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A B S T R A C T

Transitions between solid-like and fluid-like states in living tissues have been found in steps of embryonic 
development and in stages of disease progression. Our current understanding of these transitions has been guided 
by experimental and theoretical investigations focused on how motion becomes arrested with increased me-
chanical coupling between cells, typically as a function of packing density or cell cohesiveness. However, cells 
actively respond to externally applied forces by contracting after a time delay, so it is possible that at some 
packing densities or levels of cell cohesiveness, mechanical coupling stimulates cell motion instead of sup-
pressing it. Here we report our findings that at low densities and within multiple ranges of cell cohesiveness, cell 
migration speeds increase with these measures of mechanical coupling. Our observations run counter to our 
intuition that cell motion will be suppressed by increasingly packing or sticking cells together and may provide 
new insight into biological processes involving motion in dense cell populations.

1. Introduction

The diversity of studies focusing on how cells move in condensed 
populations are often motivated by the long-standing recognition that 
collective cell motion plays a critical role in tissue development, health, 
and disease (Friedl and Gilmour, 2009). Early investigations of migra-
tion velocity fields within confluent cell islands uncovered connections 
to glassy-dynamics (Angelini et al., 2011; Tambe et al., 2011) and the 
jamming transition (Garcia et al., 2015), in which motion in monolayers 
becomes arrested as cells pack more densely together. The reverse 
process has also been observed, in which jammed cells begin to move 
again following a large drop in exogenously applied hydrostatic pressure 
(Park et al., 2015). The intriguing connection between collective motion 
in condensed cell populations and arrested motion in other phases of 
inanimate condensed matter like molecular and granular materials 
motivated the development of numerous theoretical modeling ap-
proaches (Bi et al., 2016; Bi et al., 2014; Farhadifar et al., 2007). A few 
successful and widely adopted categories of theoretical models include 
the self-propelled particle models in which model cells are discrete 

objects (Garcia et al., 2015; Henkes et al., 2011), vertex models in which 
the model tissues are confluent tilings and the degrees of freedom are the 
vertices of the tiles (Bi et al., 2014; Farhadifar et al., 2007; Bi et al., 
2015), or self-propelled Voronoi models in which the degrees of freedom 
are the centers of confluent Voronoi tilings (Bi et al., 2016). The 
convergence of theory and experiment has led to a growing under-
standing of solid-fluid transitions in tissues, though confluent tissues 
exhibit other collective behaviors that require further study, like giant 
density fluctuations (Zehnder et al., 2015a) and mechanical coupling to 
large-scale intercellular fluid transport mediated by gap junctions 
(Zehnder et al., 2015b; Zehnder et al., 2016; McEvoy et al., 2020; 
Schulze et al., 2017).

