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Wavelet-Processed Flight Data for Robust
Aeroservoelastic Stability Margins

Marty Brenner¤ and Rick Lind†
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Wavelet analysis for � ltering and system identi� cation is used to improve the estimation of aeroservoelasti c (ASE)
stabilitymargins. Computation of robust stabilitymargins for stabilityboundaryprediction depends on uncertainty
descriptions derived from the test data for model validation. Nonideal test conditions, data acquisition errors, and
signal processing algorithms cause uncertainty descriptions to be intrinsically conservative. The conservatism
of the robust stability margins is reduced with parametric and nonparametric time-frequency analysis of � ight
data in the model validation process. Nonparametric wavelet processing of data is used to reduce the effects of
external disturbances and unmodeled dynamics. Parametric estimates of modal stability are also extracted using
the wavelet transform. F-18 High Alpha Research Vehicle ASE � ight test data are used to demonstrate improved
robust stability prediction by extension of the stability boundary from within the � ight envelope to conditions
suf� cently beyond the actual � ight regime. Stability within the � ight envelope is con� rmed by � ight test. Practical
aspects and guidelines for ef� ciency of these procedures are presented for on-line implementation.

Nomenclature
a, ai = wavelet scale, indexed scale values

(dimensionless)
F.P; 1/ = feedback interconnection structure
g = wavelet basis function
K = feedback control system
P.s/; OP.s/ = Laplace transform of system plant, estimate
Wadd; Win; Wns = weightings on 1add, 1in, noise
Wg = continuous wavelet transform with basis g
X .¿; !/; OX.¿; !/ = wavelet-transformed signal, � ltered signal
X .!/; OX .!/ = frequency-domain signal, estimate
x.t/; Ox.t/ = time-domain signal, � ltered signal
0 = robust stability margin
1; O1 = uncertainty operator, estimate
± Nq = uncertainty in � ight condition
³ = damping ratio
¹ = structured singular value
¿ = wavelet translation time
Á.t/; Á0 = signal phase, constant phase lag
!d ; !n = modal damped and natural frequency
!0 = wavelet peak frequency

I. Introduction

E NVELOPE expansion of new modi� ed aircraft often requires
structural stability testing to verify safety margins to prevent

against aeroservoelastic (ASE) instability. In-� ight testing allows
determination of aeroelastic or ASE effects as a function of � ight pa-
rameters. Flight data are acquired for stability estimation and system
identi� cation to compare with analytic predictions. Any anomalies
are regarded with care for safety of � ight. Improvement in � ight data
analysis is achieved by discriminating areas of low signal-to-noise
ratio, unmodeled dynamics, and external disturbances.1

Wavelet transforms have been applied to parameteric identi� -
cation of time-varying multiple-degree-of-freedom systems by esti-
mation of the impulse response using correlation methods.2;3 Modal
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frequency and damping parameters are estimated directly from the
data without intermediate model identi� cation schemes. However,
these estimates require parameter range approximations to discrim-
inate modal frequency and damping.

Recent methods4;5 use a wavelet transform (WT)on free-response
data to directly supply information on time-dependent modal decay
rate and phase variation. Without any approximation of parameter
range, estimates of modal frequencies and damping ratios are ex-
tracted from the response. Damping and frequency trends are use-
ful for noting changes in system dynamics as a function of � ight
condition, thereby helping to reduce conservatism in real parameter
variations of the uncertainty model.

Wavelet signal processing has also shown promise for system
identi� cation by application as � lter banks for data enhancement6

with continuous WTs. Time-frequency nonlinear � ltering proce-
dures have utilized constant resolution, continuous wavelet basis
functions to enhance transfer function estimation.7;8 Constant reso-
lution analysis in time and frequency is generally not appropriate for
transient system dynamics, however, because features of the relevant
dynamics at different scales are ignored. Multiresolution analysis
advances this capability with the discrete wavelet transform (DWT)
to decompose the data into multiple scales to reveal prominent and
subtle features regardless of the governing dynamics.9

Adjustable time-frequency resolution techniques provide � exi-
bility with a DWT to resolve system dynamics from general nonsta-
tionary, transient signals. The objective of adjusting the competing
requirements of time and frequency resolution with fast, accurate
processing is accomplished with a combination of compact orthog-
onal and harmonic wavelet properties.10;11 This paper exploits the
multiresolution analysis property of the DWT for � ltering and modal
estimation algorithms. Emphasis is on the application of multires-
olution Morlet wavelets as a signal transformation for dynamics
analysis beyond standard bandpass noise � ltering properties.

