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The realization of vision-based, autonomous flight for micro air vehicles presents numerous technical challenges in
diverse fields such as image processing, trajectory planning, control theory, and microhardware design. This paper
explores one aspect of the overall problem: robust, real-time estimation of aircraft states from a set of tracked feature
points. This vision-based approach is realized via an implementation of the implicit extended Kalman filter, a
variation of the classical Kalman filter that allows for nonlinear dynamic models and updates from measurements
that are implicit functions of the state variables. The epipolar constraint, which is a geometric relationship between
the feature point position vectors and the camera translation vector, is employed in this paper as the implicit
measurement in the Kalman filter. In order for the vison-based Kalman filter to provide reliable state estimation, it
must be robust with respect to modeling errors in the dynamic propagator. This is especially true because the
aerodynamic forces and moments acting on a micro air vehicle are frequently not known to a high degree of accuracy.
Furthermore, the algorithm must be robust with respect to noise in the measured feature point positions in the image
plane. This paper explores both of these robustness issues using results from a micro air vehicle simulation model
developed at the NASA Langley Research Center. In particular, a hierarchy of dynamic models, ranging from a
random walk model to a high-fidelity nonlinear micro air vehicle model, is employed in the Kalman filter for a
simulated micro air vehicle trajectory with varying levels of measurement noise. It is demonstrated that the vision-
based measurement updates in the filter are capable of compensating for significant modeling errors and filter
initialization errors. As would be expected, superior overall results are achieved using higher-fidelity dynamic
models in the Kalman filter. The work presented in this paper represents the first step toward the ultimate objective of
incorporating vision-based state estimation into the design of autonomous flight control systems for micro air

vehicles operating in urban environments.

Introduction

ESEARCHERS have studied several important tasks related to

the development of agile and autonomous micro air vehicles
(MAVs) in the past few years. Some of these vehicles have a wing
span of less than 6 in. and can carry payloads that are measured in
grams. Substantial progress has been made in the fabrication,
structural design, and development of inner-loop controllers that use
vision-based, horizon-tracking algorithms [1-3]. Still, there remain
substantial technical barriers that must be addressed before this class
of vehicles is capable of vision-based, autonomous flight. The task of
flying autonomous MAVs in environments confined by buildings
and trees with additional features from ground vehicles and civilians,
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as well as poor weather, requires a host of innovations in vision-
based flight control. Active vision-based control of agile autonomous
vehicles in complicated three-dimensional urban environments
requires fundamental and ground-breaking innovations in multiple,
related disciplines such as control theory, vision processing,
trajectory planning, microhardware for computation, control and
sensing, and MAV design and fabrication. In this paper, the problem
of autonomous, vision-based flight for MA Vs is not addressed in all
its generality. Rather, this paper focuses on a specific enabling
technology: vision-based state estimation. Specifically, this paper
explores state estimation algorithms that synthesize vision-based
measurements, in the form of tracked feature points provided by
image processing, with a vehicle dynamic model in a Kalman
filtering framework.

The use of vision-based observations for state estimation is
attractive for several reasons, especially because the objective is
autonomous flight in urban environments. These environments are
characterized by many diverse features which can provide useful
data for vision-based flight. In particular, these visual data are
essential for obstacle avoidance and the more general problem of
path planning. It is convenient to use the same information to
estimate the state, or motion, of the aircraft. MAVs, such as those
described in [1,4], are commonly instrumented with a single camera
and a global positioning system (GPS) receiver. Therefore, vision-
based state estimation, augmented with GPS, places no additional
hardware requirements on typical MAVs. Although GPS is a useful
source of navigation data, it can be subject to dropout in dense urban
environments. Therefore, it is desirable to employ a vision-based
state estimator that can incorporate GPS data when available, but is
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also capable of operating without the benefit of GPS updates for
extended periods of time. The fusion of GPS and visual data for
optimal state estimation is a topic for future research and is not treated
in this paper. Here it is simply noted that, at least in principle, GPS
data can be incorporated into the framework of the vision-based
Kalman filter in a straightforward manner.

The classical Kalman filter has been widely applied for robust,
real-time state estimation for aerospace systems. In principle, the
filter integrates information from sensor measurements with
predictions from a dynamic state-space model in order to compute
optimal state estimates [5,6]. Although the Kalman filter was
initially derived for linear systems, a variation known as the
extended Kalman filter was later developed to consider nonlinear
dynamic models. The standard implementation of the Kalman filter
includes a measurement update in which the measurement is an
explicit function of the states. The objective of this paper is to
investigate the use of tracked feature points for state estimation,
which gives rise to measurements that are implicit functions of the
states. In a series of papers, Soatto et al. [7,8] derived rigorous forms
of the implicit extended Kalman filter (IEKF) that incorporate
implicit, vision-based measurements into the framework of the
extended Kalman filter. Soatto et al. [7] first applied an IEKF
implementation that makes use of the epipolar constraint, also
termed the essential or coplanarity constraint. This constraint is a
geometric expression of the fact that the position vectors of a static
feature point relative to the camera at two instants in time are
coplanar with the camera translation vector. Soatto et al. [7] used this
approach to characterize the motion of a cloud of feature points
about a fixed camera. A first-order random walk was employed as
the dynamic model in the filter. Later, Soatto and Perona [8]
employed an IEKF algorithm based on the subspace constraint,
essentially a differential form of the epipolar constraint, building on
earlier work by Heeger and Jepson [9].

Perhaps most relevant to the work presented in this paper, Gurfil
and Rotstein [10] applied an IEKF with the subspace constraint for
the estimation of aircraft states. They employed a simulated
nonlinear aircraft model and used a set of tracked feature points to
estimate the velocity, angular rates, angle of attack, and sideslip
angle, starting from zero initial conditions. In these numerical
studies, the full nonlinear equations of motion were used as the
dynamic propagator in the Kalman filter. Because the subspace
constraint allows for the estimation of velocity only up to a
multiplicative constant, the velocity estimates were slow to converge
to the simulated trajectory. However, the angle of attack and sideslip
angle, which depend on the ratios of the velocity components, were
estimated with a high degree of accuracy. Accurate results were also
obtained for the angular rate estimates. In addition, Gurfil and
Rotstein [10] also studied the performance of their algorithm in the
presence of wind gust disturbances and measurement noise in the
focal plane.

