -point data set {ūk, ȳk}N
k = 1 and building the

unknown and data-based matrices

YN = [
g1(ȳ1)

T , . . . , g1(ȳN )T
]T

, �N = [
ηT

1 , . . . ,ηT
N

]T

�N = [
φT

1 , . . . , φT
N

]T

we obtain

YN = �T
N θ + �N (26)

When the least-squares criterion is used, an estimate θ̂ of θ is ob-
tained as

θ̂ = (
�N �T

N

)−1
�N YN = �

†
N YN (27)

Finally, the estimates parameters α̂i , i = 2, . . . , r , and b̂l ,
l = 0, . . . , p − 1, result from the proper partition of θ̂ in Eq. (27),
in accordance to its own definition in Eq. (23).

Orthonormal Function Set Generation
and Modal Parameter Estimation

Central in the identification of the preceding block-oriented mod-
els is the use of the a priori set of orthonormal bases {Bl(q)}p − 1

l = 0 .
In this section, we propose a technique to tune the LTI part in the
block-oriented model framework with the dynamic being defined us-
ing modal parameters of the linear model P11, using a high-fidelity
software package such as ZAERO,6 or from some identified modal
dynamics using the N -point data set {ūk, ȳk}N

k = 1.
Because the focus is on the identification of AE/ASE structures, it

is suggested to make broad use of the two-parameter Kautz filters to
generate the set of basis functions (see Ref. 11). The Kautz filter’s
minimal realization is defined as Hi (z) = Ci (z I − Ai )

−1 Bi + Di ,
with the eigenvalues of A j lying inside the unit circle. Also, a filter
is all-pass if Hi (z)Hi (z−1) = 1, and it is said to be orthonormal if its
state-space realization (Ai , Bi , Ci , Di ) is input normal. In addition,
a stable realization is input normal if Wc and W0 are defined as the
solution of the following Lyapunov equations:

Ai Wc A∗
i − Bi B∗

i = Wc (28)

A∗
i W0 Ai − C∗

i Ci = W0 (29)

Fig. 7 Series connection of two-parameter Kautz filters.

where Wc = I and W0 = �2, with � = diag(σ1, . . . , σni ), and the de-
creasingly ordered scalar σ1 ≥ · · · ≥ σni ≥ 0 are the Hankel singular
values. Let HKautz(b, c) be

HKautz(b, c) = −cz2 + b(c − 1)z + 1

z2 + b(c − 1)z − c
(30)

with |b| < 1 and |c| < 1, respectively. Thereby, it is possible to build
a set of orthonormal basis functions from a family of stable all-pass
filters with input normal realizations as shown in Fig. 7, that is,

H(z) =
s∏

j = 1

Hj (z) (31)

whose state-space input normal realization results

H(z) = Cn(z I − A)−1 Bn + Dn (32)

with

n =
s∑

j = 1

n j

Now, let x = (xT
0 , . . . , x T

s )T be the state of the filter H(z), where each
component x j adopts the form x j = (x1, . . . , xn j )

T , for j = 1, . . . , s.
Hence, the set of orthonormal basis are defined by the transfer func-
tion Bk(q) from the filter input u to each of the filter state components
xk, k = 0, . . . , p − 1,

xk = Bk(q)u, Bk(q) = ck(z I − An)
−1 Bn (33)

where ck is the kth Euclidean basis vector in R
n .

Accordingly, the set of a priori basis functions used to describe the
linear block G(q) can be tuned with the linear modal parameters
contained in the high-fidelity linear model P11 = L , or from the
a posteriori experimental evidence, such as wind-tunnel, GVT, or
flight-test data of the AE/ASE system.

Nonlinear AE/ASE Identification Examples
The approach proposed in this work will be applied to two case

studies. The first involves simulated data, corrupted with noise, from
a structurally nonlinear prototypical two-dimensional wing section,
and it will be used to demonstrate the Hammerstein block-oriented
model identification procedure. This easy-to-handle example is cho-
sen to demonstrate the methodology against previous published
results.8

The second case study involves experimental measurements from
the F/A-18 active AE wing (AAW) GVT in the vertical plane and
represents a highly complex ASE system. These examples will illus-
trate the use of the proposed block-oriented identification framework
in practical situations.