Model validation is a critical procedure in the computation of
robust stability margins. The margins are adversely affected by
poor characterizations of the uncertainty size and structure. The
major contribution of this paper is augmentation of a fast multiscale
wavelet � ltering algorithm10;11 with wavelet-based modal parameter
extraction5 to estimate robust stability margins with reduced-norm
uncertainty sets of both complex-nonparametric and real-parametric
perturbations. The decrease in conservatism results in a more prac-
tical and valuable robust stability margin.

Transfer functions and modal parameter estimates derived from
time-frequency Morlet wavelets are used to estimate state space ASE
models from F-18 High Alpha Research Vehicle (HARV)12 � ight
data. These models are used in a robust stability boundary prediction
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method based on the structured singular value ¹ (Ref. 13). On-line
implementation issues are presented to demonstrate feasibility in a
� ight-test environment.

II. ASE Flight Test
The HARV aircraft was a modi� ed F-18 to include thrust vec-

toring paddles on the engines and a research � ight control system
to ensure stability at high-angle-of-attack � ight conditions.14 The
� ight system also included anexcitation signal generator, designated
as onboard excitation system (OBES), for aerodynamic parameter
identi� cation, closed-loop stability monitoring, and aeroservoelas-
tic excitation.15 For ASE stability monitoring, the OBES was con-
� gured to sum programmed digital signals to the control system
actuator commands for structural excitation of the primary modes.
Inputs from 5 to 20 Hz were added to the control surface commands
for � ight conditions with angles of attack from 5 to 70 deg.

Analytical predictions indicated poor ASE stability robustness
in the lateral-directional feedback loops. Structured singular val-
ues of complementary sensitivity near the � rst antisymmetric wing
bending and wing torsion modes (about 9 and 12 Hz, respectively)
approached 0 dB, and the wing fore–aft mode near 15 Hz was at
¡6 dB. Flight envelope limits were 15,000–35,0000 ft altitude up to
Mach 0.7. Worst-case � ight conditions from the analysis were less
than Mach 0.3, greater than 30,000-ft altitude, and above 50-deg
angle of attack. This paper addresses robust stability at a represen-
tative worst-case � ight condition of 50-deg angle of attack at Mach
0.3 and altitude 30,000 ft.

III. Time-Frequency System Identi� cation
A desirable feature of signal analysis is adaptation to both tran-

sient and stationary characteristics, which implies both time- and
frequency-domain resolution criteria subject to the uncertainty prin-
ciple. These competing requirements demand a method that is tun-
able according to the local signal dynamics. For general types of
input excitation, constant time-frequency resolution analysis6;7 is
too restrictive and generally not applicable. A multiresolution sig-
nal decomposition is, therefore, required.

Redundant continuous wavelet transform methods give arbitrarily
good resolution, but are cumbersome10 and often slow16 for recon-
struction and � ltering. Alternatively, nonredundant (compact and or-
thonormal) wavelet transforms are fast and accurate, but are limited
in frequency resolution even with wavelet packets. Good frequency
resolution is obtained with classical harmonic wavelets,17 but time
resolution is sacri� ced. Regulation of time and frequency resolution
with fast, accurate processing is accomplished with a combination
of compact orthogonal and harmonic wavelet properties in the com-
pact harmonic wavelets.10;11

A. Nonparametric Estimation: Wavelet Filtering
The multivoice WT was introduced to exploit multiresolution

analysis using compact harmonic wavelets.10;18 Multivoice, or mul-
tiscale, refers to redundant representations of signals on multiple

a) Original b) Filtered

Fig. 1 Scalogram contours of lateral acceleration feedback response from aileron command input.

frequency bands.19 Nonorthonormal Morlet wavelets are approx-
imated with (harmonic-like) discretizations on multiple-wavelet
scales. These form a nonorthogona l redundant basis for the signal
space, which does not admit a multiresolution analysis. The deriva-
tion of a DWT from the wavelet basis is necessary to get a multires-
olution analysis of the sampled continuous Morlet transform.18

The DWT is implemented as a � lter bank covering a prede� ned
range of frequencies with corresponding number of frequency bands
(voices) per octave. Interpolation, or scaling, � lters are introduced to
de� ne how the scales relate to each other in a dyadic fashion for the
multiscale representation. These scaling � lters are compact (� nite
impulse response) for fast and accurate reconstruction. Therefore,
multivoice transforms provide practical, fast, and � exible means for
analysis and � ltering of nonstationary data with tunable frequency
resolution vs time localization.