The approach taken in this paper complements the work of Gurfil
and Rotstein [10], but also differs from their work in several respects.
In this paper, the IEKF is employed using the epipolar constraint as
opposed to the subspace constraint. Whereas Gurfil and Rotstein [10]
employed the full nonlinear aircraft equations of motion for the
dynamic propagator in the Kalman filter, this paper investigates the
robustness of the filter with respect to modeling errors. This is an
important consideration for MAVs, and aircraft in general, because
the aerodynamic forces and moments acting on the vehicle are
typically not known to a high degree of accuracy. A hierarchy of
dynamic models is studied in this paper for implementation in the
vision-based Kalman filter. These models include a random walk
model, a linearized MAV model, and a nonlinear MAV model with
simplified aerodynamics. In all cases, there is significant modeling
error which must be accommodated by the vision-based Kalman
filter. The performance of the vision-based state estimation algorithm
is evaluated using simulated trajectories from a nonlinear MAV
model developed at the NASA Langley Research Center [4]. The
ability of the filter to cope with erroneous initial conditions is also
studied as well as the robustness of the filter with respect to
measurement noise in the focal plane.

Vehicle Equations of Motion and
Observation Operators

In this section, we derive the coupling between the standard
camera model and the equations of motion for the MAVs under
consideration. The generic kinematics of a MAV in flight are
depicted in Fig. 1. In this figure, the inertial, body-fixed, and kth
camera reference frames are denoted E, B, and C, respectively. A
right-handed, orthonormal basis for each reference frame is denoted
by lowercase unit vectors. For example, {l; 1s 132, };g} constitutes the
orthonormal basis for the body-fixed frame B located at the center of
mass of the aircraft.

The state of the aircraft is described in terms of the velocity v, of
the center of mass expressed in the body-fixed frame, the angular
velocity fw?® of the body-fixed frame relative to the inertial frame,
and the position R, of the center of mass of the aircraft in the inertial
frame. In terms of components, these vectors are given by

v, =ub, + vb, + wh, EwB = pb, + qb, + rb, (1)
Rc = Xc.lél + Xc.2é2 + Xc,3é3

The orientation of the body-fixed frame relative to the inertial frame
is determined in the usual way through the roll, pitch, and yaw angles
(¢, 6. ¥). In the most general case, the aircraft may be instrumented
with multiple cameras. The position and orientation of the kth camera
reference frame with respect to the body-fixed frame is depicted in
Fig. 2. The geometry of the camera is determined by the roll, pitch,
and yaw angles (¢, 0;, V) that orient the kth camera reference
frame relative to the body frame. In addition, the location of the lens
of the kth camera relative to the origin of the body-fixed frame (i.e.,
the vehicle center of mass) is given by the vector
AT ={A |\, Asi, Asy}. Thus, the parameters characterizing the
kth camera can be assembled in vector form as

o[ () ={A1 Ay A3 0,09, )
= {Al,kv A ks As s Grs O Yis [}

The parameter f, is the focal length of the kth camera. Clearly,
numerous other intrinsic camera parameters can be added to and
considered in this vector including radial lens distortion, charge-
coupled device (CCD) array misalignment, and others. These
considerations are outside the scope of this paper, however.

As illustrated in Fig. 3, it is assumed that the image processing
methodologies summarized in [11,12] have reduced the full camera
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Fig. 2 Aircraft, camera, and feature point geometry.
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Fig. 3 Mapping of the camera view to feature points, lines, and planes.

image to obtain feature points, lines, and/or planes. In this paper, it is
assumed that a family of feature points are processed and identified
for guidance, navigation, and control. These feature points are
assumed to be fixed in inertial space. Figure 2 illustrates the essential
geometry between the aircraft body-fixed frame, the kth camera
frame of reference, and the family of feature points obtained from the
camera image. In this figure, {R., &, n} denote the location of the
center of mass of the aircraft, the inertial location of the feature point,
and the camera-relative location of the feature point.

The following expression can be derived for the camera-relative
location of the pth feature point, expressed in the kth camera frame:

np :RBC](REB{E[)_RC}_RBCLAI{ (2)

In Eq. (2), R, denotes the orthogonal rotation matrix that defines
the orientation of the kth camera reference frame C, relative to the
body-fixed frame B. This rotation matrix can be written in terms of
three single-axis rotations as

Rsck = l(¢k~ 1)1(9k~ 2)1(‘/&9 3) 3)
where

1 0 0

l(pp, 1) =10 cos¢, sing,
0 —sing; cos¢y

cosf, 0 —sinb,
1(6,,2) = 0 1 0 @
sinf, 0 cos6,

cosy, siny, O
I(Yy,3)=| —sinyy, cosy, O
0 0 1

Similarly, R denotes the orthogonal rotation matrix that defines the
orientation of the body-fixed frame B relative to the inertial frame E:

R = (9, DO, 2)1(y, 3) )

where the matrices I(¢, 1), 1(6, 2), and I(v, 3) are defined in the same
manner as in Eq. (4) and (¢, 6, ¥) are the Euler angles that specify the
attitude of the vehicle.