While the study of motion in condensed cell populations has been 
motivated most often by its physiological importance, much of the early 
research in this area emerged from the field of single-cell mechanics, 
building on our understanding of the integrated relationship between 
the forces cells generate, the material properties of their environments, 
and the elasticity of cells themselves (Discher and Janmey, 2005). For 
example, simultaneous measurements of cytoskeletal elasticity and cell 
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traction forces, complemented by studies of in vitro actin networks, 
showed that cell stiffness was controlled by motor-driven pre-stress in 
the cytoskeleton (Wang et al., 2002; Gardel et al., 2006). Completing 
this mechanical feedback loop, it was shown that the stiffness of the 
cell’s substrate can modulate cytoskeletal pre-stress levels (Kasza et al., 
2009). The experimental approaches and understanding developed in 
this area formed the foundation for careful studies of the traction forces 
exerted by cells within confluent cell islands on soft substrates, which 
uncovered how cells work together, each pulling on its neighbor and its 
substrate to maintain a state of collective tensile stress (Trepat et al., 
2009). Providing insight into both single-cell and monolayer mechanics, 
observations of how cells interact dynamically with mechanical 
boundary conditions were made in single-cell stretching studies, where 
cell stiffening was again connected to intracellular pre-stress (Fernández 
et al., 2006). It was found that, in response to an imposed stretch, cells 
exhibit an increasing contractile force followed by a relaxation, with the 
whole cycle taking about 2 h. This active contractile response to exter-
nally applied stretches, controlled dynamically by the well-established 
mechanical behaviors of single cells, suggests that cells in monolayers 
may stimulate one another by a similar mechanism, pulling back and 
forth on one another as illustrated in Fig. 1 A. Likewise, groups of cells 
could cooperatively stimulate one another over larger scales through 
collective contraction as illustrated in Fig. 1B,C; previous work showed 
that large neighboring patches of cells in monolayers cyclically expand 
and contract out of phase with one another (Zehnder et al., 2015b). 
Much like the crowding-dominated dynamics previously seen in 
monolayers as they approach a jammed state, we expect such coopera-
tive collective dynamics to depend on cell density because it would arise 
from cell-cell mechanical coupling. Likewise, we expect cell cohesive-
ness to play an important role in cell-cell mechanical stimulation. 
However, collective motion driven by cooperative cell-cell mechanical 
interactions has not been previously observed, and a systematic explo-
ration of the roles played by cell density and cell-cell cohesiveness in 
determining whether collective motion is cooperative or crowding- 
dominated has not yet been performed. The discovery of regimes of 
behavior in which cell migration speed grows with increasing cell 
packing density and cell cohesiveness would open the possibility to 
developing new interpretations of how collective motion in health and 
diseases arises in certain contexts and how to potentially control it.

Here we systematically explore the conditions under which cell 
motion in monolayers appears to be suppressed by crowding or stimu-
lated by cell-cell interactions. One of the control parameters we vary is 
cell density, and the two main variables we measure at different den-
sities are the average cell migration speed and a parameter that quan-
tifies cell shape, called the shape index. The other control parameter we 
vary is the level of cell-cell cohesiveness. By incubating monolayers in an 
E-cadherin antibody at many different concentrations we can reduce the 
levels of cell-cell cohesion (Vestweber and Kemler, 1985; Nakagawa 
et al., 2001). We find, at all levels of cohesiveness, a very strong 
instantaneous anti-correlation between cell density and shape index. By 

contrast, we often find a lag between cell density fluctuations and 
changes in average migration speed. Mapping out the average cell 
migration speed in a 2D space of cell density and cohesiveness, we find 
multiple distinct regions where increased cell density and cohesiveness 
can either stimulate or suppress cell motion in all four different com-
binations. One general trend in this landscape is that the region of 
increasing migration speed with increasing cell density occurs at low 
densities; suppressed motion with increased crowding dominates at high 
densities as the monolayers likely approach jamming. We also find that 
at the highest levels of cohesiveness and the lowest levels of cohesive-
ness, migration speed increases with increasing cohesion; at interme-
diate levels of cohesiveness cell speed decreases with increasing 
cohesiveness. Thus, two different transitions separate these regimes of 
behavior. Examining the landscape of shape index in this 2D space, we 
find that the transition from stimulated to suppressed motion at low 
levels of cohesion correlates to strong changes in shape index, while the 
transition at high levels of cohesion is not accompanied by a strong 
change in shape index. Taken together, our results reveal that both 
packing density and cell cohesiveness can either promote or suppress 
motion in monolayers and that these transitions sometimes involve 
transitions in cell shape, but not always.