The WT of signal x.t/ over the timescale .a; ¿/ plane is repre-
sented as

Wg.a; ¿ / D
1

p
a

1

¡1
x.t/g¤

³
t ¡ ¿

a

´
dt (1)

where scale parameter a is proportional to the duration and inversely
proportional to the peak frequency !0 of the complex Morlet wavelet

g.t/ D 1
p

2¼ exp.¡t 2=2/ exp.i!0t/ (2)

The spectrum of a dilated and translated Morlet wavelet reaches a
maximum value at ! D !0=a:

Ga;¿ .!/ D exp ¡.a! ¡ !0/2 (3)

Multiscale data decomposition is performed by projection of the
signal onto the wavelet bases of different scales. A timescale repre-
sentation of the projection coef� cients is often called a scalogram,20

which is the power spectral density jWg.a; ¿ /j2 of the signal over
the .a; ¿/ plane. Time-frequency masking of input and output is
performed in the .a; ¿/ plane, and the reconstruction into the time
domain results in the � ltered response. This is an extension of pre-
vious wavelet � ltering procedures6¡8 because the time-frequency
resolutions are adjusted for optimum performance.

An example scalogram of an F-18 HARV 5–20 Hz lateral accel-
eration feedback response from an aileron frequency sweep input
is shown in Fig. 1. The � ltering procedure on the output is shown
in Fig. 1b as a processed scalogram. Figure 2 shows the effect of
� ltering on the time response.

B. Parametric Modal Estimation: Morlet WT
Modal parameters can be estimated with wavelets by analysis

of the system impulse response5;21 (see Appendix). The DWT of
a signal using the complex Morlet wavelet is a complex-valued
matrix, whose modulus and phase are related to impulse response
parameters. In the current application, this procedure is applied at
every time point assuming at each instant that the response is a sum
of multiple-degree-of-freedom impulse responses.
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a) Original

b) Filtered

Fig. 2 Responses of lateral acceleration feedback response from
aileron command input.

a) Response natural
frequency

b) Damping ratio

Fig. 3 Time-dependent modal parameter estimates.

Data from the wavelet � ltered results of Fig. 2 are used to estimate
the mean value of the instantaneous frequency !.t/, or the estimated
!d , and the estimated decay rate ³!n as a function of the complex
Morlet wavelet frequency !0 (see Appendix). From these two pa-
rameters are derived the modal natural frequency !n and modal
damping ratio ³ as functions of !0. This bank of Morlet wavelets
used for natural frequency and damping ratio estimation are time
tagged for start and duration times to get the modal estimates as
functions of time. Time-dependent modal parameter estimates are
shown in Fig. 3. It is observed that modal frequency is essentially
the tracked input frequency in this case because the cleaned output
signal from Fig. 2b is being used, and this accelerometer response
tends to track the input frequency. From the scalogram of Fig. 1b,
the response lacks de� nition between 20–25 s and 32–34 s. These
gaps also correspond to the lower output signal levels from Fig. 2b
at these time intervals. Lack of observability adversely affects the
modal estimates of Fig. 3 in these particular intervals.

Scalogram contours of Fig. 1 suggest the wavelet coef� cients as
a measure of data quality and modal de� nition. In Fig. 4 the wavelet
coef� cients are represented for each modal frequency and damping
ratio using the same data from the wavelet � ltered results of Fig. 2.
Lower magnitude coef� cients indicate less observable modal dy-
namics from the data. Coef� cients from modal frequency estimates
may be used to distinguish more dominant from less observable dy-
namics. This criteria can be exploited to extract the corresponding
modal damping values.

Fig. 4 Wavelet coef� cient absolute magnitudes as functions of esti-
mated modal frequency and damping estimates.

An important point is that the Morlet wavelets are being used to
estimate the modal parameters; therefore, an implicit multiresolu-
tion � ltering process is being performed independent of the explicit
graphical procedure already described (Fig. 1). The wavelet basis
representation of the signal is itself a noise-free subspace of the sig-
nal function space, and the modal parameters are derived from this
signal subspace of wavelets with varying duration, frequency, and
location in time.

IV. ¹ Method
A method to compute stability margins of aeroservoelastic sys-

tems has been formulated based on robust stability theory.22 This
method uses a set of structured operators 1, referred to as uncer-
tainty, to describe errors and unmodeled dynamics in an analytical
model. The structured singular value ¹ is used to compute a stability
margin for this model that is robust, or worst case, to the uncertainty
operators.23

The ¹ framework represents systems as operators with intercon-
nections known as linear fractional transformations. This paper will
use the notation F.P; 1/ to represent feedback interconnection of
the plant P and uncertainty 1. Aeroservoelastic systems may have
errors affecting different dynamic subsystems so that the uncertainty
operator 1 is structured such that the feedback interconnections en-
sure each subsystem is affected by the proper component of 1.

Flight data can be incorporated into the ¹ method by formulat-
ing an uncertainty description that accounts for observed variations
and errors.24 A model validation analysis is performed on the plant
model to ensure the range of dynamics admitted by the uncertainty
is suf� cient to cover the range of dynamics observed with the � ight
data. Thus, a robust stability margin is computed that directly ac-
counts for � ight data.