This paper considers a simplified system that includes a single
camera located at the aircraft center of mass. This camera is oriented
atafixed angle 0, relative to the body-fixed z axis. In other words, the
transformation from body-fixed to camera axes consists of a single-
axis rotation /(6 , 2) about the body-fixed y axis. In this case, Eq. (2)
takes the simplified form

n p= 1(91, Z)REB{gp - Rc} (6)

and the time derivative of the pth feature point position vector can be
written as

ﬁp = 1(915 2)[EwBX]REB{Ep - Rc} - 1(91’ Z)REBRL
=1(0,.2)[*’x]1(6,.2) "y, — 1(6,.2)v, )

In Eq. (7), [F@Bx] is a skew symmetric matrix that computes the
vector product:

0 —r g
Fofx]=| r 0 —p ()
-¢g p 0

With the preceding definitions, it is possible to develop the
equations that couple the aircraft equations of motion with the
trajectories of tracked feature points in the focal plane. The collection
of vehicle states are defined in the vector

XT(t) = {uv v,w,p,q,r, ¢? 0’ 1//’ Xc,ls Xc,29Xc.3}

The vector U(f) denotes the set of control inputs to the aircraft
equations of motion and the family of trajectories of the n/, feature
points in the focal plane are defined as

“p
szfk{uf,}eR3, p=1....n, )

Finally, the camera parameters can be collected into a single vector
of ={af,....al }, where n,, is the number of cameras. In this
paper, a perspective, or pinhole, projection camera model is
employed. The perspective camera equations for the pth feature
point are given by

_px

e

T (10)

1%
’ Py,

where (i1, v,) denotes the position of the pth feature point in the
focal plane.

Using the aircraft equations of motion, the above definitions, and
the kinematic relations in Eqs. (6) and (10), the following set of
equations is obtained, coupling the aircraft equations of motion and
the measured trajectories of points in the image plane:

X =FX®.U®.H)  X0) =X,
Y(t) = C(X(1), &, &(1), 1)

an

These equations will be referred to as the control theoretic form of the
governing aircraft/camera equations. Alternatively, if Eq. (10) is
differentiated in time, we obtain

ﬁp,x np.x . . i}p,y np.y
- Np.z Vp = - Np.z
Np.z (np,z)z g r Mp.z (Up.z)2 r

i, = (12)

If Egs. (7) and (12) are employed instead of Eqgs. (6) and (10), we
obtain the alternative form
X()=F(X(1).U@r).1)  X(0) =X,
Z(1) = G(X(1), 0. §(1), 1)

This latter set of equations will be referred to as the optic flow form of
the governing aircraft/camera equations.

13)

Kalman Filter Implementation

The estimation of aircraft states is achieved using an
implementation of the extended Kalman filter [5]. The standard
Kalman filter employs a linear dynamic model to propagate the states
and the state covariance matrix. When considering nonlinear models,
a common practice is to linearize the equations of motion about a
nominal trajectory, or trim condition. The accuracy of such an
approximation tends to deteriorate over time, however, as the actual
trajectory often deviates substantially from the nominal one. The
extended Kalman filter was developed as an alternative approach
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Fig. 4 The geometry of the epipolar constraint.

whereby the equations of motion are linearized about the current state
estimate. Therefore, a linearized model is computed at each time step.
The resulting linearized state transition matrix is then used for
propagating the state covariance matrix. The original nonlinear
equations of motion are typically used for state propagation. The
standard implementation of the extended Kalman filter uses
measurements that are explicit functions of the states. The approach
taken in this paper is to use the positions of tracked feature points to
update the state estimates, resulting in measurements that are implicit
functions of the aircraft states, the tracked feature points, and the
camera parameters. Soatto et al. [7] and Soatto and Perona [8]
employed two distinct implicit measurement constraints that can be
incorporated into the extended Kalman filter: the epipolar constraint
and the subspace constraint. The resulting Kalman filtering
algorithm has been termed the implicit extended Kalman filter.

Epipolar Constraint

The implicit measurement constraint employed in this paper is the
epipolar constraint, also referred to in the literature as the essential or
coplanarity constraint [13,14]. This constraint is formulated based on
the principle that the position vectors of a static feature point relative
to the camera at two instants in time must be coplanar with the
translation vector of the origin of the camera frame. This geometric
relationship is illustrated in Fig. 4, where  and 5’ denote the position
vectors of feature point P in the camera reference frame, Y and Y’
represent the position vectors projected onto the focal plane, and T
indicates the translation vector of the camera. The epipolar constraint
can be expressed as

n' - (T xRy) =0 (14)

or, equivalently, since the perspective projection camera model
implies that  and 5’ are colinear with their projections Y and Y’ onto
the focal plane,

Y’ - (T xRY)=0 (15)

Note that Y and Y’ are three-dimensional vectors as defined in
Eq. (9). Equations (14) and (15) reflect the fact that the scalar triple
product of three coplanar vectors is zero. In these equations, R
denotes the rotation matrix that describes the change in orientation of
the camera from time ¢ to time ¢ + At. This transformation matrix
can be expressed as

R= [1(91’ Z)REB((p’ 97 1//7 t+ At)][l(QM 2)REB(¢7 97 1//, t)]T (16)

where Ryp(p,60,¥,1) and Rgg(¢,0,v,t+ Atr) represent the
rotations from inertial to body-fixed axes at times ¢ and t + At,
respectively. Recall that, for the examples considered in this paper,
1(6,,2) denotes the constant single-axis rotation from body-fixed
axes to camera axes. Note that, in Eqs. (14) and (15), the translation
vector T is expressed in the camera-fixed reference frame at time
t+ At

Given the position vectors of 7, feature points in the focal plane,
as defined in Eq. (9), each must satisfy the epipolar constraint. This
yields n,, constraint equations:

[w), v, 1]E[u, v, 1]" =0, p=1....n, (17)

where E denotes the essential matrix, defined as [TX]R. By
inspection, [T%] is the skew symmetric matrix that computes the
vector product. Following the development of Soatto et al. [7], these
constraints can be combined into a single equation

Ce=0 (18)
where the pth row of C € R"»*° takes the form
¢, = [IU“PH';’ BpVp My Vpllp VpVp Yy [, V), 1]

and e denotes a vector composed of the stacked columns of E.
The measurement used in the IEKF at discrete-time 7, is given as

2k = Croy i€ (19)

where C;_; , denotes the matrix C composed of the feature point
position measurements at times #,_, and z,. Note that the true value z;,
of this measurement must be a vector of zeros because the epipolar
constraint reflects a geometric relationship that is always satisfied in
reality. The weighted difference between the measured value Z;, and
the true value z; =0 is used in the measurement update in the
Kalman filter.