Case Study 1: Nonlinear Pitch–Plunge AE System
The selected case is a structurally nonlinear prototypical two-

dimensional wing section. The nonlinearity included in the model
is a memoryless quadratic gain affecting the stiffness of the pitch
motion through the pitch rotation of the airfoil (kα2α2). The system
parameters to be used in the numerical simulations are given in
Table 1 and the geometry of the aeroelastic model is the same as that
considered in Ref. 13. In addition, the aeroelastic system matrices
M , K , C , and F are identical to those presented in Ref. 8.

In this case, the simulated measured system output is the pitch an-
gle α(t), which is corrupted with a zero-mean Gaussian distributed
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Fig. 8 Flowchart for X(·) estimation.

Table 1 Aeroelastic system variables

Parameter Value

U 6 m/s
b 0.135 m
m 12.387 m/s
Iα 0.065 m2kg
cα 0.180 m2kg/s
clα 2π

clβ 3.358
kα 2.82 (accurate)
kα 2.26 (inaccurate)
a −0.6
ρ 1.225 kg/m3

xα 0.2466
kh 2844.4 N/m
ch 27.43 kg/s
cmα −0.628
cmβ

−0.635
kα2 14.1

white noise with standard deviation σ = 0.01, and the system input
is the flap deflection β(t). In what follows, a noisy error signal ek is
defined as the difference between the measured signal ȳk (nonlinear
dynamics) and the simulated linear part of the model, yk = P11ūk .
The Hammerstein nonlinear identification algorithm is employed to
identify the unmodeled dynamics, from an N -point data of the noisy
error signal ek using a sampling frequency of 1000 Hz. In connec-
tion with the linear portion of the model, P11, an explicit modeling
error is incorporated by an inaccurate value of the pitch stiffness kα .
Therefore, an accurate linear model results when the nominal pitch
stiffness equal to kα = 2.82 is used, whereas the inaccurate linear
model is defined by kα = 2.26.

Figure 8 shows the flowchart model used to generate the simu-
lated pitch deflection signal ȳk ≡ αk (nonlinear dynamics), as well
as the response from the linear model. It is clearly visible that
the signal used to drive the Hammerstein model f (·) is the mea-
sured pitch αk and that the output of this system is the unmodeled
dynamics or error estimation êk of ek . The linear model used in
this case is an inaccurate one, that is, kα = 2.26, and its output is
denoted by yk . The nonlinear model response is finally obtained
when the estimation error êk is added to yk . Additionally, all sim-
ulation data needed in the nonlinear identification algorithm are
saved through the denoted variables within the boxes. Figure 9a
shows the noisy nonlinear dynamic system signal ȳk , solid line, al-

together with the response of the inaccurate linear model yk , dotted
line.

The difference between both signals, ek = ȳk − yk , is plotted as
a solid line in Fig. 9b. From the dynamics of P11, two all-pass
Kautz filters are used to generate the required four basis function
set, {Bk(q)}3

k = 0. These are

Bk(q) =




0.9998 0.0166 0 0 0

−0.0166 0.9964 0 0 0.0831

0 0 0.9999 0.0067 0

0.0001 0.0065 −0.0067 0.9969 0.0781

ck 0


 (34)

where ck = [0 1 0 0] is obtained by including a 1 in position k (kth
Euclidean basis vector in R

4).
The Hammerstein model identification algorithm is now used

to compute the unknown parameter vectors α̂ and b̂ defined in
Eq. (18). The estimated b̂k coefficients for this case are b̂0 =
3.048 × 10−3, b̂1 = −2.6553 × 10−3, b̂2 = 1.7607 × 10−3, and b̂3 =
2.9988 × 10−3, respectively. The dotted line in Fig. 9b shows
the time trace of the output signal coming from the identified
Hammerstein model f̂ (·). A good agreement between ek and êk

is obtained because it is almost impossible to distinguish one from
the other.