An ASE stability margin 0 is determined by computing ¹ with
respect to an uncertainty description ± Nq that admits variations in
dynamic pressure Nq and an uncertainty description 1 that describes
modeling errors.25 This margin relates the largest change in dynamic
pressure that may be considered while guaranteeing the plant model
is robustly stable to all errors described by 1.

V. ¹ Method with Wavelet Processing
The ¹ method can be coupled with the wavelet � ltering processes

of parametric and nonparametric estimation discussed earlier. This
coupling is achieved by introducing several time-frequency oper-
ations based on wavelet � ltering into the basic process. Figure 5
shows the general information � owchart for the ¹ method with
wavelet � ltering.

WT operations introduced earlier are used toprocess time-domain
data x.t/ before a frequency-domain representation OX .!/ is com-
puted. These operations map the time-domain data into a time–

frequency domain scalogram via a WT and then map a scalogram
back into the time domain via an inverse WT. A time–frequency
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Fig. 5 Flowchart of ¹ method combined with wavelet processing for
on-line wavelet-¹ method of robust stability margin analysis of ASE
dynamics.

� ltering process operates between the WT and inverse WT to re-
move unwanted features from the scalogram before the inverse WT
computes a time-domain signal, Ox.t/.

A modal parameter estimation operation is introduced using the
wavelet algorithm. Properties of the system dynamics are derived
from the � ltered scalogram. The elements of a nominal plant model
P are updated with these parameter estimates, and a new plant model
OP is used to represent the aeroservoelastic dynamics.

The � nal operationsof the ¹method are traditional robust stability
operations that operate on frequency-domain data. The effect of the
wavelet � ltering is to use the � ltered versions of the data and plant
model for the modal validation. Thus, a new uncertainty operator O1
isassociated with the parameter updated plant OP to account for errors
observed from the � ltered data Ox.t/. A robust stability margin 0 is
computed that describes the largest change in dynamic pressure
for which OP is robustly stable to the errors O1.

A. ¹ Method with Parameter Estimation
An implementation of the ¹ method with modal parameter es-

timation is accomplished using the � owchart of Fig. 5. The � lter
operation for this implementation is presently ignored, so that the
wavelet map OX.¿; !/ is equivalent to the original map X .¿; !/.

The wavelet-based method for parametric estimation is used to
analyze the wavelet map OX.¿; !/ of the � ight data. This method
estimates modal parameters to describe the system dynamics that
generated the � ight data. A plant model OP1 is computed by updating
elements of the nominal plant model P0 with the modal parameter
estimates. Only a limited subset of dynamics will be observable in
the data from the wavelet coef� cients, and soonly a correspondingly
limited subset of the plant modal parameters will be updated.

An uncertainty description O11 is generated for the plant with up-
dated modal parameters OP1 using the model validation procedure.
This procedure essentially uses the original � ight data measure-
ments because the WT and inverse WT operations will cancel each
other except for numerical inaccuracies. Thus, x.t/ ¼ Ox.t/, and an
uncertainty description is computed for the updated plant, which
accounts for all variations and anomalies in the recorded data.

The magnitude of uncertainty associated with the updated plant
should be less than (or equal to) the uncertainty magnitude associ-
ated with the nominalplant. Thisdecrease in uncertainty results from
the ability of the updated plant to account for bias in the nominal
plant estimates. Hence, the uncertainty associated with the updated
parameter is less than the uncertainty associated with the nominal
parameter. Thus, k O11k1 · k10k1.

The conservatism in robust stability margins computed by the
¹ method arises from the excessive uncertainty needed to account
for errors in a model. A decrease in uncertainty from model up-
dating with the parameter estimation process should decrease this
conservatism.

B. ¹ Method with Wavelet Filtering and Parameter Estimation
Another implementation of the ¹ method with modal parame-

ter estimation results from including a nontrivial � ltering operation
in the � owchart of Fig. 5. The wavelet � ltering operation, which
is a type of nonparametric estimation, is used to generate scalo-
grams to represent desired features of input and output data in the
time–frequency domain. The � ltered scalogram OX .¿; !/ may be ar-
bitrarily different than the original scalogram X .¿; !/, depending on
the energy of the signal components that do not correlate to desired
features.

The � ltered wavelet map is input to the parametric estimation pro-
cess. Resulting modal parameter estimates represent the dynamics
of the system model that generates the desired features dominant in
the � ltered maps. The elements of the nominal plant model P0 are
replaced with the modal parameter estimates to generate an updated
plant model OP2.