Implicit Extended Kalman Filter

The extended Kalman filtering algorithm is well known; however,
itis reviewed here to highlight the minor implementation differences
that result from using measurements that are implicit functions of the
aircraft states. The filter assumes that the state vector evolves
according to a dynamic model as

X.=F_ (X . U_)+w,,, k=1,....N (20

where N is the total number of estimated samples, and X, and X_,
denote the state at times #, and #,_,, respectively. Similarly, U;_,
represents the control input at time #,_;. The Kalman filter assumes
additive and uncorrelated zero-mean Gaussian process noise such
that

w,=N(©0,0,) Vkel[o,N—1]

21
Elwwl]=8,0, Vikel[0,N—1] @D
where E denotes the expected value and §;; is the Kronecker delta
function. The entries of the matrix Q,, which correspond to the
covariance of the process noise, are tuning parameters in the filter.
A discrete-time implementation of the Kalman filter has been
chosen because the measurements are available at discrete-time
intervals. In the standard Kalman filter, the measurements are explicit
functions of the states and the filter employs a measurement model of
the form

Y, =Cu(Xy) + v, (22)

where the measurement noise is also assumed to be additive,
uncorrelated, zero mean, and Gaussian:

v, =N(O.R) Vkel0O,N—1]

r . (23)
E(wv)) =06;R, Y i kel[0,N—1]

In addition, the measurement noise is assumed to be uncorrelated
with the process noise:

E@w!)=0 Vike[0,N—1] (24)

In the implicit extended Kalman filter employed in this paper, the
measurement equation takes the form

2 =h(Xp, Y, Y ) =0 (25)

The measurement in the filter, therefore, takes the form of a constraint
thatis an implicit function of the states and the measured feature point
positions in consecutive image frames. It should be noted that the



820 WEBB ET AL.

feature point positions are the data that are physically measured via
image processing. It is common in practice to assume that these
measured feature point positions are corrupted by additive, zero-
mean, Gaussian white noise.

The Kalman filter must first be initialized by choosing an initial
estimate )20 of the state vector and an initial value P, for the state
covariance matrix. The covariance matrices of the process noise Q,
and measurement noise R, which correspond to tuning parameters
in the filter, must also be selected. In the implementation used in this
paper, both O, and R, are chosen to be diagonal matrices that remain
constant for the duration of the estimation process. In setting the filter
parameters, R, corresponds to the noise in the measured feature point
positions Y, not the noise in the implicit measurement Z.

The Kalman filter is a two-step procedure consisting of a
propagation step using the dynamic model and a measurement
update step. The state is first propagated as

)?1: :kal(}elzr—l’Uk—l) (26)

where the superscripts — and + denote the values of the state
estimates after the propagation step and after the measurement
update steps, respectively. In the implementation used in this paper,
the state propagation in Eq. (26) is computed via fourth-order
Runge—Kutta numerical integration of the continuous aircraft
equations of motion. The state covariance matrix is also propagated
using the equation

Py =&, P Dp 4 Oy 27

where ®,_, is obtained by linearizing the nonlinear equations of
motion about the most recent state estimate:

O, = - (28)

In the measurement update step, the implicit measurement Z;, is
computed using the current state estimate X; and the tracked feature
point positions Y, and Y;_;:

2= hk()?;a Y. i) = Coor (Y, Yk—lva)ek(jf;ﬁ“) (29)

Note that Eq. (29) is the same as Eq. (19) except that the dependence
of the terms on the state estimate, feature point measurements, and
camera parameters has been explicitly stated in Eq. (29). The implicit
measurement is dependent on the measured positions of feature
points that have been tracked in consecutive frames. Therefore, the
vectors Y,;_; and Y, are composed of the positions of only those
points that have been tracked in the image plane at both times #,_; and
t,. The measurement update to the state estimate then takes the form

X\'z— :)?; +Kk(zk_2k) :)2;—1(](2]( (30)

where K is the Kalman gain matrix and Eq. (30) makes use of the
fact that the true value of the measurement constraint is zero: z;, = 0.
The state covariance matrix is also updated:

P =1 — KH )P, (€20
In Eq. (31), H, is obtained by linearizing the measurement equation

about the state estimate X, :

_
X

3ek

H, =Ciik 7y
X=X] X

(32)

X=X;

Before the state estimate and state covariance can be updated in
Eqgs. (30) and (31), the Kalman gain matrix K is computed as

K, = P H[[HP(H] + R,] (33)

where R, is the first-order approximation of the covariance of the
noise in the implicit measurement constraint. This approximation is
related to the covariance of the noise in the measured feature point

positions R, as

Ry = DRD (34)
where
9 aC
= ik Ticlk 35)
Yy, 9y,

The vector Y, is composed of elements of the feature point position
measurements Y,_; and Y :

v oLy ’ ’ T
Yk - {/’levl’l’bl’vl""HU’n”,*Vn,,,v /’Lnfp’vn”,}

The primed variables represent feature point positions at time ¢, and
the unprimed variables represent feature point positions at time #;_;.