The identified quadratic map N̂ (·) is shown in Fig. 9c, and its
identified coefficients are α̂1 = −0.9155 and α̂2 = −0.4022. It is
conjectured that the effects of using an inaccurate linear model P11

results in a noticeable displacement of the nonlinear map’s origin
from zero toward the left-hand plane. Therefore, the origin’s dis-
placement can be easily explained in terms of the magnitude of the
estimate coefficient α̂1. The large magnitude of it clearly indicates
that the assumed linear model P11 is a poor representation of the true
linear dynamics. Note that, when an accurate linear model kα = 2.82
is used to estimate the noisy error dynamics ek, the computed coeffi-
cients are α̂1 = −0.0017 (α̂1 = 0 when ȳk is an uncorrupted signal)
and α̂2 = −1. In other words, the estimated memoryless operator
is presumably trying to cover the undermodeling linear model P11

with a strong linear term coefficient α̂1.
Finally, in Fig. 9d, the solid line is the time trace of the noisy

simulated pitch response ȳk , and the dotted line is the output from the
identified Hammerstein model yk . Note that, besides the inaccurate
linear model used to generate the basis function set {Bk(q)}3

k = 0,
the nonlinear identification approach is able to reproduce with high
fidelity the nonlinear behavior embedded in the output data ȳk .
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a) Response of noisy nonlinear dynamics ȳk and inaccurate linear system
yk

b) Difference in measurements from noisy nonlinear dynamics and
inaccurate linear model; blue, ek = ȳk −− yk and red, êk

c) Identified quadratic nonlinearity, N(uk) = −−0.9155 uk −− 0.4022 u2
k

d) Response of noisy nonlinear dynamics ȳk and nonlinear model
yk + êk

Fig. 9 Pitch–plunge AE system.

Case Study 2: F/A-18 AAW GVT Data Analysis
GVT were performed on the F/A-18 AAW aircraft to assess the

structural characteristics of the modified airframe during the phase
1 flight research.14 This subsection deals with the case of the F/A-
18 AAW–ASE LTI model update by incorporating the unmodeled
dynamics by using a Wiener model computed from the acceleration
error signal. This signal is defined as the difference between the
measured GVT data, nz100, and the predicted response coming from
the ASE LTI model, Nz .

Vertical accelerometer data sampled at 100 Hz, that is, nz100,
is recorded when the collective aileron cail performs a sinusoidal
sweeps in the range 3–35 Hz over 35 s. Available data records last
for 35 s, where the excitation software waits 5 s, and then begins the
multi-sinusoidal commands. The commands continue for 25 s and
then stops. Thereby, the first 5 s of GVT data are neglected, whereas
the last 5 s are preserved given that they can be considered as actual
free-decay data of the F/A-18 AAW aircraft.

As in the earlier example, the ASE model update process is rep-
resented as a nonlinear feedback LFT between the nominal ASE
model denoted by P and the unmodeled dynamic, f (·), as in Fig. 2.
The latter will be replaced by the estimated block-oriented Wiener
model.

Figure 10a shows the measured acceleration response, nz100, and
Fig. 10b shows the ASE model response Nz . The unmodeled vertical

dynamic used to estimate the Wiener model is computed from these
time traces as shown in Fig. 10c.

The set of basis functions {Bl(q)}p
l = 0 used to describe the LTI

block G(q) in Eq. (11) is tuned with the linear modal parameters
contained in the the N -data record of experimental evidence nz100.
To this end, a multistage exogenous autoregressive moving average
(ARMAX) procedure is applied. This technique is based on the co-
efficients of the ARMAX model that satisfy the maximum of the
likelihood function corresponding to the experimental evidence. The
first stage of the numerical algorithm involves the estimation of an
exogenous autoregressive model (ARX) with more coefficients than
required. This is because in practical situations the actual number of
observable natural frequencies embedded in the frequency spectrum
of the nz100 signal is actually unknown. In the second stage, the co-
efficients of the ARMAX model are computed iteratively from the
ARX coefficients. For further technical details about the multistage
ARMAX approach, see Ref. 15.