The � ltered wavelet map is also used to generate an uncertainty
description for the updated plant OP2. A time-domain signal Ox.t/,
which represents the � ltered measurement data, is computed by an
inverse WT on the � ltered scalogram. A frequency-domain repre-
sentation of this � ltered signal is computed from a Fourier transform
and is used by the model validation process. The resulting uncer-
tainty O12 describes the variations between the updated plant OP2 and
the � ltered data.

The uncertainty description associated with OP2 should be less (or
equal) when validating the � ltered data compared to validating the
un� ltered data. The � ltering process should remove nonlinearities
and harmonics along with noise that causes aliasing and errors in
measured transfer functions. This removal of errors may decrease
the variance in modal parameter estimates so that an updated model
can be generated with less uncertainty. The � ltered data generate
parameters that are less scattered allowing the uncertainty ball to
be smaller, so that k O12k1 · k O11k1 · k10k1 . Therefore, the
conservatism in robust stability margins computed by the ¹ method
may be decreased by including the wavelet � ltering into the process.

VI. Aircraft Models and Uncertainties
Robust stability margins for the aeroservoelastic dynamics of the

F-18 HARV are computed using the ¹ method with wavelet � ltering.
Stability margins are computed for the antisymmetric modes of the
lateral-direction aeroservoelastic dynamics for the aircraft at Mach
0.3 and an altitude of 30,000 ft ( Nq D 41 lb/ft2 ) at 50-deg angle
of attack. A baseline implementation of the ¹ method indicates
these margins may lie within the � ight envelope so any reduction in
conservatism could be signi� cant at this � ight condition.22

An uncertainty description is formulated using three operators
to describe errors in an F-18 HARV analytical model. A complex
operator 1in is a multiplicative uncertainty in the control inputs to
the plant and accounts for actuator errors and unmodeled dynamics.
Another complex operator 1add relates the control inputs to the feed-
back measurements to account for uncertainty in the magnitude and
phase of the computed plant responses. The remaining uncertainty
operator 1A is a real parametric uncertainty affecting the modal pa-
rameters of the open-loop state matrix to describe errors in natural
frequency and damping parameters.

The block diagram for robust stability analysis of the F-18 HARV
aeroservoelastic dynamics is shown in Fig. 6. This � gure includes an
operator ± Nq that affects the nominal dynamics to describe changes in
� ight condition and is used to interpret ¹ as a stability margin.25 Ad-
ditional operators Wadd and Win are shown as weightings to normal-
ize the frequency varying uncertainty operators 1add and 1in. The
system model also contains 2% sensor noise corruption on each mea-
surement. The lateral-directional controller K has 29 states. There
are four feedback measurements (roll rate, yaw rate, lateral acceler-
ation, and sideslip rate) and six control inputs (aileron, rudder, yaw
thrust vectoring, and differential leading-edge � aps, trailing-edge
� aps, and stabilators) associated with this controller.

A. Baseline Model Validation
A model with anassociated uncertainty description is generated to

compute robust stability margins by the ¹ method. The plant model
P0 is the nominal model generated by a � nite element analysis15
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Table 1 Modal parameters and uncertainty variations
for model P0 and D 0

Mode !, Hz ³

Fuselage � rst bending 6.85 § 0.07 0.012 § 0.006
Wing � rst bending 8.96 § 0.18 0.006 § 0.004
Wing � rst torsion 12.84 § 0.13 0.011 § 0.006
Wing fore–aft 15.69 § 0.63 0.010 § 0.007
Fuselage � rst torsion 18.86 § 0.76 0.010 § 0.005

Fig. 6 F-18 HARV uncertainty block diagram for robust stability mar-
gin analysis.

of the aeroservoelastic dynamics. The parameters in this model are
theoretical and have not been updated by analysis of � ight data.
The model contains seven antisymmetric elastic structural modes
between 5 and 20 Hz.

An uncertainty description 10 is generated using the model
validation procedure on a frequency-domain representation of the
un� ltered data, OX.!/ D X .!/. Only the observed energies from fre-
quencies below 20 Hz are used for validation because there is consid-
erable energy at frequencies near 20 Hz caused by structural dynam-
ics associated with the thrust-vectoring vane system that are dif� cult
to model. The primary transfer function used in the derivation of the
uncertainty description is the lateral acceleration response from yaw
thrust vectoring. These data responses demonstrate good observabil-
ity of the primary modes up to 20 Hz based on spectral data.

Separate parametric uncertainty levels are determined for each
mode of the open-loop state matrix to re� ect different levels of ac-
curacy. These uncertainty magnitudes describe observed variations
between the model transfer function and the � ight data measure-
ments based on spectral model validation criteria.13;24 All subse-
quent model validation tests use similar criteria. Table 1 shows the
nominal modal parameters and the amount of variation admitted by
the parametric uncertainty.