It should be noted that, in general, this IEKF implementation
incorporates several standard assumptions about the process and
measurement noise that are not strictly satisfied in practice. The
process noise, which must account for error in the dynamic
propagator, generally does not adhere to the Gaussian white noise
assumption. The degree to which the modeling error deviates from
the process noise assumption is highly related to the aircraft
trajectory. For example, the error in a linearized model about a
wings-level trim condition will deviate substantially from Gaussian
white noise as the vehicle performs a banked turn maneuver. Still, the
Kalman filter is frequently applied under such circumstances and the
inaccuracy of the process noise model represents one of several
factors affecting the filter performance. Furthermore, although the
noise in the measured feature point positions may be approximated as
additive Gaussian white noise, this does not imply that the noise in
the implicit measurement z; has the same characteristics. This noise
is modeled in terms of the feature point measurement noise using the
first-order approximation given in Eqgs. (34) and (35). In addition, the
implicit measurement is a function of measured feature point data in
two consecutive image frames. Therefore, the measurement noise is
clearly correlated within one measurement time step. The
measurement noise is also typically correlated with the process
noise, violating yet another assumption in the filter. Soatto et al. [7]
investigated these issues in some detail. In particular, they showed
that the feature point measurement noise can be decorrelated from
itself and from the process noise by introducing additional noise
states into the filter. This modification requires an additional state for
each feature point measurement. Soatto et al. [7] concluded that, in
most cases, the modest gain in performance does not justify the
increase in filter complexity. Therefore, this modification was not
explored in the research presented in this paper.

Dynamic Models

A number of dynamic models are considered in the filters
employed in this paper. These models are based on the 12-state
aircraft equations of motion which take the general form [15]:

Dy =%
m

. ) F,
B =psina—rcosa +——
mvy

. F
a=-—-ptanf+qg+———
muvy cos f

s [(11, — L)+ 133)I|3] [(122 —I33)l55 — If}]qr

Iyl — Iy 1133 — It
I3 I3
+ - L+ N
1155 — It 115 — It

. ]33—111:| T ) B 1
g=|——|pr—7—@ ' —r)+—M
|: 122 122 122
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i |:(111 —In)ly, +1|23i| _ |:(111 —In+ 133)113i|

IiyIy; — Iy Iy1y — It
I3 I
+ L+ N
115 — It 1135 — I

é=p+ (gsing + rcos¢)tanf

é:qcosq&—rsinqﬁ (36)

Y = (gsing + rcosg)sect

X, =vrcosfcosycosacos B+ vr(sin¢gsinfcosyr
— cos ¢ sin ) sin B + vy(cos ¢ sin 6 cos ¥

+ sin ¢ sin ¥) sin & cos B

X, = vpcosfsinycosacos B + vy(sin ¢ sin Osin Y
+ cos ¢cos ¥) sin B + vy(cos ¢ sin O sin

+ sin ¢ cos ) sinw cos B

X .3 = —vpsinfcosacos B + vy sin @ cos Osin f

~+ vy cos ¢ cos Osin o cos B

The aircraft state vector includes three velocity states {v;, 8, o},
three angular velocity states {p, g, r}, three Euler angles {¢, 6, ¥/},
and three inertial position states {X,. |, X,.,, X, 3}. The velocity states
are given in terms of wind axes (i.e., the relative wind is oriented in
the x direction) and correspond to total velocity, sideslip angle, and
angle of attack. This is an alternative representation of the aircraft
velocity to the body-fixed velocity vector v, = {u, v, w}’. These
representations are related as

u = vy cosacos f v =vpsinf w=vpsinacos B (37)
The attitude is expressed in terms of the Euler angles, which
correspond to the standard roll, pitch, and yaw angles {¢, 6, ¥}. The
inertial position states correspond to a north, east, down inertial
coordinate system. In Eq. (36), the I;; terms are elements of the inertia
matrix about the center of mass. The terms {F',, F,, F, } correspond to

the forces acting on the aircraft, expressed in wind axes:
F,=—DcosB + (T — Wsin6) cos o cos B
+ Wcosfcos¢sinacos B+ Ysin 8 + W cos 6 cos¢sin B
F, = Dsin B + (T — Wsin 6) cosasin 8
— WcosfOcosgsinasin + Ycos f + Wcos6cos¢cos S
F.=—L — (T — Wsin6)sina + W cos 6 cos ¢ cos
(38)
where {W, L, D, T, Y} correspond to the weight, lift, drag, thrust, and
side force. The terms {£, M, N’} in Eq. (38) are the aerodynamic
moments acting on the aircraft.
Although the general form of the aircraft equations of motion is
well known, it is extremely difficult to obtain an accurate model of

the aerodynamic forces {L,D,Y} and moments {L, M, N},
especially for small aircraft such as MAVs that operate in low

Reynolds number regimes. Therefore, there will always be some
level of uncertainty in the aircraft model. The aerodynamic forces
and moments are nonlinearly dependent on the states, and the form of
this dependency is unique to the specific aircraft being studied. The
specific model considered is this paper is a nonlinear MAV model
developed at the NASA Langley Research Center [4].

In this paper, a hierarchy of models is considered for use in the
vision-based Kalman filter. These models assume varying levels of
knowledge about the dynamics of the system. The filter estimates
eight states: three velocity states, three angular velocity states, the
roll angle ¢, and the pitch angle 6. The other four states are not
directly observable from vision and are therefore not included in the
filter. The first model considered propagates the velocity and angular
velocity states by adding zero-mean Gaussian white noise. This
corresponds to a first-order random walk model for these states and
fits in well in the framework of the Kalman filter, which assumes
Gaussian white process noise. Note that the equations of motion for
the roll and pitch angles are known exactly from kinematics.
Therefore, those equations are included in the dynamic model, as
suggested by Chiuso et al. [16]. The second model corresponds to a
linear model obtained by linearizing the MAV equations of motion
about an equilibrium, or trim, condition. The accuracy of this model,
of course, decreases as the aircraft performs maneuvers away from
the trim condition. The final model corresponds to a nonlinear model
that retains all of the known nonlinear terms due to inertial coupling
but employs simplified aerodynamics. An important consideration in
this paper is to evaluate the performance of the vision-based state
estimator using these different aircraft models.