2. Results and discussion

Previous work on jamming and glassy dynamics in cell monolayers 
demonstrated that crowding effects dominate cell motion at the higher 
end of cell densities. Thus, we expected that if a regime of motion 
dominated by cell-cell mechanical stimulation exists, it will be found at 
low cell densities, far below the jammed state, where the effects of 
crowding are reduced. To initiate experiments at the lowest possible 
confluent cell densities, we seed islands of Madin Darby canine kidney 
cells (MDCK) onto glass bottomed petri dishes at sub-confluent densities 
and allow them to fill in over the course of 12–24 h. Prior to cell seeding, 
the cells are coated with molecular collagen-1 to enable integrin- 
mediated attachment (see Methods). Once the monolayers have ach-
ieved confluence, the dishes are placed in a stage-top incubator on an 
inverted microscope and imaged in time-lapse for 24 to 48 h. We mea-
sure migration velocity fields using particle-image velocimetry (PIV) 
with PIVLab software, and we measure shape index and cell density 
using Cellpose image segmentation software (Stringer et al., 2021). The 
details of image processing and analysis can be found in sections 4.3 and 
4.4 and the specific results subsections, below. As seen previously in 
MDCK monolayers (Zehnder et al., 2015a; Zehnder et al., 2015b; 
Zehnder et al., 2016), images of the monolayers exhibit large spatially 
varying density fluctuations that visibly correlate with large-scale pat-
terns of motion (Fig. 2). While previous work showed how cell density 
fluctuations couple to the velocity field, that work was done within a 
narrow window of average cell density; here we investigate how the 
overall magnitude of this motion depends on both cell density and cell- 
cell cohesion.

Fig. 1. (A.) Cells contract in response to being stretched, suggesting that two neighboring cells in a monolayer could mechanically drive one another. Cells in 
mechanical equilibrium (i.) exhibit balanced contractile forces (black arrows). When forces become imbalanced (ii.), one cell contracts while the other is stretched 
(red arrows). Eventually, the stretched cell increases its contractile forces re-establishes balance (iii). Soon, the contracted cell relaxes while the stretched cell 
contracts (iv). The cycle then repeats. Applying this idea to patches of cells in a monolayer, two neighboring regions can start off in mechanical equilibrium (B.), but if 
one region expands (C, blue arrows) and the other contracts (C, red arrows), patches of cells may follow the cycle illustrated in (A.).
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2.1. Correlations between cell density, migration speed, and shape index

To map out how cell motion, cell shape, and cell density vary over 
time and correlate with one another, we focus on spatially averaged 
parameters; our previous work focused on the spatial patterns. We 
choose the spatially averaged magnitude of the velocity field as our 
metric of average migration speed, given by v(t) = 〈|v(x, y, t) | 〉x,y, 
where the absolute value is taken of each velocity vector, v, and the 
angle brackets correspond to the mean computed over spatial locations, 
x and y. We chose to take the mean after examining probability density 
functions of speed, finding a small amount of asymmetry but not enough 
to cause a significant difference between the mean and median (Fig. S1). 
For example, at the 5 h time-point in the data shown in Fig. 3 A, the 
mean speed is 21.9 μm/h, the median speed is 19.7 μm/h, and the 
standard deviation is 12.7 μm/h (averaged over 9 × 104 velocity vec-
tors). This standard deviation reflects the spatial variability in speed, not 
our confidence in the measurements; our control experiments consis-
tently exhibit less than 5 % RMS error in velocity measurements using 
PIVLab. Similarly, we choose spatially averaged shape index as our 

metric of cell shape, given by q(t) =
〈

qj(t)
〉

j
=

〈
pj(t)/

̅̅̅̅̅̅̅̅̅̅
Aj(t)

√ 〉

j
, where 

pj and Aj are the perimeter and area of the jth cell, and the average is 
taken over all cells. Once again, to provide an example at the 5 h time- 
point, the probability density function of qj exhibits some asymmetry, 
the mean of qj is 3.87, the median qj is 3.81, and the standard deviation is 
0.22 (averaged over 1238 cells). We determine the cell density by 
averaging over the cell-specific density, given by σ(t) =

〈
σj(t)

〉

j =
〈
1/Aj(t)

〉

j. As with the other parameters at the same time-point, the 
probability density function of σj is somewhat asymmetric, the mean of 
σj is 1177 cells / mm2, the median σj is 1217 cells / mm2, and the 
standard deviation is 417 cells / mm2 (Fig. S1). Our control tests of the 
results from Cellpose software reveal an error of approximately 3 % in q 
and 5 % in σ (Fig. S2). Thus, we have a high degree of confidence in the 
time-traces shown in Fig. 3.