The amount of variation needed to describe modal parameter
errors is fairly signi� cant for all modes, especially in damping ratio.
The fuselage � rst torsion and wing fore–aft modes have properties
that are particularly poorly modeled and so there is up to 4% error in
natural frequency and 70% error in damping. The remaining modes
have only 2% error in natural frequency but still require at least 50%
error in damping.

The weighting functions for the input multiplicative and additive
uncertainties are chosen to account for any errors between the model
and the � ight data that can not be covered by the parametric modal
uncertainty:

Win D 10
s C 100

s C 5000
(4)

Wadd D 0:02 (5)

B. Model Validation with Parameter Estimation
The parametric modal estimation procedure is used to process the

� ight data and compute modal parameters for an analytical model.
This procedure uses W .a; ¿ / to generate estimates of the modal pa-
rameters from the un� ltered wavelet map X .¿; !/ and its properties.

A plant model OP1 is computed, which is the estimated plant model
obtained from the modal estimates. This model is formulated as an
update of the nominal plant P0 with modal parameters replaced by
their estimated values. The nominal values of these parameters are

Table 2 Modal parameters and uncertainty variations
for model P1 and D 1

Mode !, Hz ³

Fuselage � rst bending 6.85 § 0.07 0.012 § 0.006
Wing � rst bending 8.60 § 0.10 0.040 § 0.021
Wing � rst torsion 13.31 § 0.15 0.045 § 0.024
Wing fore–aft 16.51 § 0.35 0.045 § 0.023
Fuselage � rst torsion 18.21 § 0.37 0.030 § 0.010

Table 3 Modal parameters and uncertainty variations
for model P2 and D 2

Mode !, Hz ³

Fuselage � rst bending 6.85 § 0.07 0.012 § 0.001
Wing � rst bending 8.70 § 0.09 0.035 § 0.003
Wing � rst torsion 13.31 § 0.14 0.045 § 0.004
Wing fore–aft 16.61 § 0.17 0.045 § 0.004
Fuselage � rst torsion 18.21 § 0.18 0.040 § 0.004

shown in Table 2. The natural frequencies are not changed by more
than 1 Hz for any of the estimated modes; however, the estimated
damping parameters are signi� cantly higher than the theoretical
values of Table 1.

An uncertainty description O11 is associated with OP1 to describe
the levels of modeling error in this estimated plant. The magni-
tudes of the parametric modal uncertainty in O11 are determined by
comparing � ight data with transfer functions for OP1 . The ranges of
modal parameter variations admitted by this uncertainty are given
in Table 2.

The variations in both natural frequency and dampings are seen
to be considerably reduced for F. OP1; O11/ (Table 2) compared to the
large variations for F.P0; 10/ (Table 1). The estimated modal pa-
rameters used in OP1 are much closer to those of the aircraft and so the
response of OP1 closely matches the � ight data measurements. Thus,
the natural frequency errors are all less than 2%, whereas the damp-
ing errors are all less than 55%. The weightings Wadd and Win affect-
ing the remaining uncertainties in O11 are identical to those of 10.

C. Model Validation with Wavelet Filtering
and Parameter Estimation

Modal parameters for model estimate OP2 are extracted from the
time-frequency domain representation of the wavelet-� ltered � ight
data OX .¿; !/. This is the procedure outlined in Fig. 5. As shown
in Table 3, the modal estimates from the � ltered data are similar to
the un� ltered estimates of Table 2. Parameter variations, however,
resulting from validated model F. OP2; O12/ are reduced in modal
frequency to 1% and in modal damping to 10%.

VII. Aeroservoelastic Stability Margins
Nominal stability margins are computed for the plant model using

the original theoretical modal parameters and the updated models
using parameters estimated from wavelet processing. These margins
are computed from a ¹ analysis with respect to the variation in
dynamic pressure Nq , but ignoring the modal and complex uncertainty
operators. The nominal stability margins 0 (Table 4) demonstrate
the largest decrease relative to the nominal dynamic pressure of
Nq D 41 lb/ft2 that may be considered before the models incur an ASE
instability. Therefore, a larger negative margin indicates a greater
margin of robust stability.