Numerical Results for a Simulated Micro Air Vehicle

In this section, the performance of the vision-based state
estimation algorithm is examined for a simulated MAV. The vehicle
is a 6 in. MAV that was designed and built at the University of
Florida. The MAV weighs about 0.12 lbs and has a maximum speed
of approximately 50 ft/s. The control inputs for this vehicle
correspond to a voltage input to the motor for thrust, symmetric
elevon deflection for longitudinal motion, and antisymmetric elevon
deflection for lateral motion. An open-loop simulation of the
nonlinear equations of motion for this MAV was developed at the
NASA Langley Research Center [4] and has been used to generate
simulated MAV trajectories with which to test the estimation
algorithm. In constructing this MAV model, Waszak et al. [4]
collected detailed aerodynamic data at three values of dynamic
pressure corresponding to {1.0,1.6,2.0} psf at sea level. The
aerodynamic coefficients were modeled in some cases using wind
tunnel test data and in others using the software PMARC. The
aerodynamic data in the nonlinear model are given via bilinear
interpolation of the data obtained at the three test points. For further
details regarding the Langley simulation model, please refer to [3,4].

The nonlinear MAV simulation model has been used to generate
realistic MAV trajectories for evaluating the performance of the
vision-based state estimation algorithm. It was also necessary to
simulate the identification and tracking of feature points as viewed by
a camera mounted at the aircraft center of mass. In these studies, the
camera was oriented at an angle of 60 deg downward from the nose of
the vehicle. The focal length of the simulated camera was selected to
be 1 and the image plane was simulated to be 640 horizontal pixels
and 480 vertical pixels, for a 4/3 aspect ratio. These camera
properties correspond to a horizontal field of view of 60 deg and a
vertical field of view of about 47 deg. The feature points were
simulated by creating a cloud of randomly distributed points in
inertial space. At each time during the simulated MAV trajectory, the
positions of the feature points in the image plane were computed
using the pinhole camera projection model. Those points that fell
outside the camera field of view at any time were discarded for that
particular frame. Therefore, the number of tracked feature points
varied throughout the simulations, with points disappearing from the
field of view and new points appearing. The feature point simulation
matches corresponding points in consecutive frames, a task that
would be performed by the feature point tracker in practice.
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Fig. 5 Number of tracked feature points in each image frame during
the simulated flight.

The vision-based state estimator was tested for a relatively simple
trajectory consisting of a smoothed roll doublet maneuver in which
the MAYV rolled to the right roughly 30 deg, back to the left to a roll
angle of —30 deg, and finally back to wings level. This trajectory,
which was 30 s in duration, was generated via open-loop control
commands in the MAV simulation. The vision-based measurements
were simulated at a rate of 10 Hz so that tracked feature points were
available 10 times per second. This is a reasonable assumption
because digital video is typically acquired at 30 frames per second
and, based on our personal experience with the Lucas—Kanade
algorithm [11,12], feature point trackers can operate in real time. In
Fig. 5, the number of tracked feature points is plotted as a function of
the frame number. In total, there were 301 simulated frames, and the
number of tracked feature points varied in the range of 17 to 43
points. In these numerical experiments, eight MAV states were
estimated: the total velocity vy, sideslip angle 8, angle of attack «, the
three components of angular velocity {p, ¢, r}, the roll angle ¢, and
the pitch angle 6.

As mentioned earlier, three dynamic models of varying fidelity
were employed in the Kalman filter. The first model considered was
a first-order random walk model for the velocity and angular
velocity states with the exact kinematic expressions for the roll and
pitch angles. The next model considered was a linear MAV model
obtained through a linearization of the equations of motion about a
trim condition corresponding to the initial conditions for the
simulated flight. During the roll doublet, the simulated nonlinear
trajectory deviates substantially from that predicted by the
linearized model. After this maneuver, the MAV settles to a new
trim condition different from the one used to generate the linearized
model. Finally, a nonlinear MAV model was considered that
contains simplified nonlinear aerodynamics. The aerodynamics in
this model differ from those in the simulation in that the
aerodynamic coefficients are assumed to have constant values at a
dynamic pressure of 1.6 psf instead of interpolating between values
at 1.0, 1.6, and 2.0 psf as in the original Langley MAV model.
During the simulated flight, the MAV is initially operating at a
dynamic pressure close to 1.6 psf but is at a dynamic pressure of
approximately 1.2 psf at the end of the flight. In addition, the
aerodynamics in the simplified nonlinear model do not include
dynamic terms that depend on the time derivatives of the angle of
attack and sideslip angle.

The random walk, linear, and nonlinear MAV models were
employed in the vision-based Kalman filter to evaluate the
robustness of the estimator with respect to modeling error. It should
be noted that there are many other options for studying model
robustness. For example, one could conduct a parametric study to
determine the effect of errors in some of the individual model
coefficients. This particular approach was not pursued in this paper,
however. The linear and nonlinear models employed in this paper
effectively contain errors in many of the coefficients, the amount of
which varies throughout the simulated flight. Therefore, the
robustness study presented in this paper represents one means for

evaluating the filter performance using inaccurate dynamic
propagators.

In this numerical study, the effect of measurement noise was also
considered by adding normally distributed white noise to each
feature point position in the pixel plane. The standard deviation of the
measurement noise was varied from 0 to 5 pixels while it is noted that
1 pixel error is typical of many image processing algorithms [7,17].
In each case, the filter was given initial conditions that were
significantly in error. Specifically, the true initial condition
{vr, B, p,q, r, ¢, 0}, corresponded to

X, = {37 ft/s,0.034691 deg,5.4628 deg,0 deg /s,
0 deg/s,0 deg/s,—1.6451 deg,5.4628 deg}

while the Kalman filter was initialized to

}?0 = {27 ft/s,28.65 deg,28.65 deg,57.3 deg/s,
—57.3 deg/s,28.65 deg/s,57.3 deg,28.65 deg}

Therefore, the filter was given significant initialization errors in all of
the states. These erroneous initial conditions represent an important
test for the filter since it is quite possible that accurate initial
conditions will not be known in practice.