Therefore, there are six natural frequencies and damping ra-
tios computed from the vertical GVT data, by using an ARMAX
(22,21,22) model in the multistage process with an initial ARX
model of order 60, as presented in Table 2. These modal parameters
are used to tune the dynamics of the a priori set of orthonormal
basis functions {Bl(q)}5

l = 0 built through a series connection of two-
parameter Kautz filters [Eq. (30)]. Note that there are many other
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a) GVT measured vertical acceleration

b) Analytical ASE linear vertical acceleration

c) Vertical unmodeled acceleration

d) Identified vertical unmodeled acceleration

e) Vertical acceleration error signal

f) Identified vertical dynamic staticmap (rate-limited type)

Fig. 10 F-18 AAW/GVT vertical acceleration data.

methods of modal parameters estimation to tuned the orthonormal
function set,16,17 the choice is up to the designer’s preference; there
is no restriction to any particular method.

The predicted response from the Wiener model is shown in
Fig. 10d and is shown to compare quite closely with the unmodeled
vertical signal showed in Fig. 10c. The identified Wiener model is
built with a LTI block of order 12, using the natural frequencies
and damping ratios shown in Table 2, followed by a polynomial

nonlinearity of order 17. The identification error is in Fig. 10e, and
its behavior is assumed to be linked with the measurement noise
present in the GVT data. Figure 10f shows the identified memory-
less nonlinearity from the 17th-order polynomial. This nonlinearity
shape closely resembles actuator rate-limited effects.

Figure 11 presents the predicted nonlinear response compared to
the vertical unmodeled dynamic between 9 and 10 s. Figure 11a
shows that a good match is obtained between prediction and
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unmodeled dynamics. Minor differences are explicitly shown in
Fig. 11b.

To visualize the improvement obtained using the Wiener model,
Fig. 12a shows the predicted acceleration response obtained using
only the identified linear model, that is, N̂ (·) = 1, tuned with the
GVT data noted in Table 2. It is evident that the estimated lin-
ear responses does not match the measured vertical acceleration
GVT data accurately, as can be appreciated by looking at the verti-
cal acceleration error signal in Fig. 12b and comparing it with the
results of Fig. 10e. Then, the use of the nonlinear AE/ASE mod-
eling approach to update production flutter analysis tools is totally
justified.

Table 2 F/A-18 AAW modal parameters identified
from unmodeled vertical dynamics

Mode Natural frequency fi , Hz Damping ratio ζi

1 6.3079 1.4143 × 10−2

2 9.6777 3.6278 × 10−2

3 13.7698 3.2878 × 10−2

4 15.8485 4.0317 × 10−2

5 18.3387 1.3807 × 10−2

6 20.6243 2.1379 × 10−2

a) Vertical unmodeled acceleration responses between ti = 9 s and
tf = 10 s

b) Vertical unmodeled acceleration error signal between ti = 9 s and
tf = 10 s

Fig. 11 F-18 AAW/GVT measured and identified vertical unmodeled acceleration data.

a) Identified linear acceleration response b) Vertical acceleration error signal

Fig. 12 F-18 AAW/GVT vertical acceleration data.

Conclusions
In this paper, we consider a nonlinear AE/ASE modeling update

by the identification of block-oriented models. Two different block-
oriented models were considered by analyzing experimental data:
the Hammerstein and Wiener models. The identification algorithms
are noniterative and based on the LSE and SVD techniques.

The proposed approach sought to augment existing linear models
with nonlinear operators derived by analyzing test data. Such an
approach is warranted because current AE/ASE commercial pack-
ages are able to generate highly accurate representations of the lin-
ear dynamics. Thus, these models would be suitable for analyzing
AE/ASE flight-test data if the unknown nonlinearities are included.
Knowledge of the physics behind these nonlinearities is not yet ma-
ture so that using flight data to identify the nonlinearities is the best
approach available.

This methodology is illustrated with simulated and experimental
data. Additionally, a method is proposed to tune the set of orthonor-
mal functions with the available AE/ASE information. The results
obtained confirm that this model updating procedure reproduces
the nonlinear dynamic behavior embedded in the observed experi-
mental evidence with high accuracy. Furthermore, if the identified
memoryless nonlinearity is an odd function, it can be replaced by
its SIDF, and the resulting models could be used to compute robust
stability margins using the µ method that would identify both flutter
and LCO instabilities regions of the flight envelope.
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