The original theoretical model has a nominal stability margin
of 0 D ¡268 lb/ft2 resulting from a critical instability of the wing
fore–aft mode at 14.8 Hz. The margins are increased by updating
the models with modal parameters estimates; however, the wing
fore–aft mode remains the critical mode for these updated models.
This increase in stability margin associated with wavelet � ltering is
not guaranteed to occur for all applications; rather, the � ltering is
designed to increase nominal model accuracy. The nominal model
for the F-18 HARV has excessively low damping values compared
to the damping levels resulting from the wavelet � ltering. Increasing
damping ratio estimates makes the plant effectively more stable and
increases the stability margins.
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Table 4 Nominal and robust stability margins

Nominal Robust
model 0, lb/ft2 !, Hz model 0, lb/ft2 !, Hz

F.P0; 0/ ¡268 14.8 F .P0; 10/ ¡4 15.4
F.P1; 0/ ¡368 14.8 F .P1; 11/ ¡222 7.0
F.P2; 0/ ¡379 14.8 F .P2; 12/ ¡239 7.0

These nominal margins are all greater in absolute value than the
nominal dynamic pressure and so they demonstrate the nearest in-
stability to the � ight envelope occurs at a negative dynamic pressure,
which is physically unrealizable. Thus, the nominal dynamics are
predicted to be free of ASE instabilities within the research � ight
envelope.

Robust stability margins are computed with respect to the uncer-
tainty description of Fig. 6 and given in Table 4. Model F.P0; 10/
describes the original model with parameter variations as in Table 1.
The model with modal parameter estimates F .P1; 11/ has the re-
duced uncertainty levels leading to the variations in Table 2. The re-
maining model F .P2; 12/ describes the model formulated by com-
bining wavelet � ltering with parameter estimation and introducing
uncertainty to allow the variations in Table 3.

The stability margin of the original model is strongly affected
by considering uncertainty. This margin is reduced from 0 D
¡268 lb/ft2 for the nominal dynamics to 0 D ¡4 lb/ft2 for the dy-
namics with respect to uncertainty. The critical mode remains the
wing fore–aft mode despite the uncertainty; however, the dynamic
pressure at which this mode becomes unstable is quite different.
This robust stability margin demonstrates the nominal model may
be misleading and the nearest unstable � ight condition may actually
lie within the � ight envelope. However, because the aircraft actually
� ew beyond the edges of the � ight envelope without instability, this
margin must be too conservative.

The robust stability margin for the model F.P1; 11/, using modal
parameter estimates, is signi� cantly larger than the margin of the
original system. The wavelet processing is able to identify a more
accurate model with less associated uncertainty so that the conser-
vatism in the margin is reduced. The robust stability margin for this
model is 0 D ¡222 lb/ft2 and indicates the nearest instability for
the updated model. Despite the range of dynamics incurred by un-
certainty, the margin is at a negative dynamic pressure, and so the
� ight envelope is now predicted to be free of ASE instabilities, as
expected.

The critical mode associated with the robust stability margin for
the updated model is the � rst fuselage bending mode. This differs
from the critical wing fore–aft mode associated with the nominal
margin. This shift in critical mode is a result of modal parameter
updates and corresponding reduced uncertainty sets.

The model formulated from parameter estimation coupled with
wavelet � ltering F.P2; 12/ has a robust stability margin that is
similar to the margin of F .P1; 11/. The magnitude of this margin is
slightly higher as a result of the reduced uncertainty levels needed to
validate the � ltered � ight data; however, the critical mode remains
the fuselage bending mode.

Reduction in parameter variations from nonparametric wavelet
� ltering did not have as much an effect on robust stability as the
updated parameter estimates. Nonparametric � ltering has more im-
pact on parameter variance, which was a less signi� cant factor than
parameter bias.

To summarize, comparison between the nominal results (Table 4)
and the robust margins (Table 4) shows that the decrease in margin
from uncertainty is clearly evident. The decrease is most substan-
tial for plant model P0, which has the greatest amount of modal
uncertainty in 10 , yet the frequency of instability is consistent with
the nominal cases. When updated modal parameter estimates are
incorporated in P1 and P2, the decrease in margins compared to the
nominal models are somewhat less because of the smaller uncer-
tainty sets (11; 12) compared to 10 .

The main difference between nominal and robust results is in
modal frequency of instability. Wing fore–aft modal frequency in-
creased about 1 Hz from its theoretical value to the updated value,
and thereby became a less signi� cant factor in the stability margin

calculation compared with � rst fuselage bending. This result con-
� rms that the effect of parameter estimation, and essentially data
quality, in model validation becomes a critical factor in robust sta-
bility boundary prediction.

VIII. On-Line Implementation
Analysis of � ight data in an on-line environment requires inter-

active capabilities. In reference to the � owchart of Fig. 5, the data
stream is � rst wavelet processed to provide information to the model
validation step. Wavelet processing will require resolution criteria,
� ltering options, and a methodology for extracting dominant dy-
namics as from Fig. 4. A robust stability margin is then calculated
based on the model validation test. Modal parameters can be in-
corporated into a model update, and uncertainty descriptions are
modi� ed accordingly. Finally, an updated model OP.s/ is created to
close the loop until the next data stream is processed. A parallel
effort of wavelet processing of future data while model updating
from past data is, therefore, possible.