The performance of the vision-based Kalman filter using the
different dynamic models is summarized in Figs. 6-14 . These
figures present plots of the estimated states for the duration of the
flight. In this set of results, the error in the measured feature point
positions was simulated to have a standard deviation of 1 pixel.
Roughly speaking, during each simulation the estimator goes
through two phases: a transient phase in which the estimator
responds to initialization error and a steady-state phase in which the
estimator attempts to track the state as the MAV maneuvers.
Therefore, for clarity of presentation, the results are plotted for two
different time intervals: a 0-5 s transient interval and a 5-30 s
steady-state interval. In the plots, the estimated states are shown as
solid lines and labeled in the legend as “estimated” while the true
states, as simulated using the nonlinear Langley MAV model, are
depicted as dashed lines and labeled “simulated.” Also included in
these plots is the propagated response, or the response predicted by
the dynamic model without the benefit of vision-based measure-
ments. These responses are shown as dash-dotted lines and are
labeled “propagated” in the legend. We note that estimation error
plots, commonly used to evaluate the performance of Kalman filters,
have not been included here due to space limitations. We have
chosen to present plots of the estimated states instead of the
estimation error plots so that the reader can better understand the
nature of the simulated flight.

From Fig. 7, the random walk model performs well in estimating
the angular velocity states. The estimator quickly recovers from the
significant initialization error and tracks the states throughout the roll
maneuver. The estimated roll and pitch states are not accurate,
however, as the estimates never fully recover from the angle
initialization errors. The estimated velocity states are essentially
unaffected by the vision-based measurements and remain constant
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Fig. 6 Velocity estimation using the random walk dynamic model.
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Fig. 8 Roll and pitch angle estimation using the random walk dynamic
model.

for the entire simulation. It should be noted that there is a scale
ambiguity in the epipolar constraint. Namely, any scalar multiple of
the essential matrix satisfies the epipolar constraint. The result of this
scale ambiguity is that, based on vision alone, the velocity can be
determined only up to a scale factor. The use of a physical model in
the Kalman filter provides information which can resolve the scale
ambiguity. The random walk model is not physical and thus provides
no scale information; therefore, it cannot estimate the total velocity.
The random walk dynamic model alone is certainly insufficient for
predicting the response of any of the states because it predicts

Velocity Estimation

constant values for the angular velocity and velocity states. Although
the model uses the exact kinematic expressions for the roll and pitch
angles, on its own the model cannot compensate for the angle
initialization errors. Therefore, the propagated roll and pitch angles
are grossly in error.

The results for the estimator with the linear model are considerably
different from those of the random walk model. Most notably, the
linear model is stable and is able to recover from initial condition
errors. As seen in Figs. 9-11, most of the propagated states
eventually converge to the true simulated states. The estimated states,
however, recover from the filter initialization errors much more
rapidly in almost all cases. For example, in Fig. 10, the estimated
angular velocity converges to the true simulated angular velocity in
less than a quarter of a second. The propagated angular velocity also
converges to the simulated angular velocity but requires about 2 s to
do so. In addition, the propagated angular velocity states exhibit
considerable oscillation before converging. The estimator also tracks
the true angular velocity more accurately than the propagator
throughout the simulated flight. This can best be seen in the plot of
the estimated ¢ component of angular velocity. As shown in Fig. 11,
the estimator performs better than the propagator in estimating the
roll and pitch angles. The estimator recovers from initial condition
errors much more quickly, especially for the pitch angle, and tracks
the roll and pitch states more closely during the entire simulation.
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The plot of the pitch angle shows that both the estimator and
propagator deviate substantially from the true pitch angle toward the
end of the simulation. This behavior is most likely due to the effect of
errors in the estimation of the angle of attack. It is important to note
that, after the roll maneuver is completed, the MAYV settles to a new
trim condition, significantly different from that used to generate the
linearized dynamic model. As shown in Fig. 9, both the estimator and
the propagator fail to track the resultant change in angle of attack. The
angle of attack estimation error likely had an effect on the Kalman
gain, which in turn affected the pitch angle estimation. In general, the
estimator does not perform well in estimating the velocity states. It
does, however, compensate for initial condition errors in the velocity
states more quickly than the propagator. After recovering from the

initialization errors, the estimator does not track the velocity states
very well in the long term for reasons that will be discussed later.
The state estimates obtained using the Kalman filter with the
simplified nonlinear model are shown in Figs. 12—14. Qualitatively,
the results are similar to those obtained using the linearized dynamic
model. Similar to the linear model, the estimator performs very well
in estimating the angular velocity states. The only difference is that
the nonlinear propagator is slightly more accurate than the linear
propagator, but the estimator performs similarly in both cases. It
should be noted that the estimator also performs similarly when
estimating the angular velocity using the random walk model. This
result implies that the choice of dynamic model is not critical when
estimating the angular velocity. For the nonlinear model, the roll and
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pitch angle estimation is similar to that obtained with the linear
model. The most significant difference is seen in the pitch angle
estimation toward the end of the simulation. For similar reasons as in
the linear case, the estimator with the nonlinear model shows
significant error in the pitch angle estimation at the end of the
simulation. Because of the higher fidelity of the nonlinear model, this
error is much smaller in the nonlinear case. As in the linear case, the
nonlinear estimator does not track the velocity states very well in the
long term. This is especially evident in the estimation of the angle of
attack shown in Fig. 12. An important difference is that the nonlinear
estimator recovers from initial condition errors much faster than the
linear estimator in estimating the total velocity and the angle of
attack.

A prevailing observation from the results of testing the vision-
based state estimator using the three different dynamic models is that,
in all cases, the estimator is not able to track the velocity states well in
the long term. The reason for this behavior is that the epipolar
constraint has a stronger dependence on the angular velocity states
than it does on the velocity states. Therefore, the partial derivatives of
the implicit measurement with respect to the velocity states, which
appear in the linearized measurement matrix H, are very small (see
[18]). These small values lead to large gains since H is inverted in
computing the Kalman gain matrix K, which in turn causes large
biases in the state estimates. To alleviate this problem, it was
necessary to set the partial derivatives of the measurement with
respect to the velocity states to zero. This heuristic adjustment serves
to eliminate the large biases in the state estimates, but also weakens
the effect of the filter on estimating the velocity states. The filter is
still able to provide measurement updates to the estimated velocity
because, when the Kalman gain matrix is updated, the nonzero partial
derivatives in H generally result in nonzero gains for all the states.
Still, the results show that the vision-based measurement updates in
the filter have a limited effect on the velocity estimation under these
conditions.