Model updates need to be performed in the context of the test
scenario, � ight conditions, and stability criteria.13 Model parame-
ters from more recent (local) tests can be used if stability prediction
is based on a particular sequence of adjacent test conditions. This
approach attempts to minimize conservatism for a particular area
of the � ight envelope or a particular � ight regime. Alternatively,
model uncertainty may be continuously increased in a worst-case
approach to assure that all nominal models with the associated un-
certainty description are not invalidated by any of the data sets. In
this case, a single global uncertainty model is generated for con-
servative measures. A hybrid approach would segment areas of the
� ight envelope for a combination of local analyses in which each
would have some � ight condition commonality.

Computation requirements are reasonable. A 200-MHz computer
is able to process multiple signals at multiple scales well within
the time it takes to compute the model validation and ¹ step in a
worst-case analysis for � utter prediction.26 Hence, a complete on-
line analysis for each test point during � ight test is feasible within
a couple minutes.

IX. Conclusions
Improvements in ASE � ight data analysis and stability prediction

estimation have been addressed. Wavelet approaches to system iden-
ti� cation were applied by combining both � ltering and parametric
time–frequency identi� cation algorithms with Morlet wavelets. The
combination of these estimation schemes extracted modal estimates
and system uncertainty representations for less conservative model
validation. Uncertainty ranges determined by F-18 HARV aeroser-
voelastic � ight test data were shown to decrease by incorporating
modal estimates based on the wavelet-processed data.

With the model parameter and uncertainty description updates,
the critical aeroservoelastic instability changed in modal frequency
and � ight condition. A predicted instability within the � ight enve-
lope using an uncertain baseline model was found to be too con-
servative, as con� rmed by actual � ight. Model updates pushed the
instability beyond the � ight regime. The ultimate objective of pre-
dicting stability boundaries from � ight data was enhanced by a re-
duction in conservatism of the stability margin estimates.

Appendix: Modal Parameters from
the Morlet WT

Given a general harmonic signal

x.t/ D k.t/ cos[Á.t/] (A1)

the WT of x.t/ is5 [!.t/ D Á0.t/ is the derivative of the phase]

W .a; ¿/ D
p

ak.¿ / exp ¡.a!.¿ / ¡ !0/2 exp[iÁ.¿ /] (A2)

For � xed dilation parameter ai , the modulus and phase angle . /
of the WT of x.t/ are

jW .ai ; ¿ /j D
p

ai k.¿ / exp ¡.ai !.¿ / ¡ !0/2 (A3)

[W .ai ; ¿/] D Á.¿ / (A4)
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Instantaneous frequency of a signal in this case can be expressed
as21

!.¿/ D Á0.¿ / D
1

2¼

d

d¿
. [W .ai ; ¿/]/ (A5)

This shows that a general time-varying envelope k.t/ or phase Á.t/
of the signal can be determined from the modulus and phase of the
Morlet WT for each � xed wavelet frequency.

More speci� cally, from the impulse response of a single-degree-
of-freedom viscous damper

x.t/ D A exp[¡³!n t ] cos.!d t C Á0/ (A6)

we can derive the following expressions from the WT of x.t/:

k.t/ D
jW .ai ; ¿ /j

p
ai exp ¡.ai !.¿ / ¡ !0/2

D A exp[¡³!n t] (A7)

Á.t/ D [W .ai ; ¿ /] D !d t C Á0 (A8)

For a constant wavelet frequency line corresponding to ai over time
¿ in the .a; ¿ / plane, estimation of the WT linear phase variation [or
mean value of the instantaneous frequency, !.t/, over time] gives
!.t/ ¼ !d , and the envelope decay rate is ³!n .Natural frequency !n

and modal damping ratio ³ are, therefore, derived. The WT becomes
a complex representation of the original real signal from which the
signal eigenvalues are computed without any approximation of their
range.

Multiple-degree-of-freedom systems are analyzed similarly by
noting that the dilated Morlet wavelet is a bandpass � lter. Instanta-
neous frequencies of several spectral components are resolved by
separating them with a Morlet wavelet � lter bank.21 With suf� cient
resolution of dilation ai , damped modal frequencies !di D !0=ai

can be discriminated. To recap, the decay rate of the envelope of
each mode is calculated from the log-slope of the wavelet modu-
lus decay, and damped modal frequency is estimated as the linear
phase variation of the WT as a function of time. Adequate frequency
resolution can be enforced with the multiscaled compact harmonic
Morlet wavelets.
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