Finally, the performance of the vision-based Kalman filter for
varying levels of measurement noise is summarized in Fig. 15. This
study was conducted using the estimator with the nonlinear dynamic
model and the same simulated MAYV flight and initial conditions used
previously. The simulated feature point positions in the pixel plane
were corrupted with additive and uncorrelated zero-mean Gaussian
noise with standard deviation ranging from O to 5 pixels. Figure 15
depicts the rms estimation error in each estimated state for the
varying noise levels. For each individual state, generically denoted as
X, the rms estimation error is computed as:

=

— 1 S > 2
€rms = {N—-H kX:(;(xk - xk) } (39)

where x; denotes the true state at time f;, X, represents the estimated
state at time #;, and N + 1 is the total number of estimated samples.
As would be expected, the rms estimation error, shown as a solid line,
is seen to gradually increase with the level of measurement noise for
most of the states. For comparison, the rms error of the nonlinear
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propagator without vision-based updates is shown as a dash-dotted
line in each plot. This error is not dependent on the level of
measurement noise because the measurements are not used in this
case. The rms error in the estimated velocity states is similar for the
estimator and the propagator. Once again, this is due to the vision-
based filter not having a strong effect on the velocity estimates. The
angular velocity states show an rms estimation error that increases
gradually with the level of noise. The rms estimation error remains
significantly smaller than the propagation error even as the
measurement noise is increased to 5 pixels standard deviation. Note
that the large rms error in the propagated angular velocity is due in
large part to the large oscillatory response resulting from the
initialization errors. Similarly, the rms error in the roll and pitch angle
estimates remains smaller than the rms propagation error for all noise
levels considered.

Conclusions

This paper has investigated the performance of a vision-based
Kalman filter for state estimation for MAVs. The estimation is
performed via an implementation of the IEKF that is based on the
epipolar constraint. This constraint provides measurements that are
implicit functions of the aircraft states and the measured feature point
positions in the pixel plane. Numerical results have been presented
for a simulated MAV performing a roll doublet maneuver. In these
experiments, a nonlinear MAV model developed at the NASA
Langley Research Center was used to generate the MAV trajectory.
In this paper, a hierarchy of dynamic models of varying fidelity was
employed to test the robustness of the algorithm with respect to the
modeling error. These models included a random walk model, a
linearized dynamic model, and a nonlinear model with simplified
aerodynamics. The performance of the filter with respect to
initialization errors and measurement noise in the pixel plane was
also studied.

The simulation results indicate that the vision-based Kalman filter
is capable of accurately estimating the angular velocity regardless of
the dynamic model employed. Using all three models, the filter is
able to account for errors in the initial conditions and track the
angular velocity throughout the simulation. These results
demonstrate that, in a qualitative sense, the angular velocity is
highly observable from the epipolar constraint. Although a simple
random walk model is sufficient for angular velocity estimation, the
use of a higher-fidelity dynamic model is needed to estimate the
velocity states and the roll and pitch angles. Similar results are
obtained for the roll and pitch estimates using the linear and nonlinear
models in the filter. The main difference is that the nonlinear model
provides more accurate pitch estimates in the long term. The filter
does not perform well in estimating the velocity states using either
the linear or the nonlinear models. The epipolar constraint is weakly
dependent on the velocity states, leading to small partial derivatives
in the linearized measurement. To prevent biases, it was necessary to
set these partial derivatives to zero, further weakening the ability of
the filter to affect the velocity estimation. Under these conditions, the
dynamic model becomes very important as it is the primary means by
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which the estimator can track the true velocity. The estimated
velocity using the nonlinear model recovers much more rapidly from
initialization errors than the velocity estimated using the linear
model. The use of a high-fidelity dynamic model is also important in
the event that the vision-based measurements become unavailable
for a period of time. In practice, this could occur for a variety of
reasons such as data dropouts, corrupted image frames, and flying
over areas without trackable feature points. In these cases, the
dynamic model would serve to propagate the state, albeit with
increasing error, until another measurement became available. It is
also important to note that most algorithms that estimate vehicle
motion using vision alone, such as the well-known eight points
algorithm, require at least eight tracked feature points to compute an
estimate. Because the Kalman filter incorporates a dynamic model, it
will produce state estimates regardless of the number of available
feature points.

The results presented in this paper suggest many avenues for
future work. The performance of the filter needs to be studied using
real imagery from an urban environment and feature points obtained
using a feature point tracker. In addition, the use of multiple cameras
should be investigated. The results presented in this paper indicate
that the lateral motion can be effectively estimated using a forward-
looking camera whereas the longitudinal states are more difficult to
estimate. This observation suggests that the use of a sideways-
pointing camera might be more effective for estimating the
longitudinal motion. In addition, the filter should be modified to
incorporate data from any other sensors, such as GPS,
accelerometers, or gyros, that may be included in a MAV’s sensor
suite. In principle, this should simply require appending additional
measurements to the filter, although these measurements would be
available on different time scales (e.g., GPS is available on the order
of 1 Hz). Including other sensor measurements in the filter also
provides a potential avenue for achieving full 12-state estimation. As
noted earlier, the Kalman filter implementation used in this paper
employs several assumptions about the process and measurement
noise that are not satisfied in practice. This implies that improved
results might be obtained using an unscented Kalman filter or a
particle filter which makes no assumptions on the form of the process
and measurement noise. Another possibility for future work includes
using the subspace constraint, which is based on optic flow, in the
filter instead of or in combination with the epipolar constraint.
Finally, the ultimate research goal is to incorporate vision-based state
estimation into an autonomous flight control system for MAVs.
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