The three traces shown in Fig. 3 of σ(t), v(t), and q(t) correspond to a 
monolayer with unmodified cohesiveness. For clarity, we do not display 
the standard deviation about the mean or any other metric of spatial 
variation at each time-point, given our findings about the distribution 
functions of these parameters. Examining σ(t) and v(t) simultaneously, 
we see the expected behavior at high densities, where speed mono-
tonically decreases as density monotonically increases, and crowding 

Fig. 2. (A.) Giant density fluctuations are directly seen in phase-contrast images of MDCK monolayer islands, where cells in some regions are several times larger 
than in neighboring regions. (B.) Flow patterns in the migration velocity fields appear to spatially correlate to the density fluctuations, reflecting the known 
connection between cell density and motion. (C.) By segmenting phase-contrast images using Cellpose software, we measure the number of cells per unit area in the 
field of view and the shape index of each cell.

Fig. 3. (A.) The three traces of spatially averaged parameters exhibit key trends such as decreasing v(t) with increasing σ(t) in the high-density range and increasing v 
(t) with increasing σ(t) in the low-density range. These two behaviors are consistent with crowding dominated motion at high densities and cell-cell stimulated 
motion at low densities. We also see that q(t) and σ(t) appear to be highly anticorrelated throughout the entire experiment. (B.) Cross-correlation functions of variable 
pairs show that indeed, q(t) and σ(t) are highly anticorrelated instantaneously, while σ(t) and v(t) do not exhibit a strong, clear, temporal relationship with one 
another, likely related to the two different regimes of behavior the cells exhibit in the two density ranges. (Errorbars represent the standard error about the mean, 
averaged across three separate replicate experiments.)
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dominates cell motion as the monolayer approaches a jammed state. By 
contrast, at low densities, we see both cell density and speed increasing 
with one another. This trend runs counter to crowding-dominated dy-
namics and may represent a regime of behavior where cells speed grows 
with increasing cell-cell stimulation. A large-scale fluctuation in cell 
density occurs in the time-period separating these two different cate-
gories of behavior. The detailed time-dependence of these parameters 
differs between monolayers, so to compare many different monolayers 
we eliminate time and investigate the direct relationships between σ, v, 
and q in parametric plots, later in the manuscript.

Given that the shape index trace, q(t), looks visually as if it would 
overlay the density trace, σ(t), if flipped vertically, we chose to compute 
a cross-correlation function between the two variables. A normalized 
cross-correlation function between two variables, A and B for example, 
can be computed by first computing a normalized fluctuation of each 
variable about its mean, given by δA(t) =
(
A(t) − 〈A(t) 〉t

)
/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅〈
A2(t)

〉

t − 〈A(t) 〉t
2

√

, where we have subtracted the 
mean and divided by the standard deviation of A. The cross-correlation 
function is then given by CAB(τ) = 〈δA(t)δB(t + τ) 〉t. Computed in this 
way, if at any time-shift, τ, it is found that CAB = 1, then A and B are 
perfectly correlated; if CAB = − 1, they are perfectly anti-correlated; if 
CAB = 0 they are uncorrelated. Examining the cross-correlation function 
between shape index and cell density, Cqσ (τ ), we see a strong negative 
peak at τ = 0, where Cqσ (0) = − 0.79 ± 0.09 (mean ± standard error, 
averaged across three separate replicate experiments). This result shows 
that at any instant in time, fluctuations in q and σ are roughly 80 % anti- 
correlated. We explore this striking relationship more in the next section 
by manipulating cell-cell cohesion. While a strong reciprocal relation-
ship between shape index and density is expected from previous 
experimental (Angelini et al., 2011) and theoretical (Bi et al., 2016) 
work on glassiness in monolayers, our result shows that even in the 
regime where motion is not dominated by crowding, the shape index 
and cell density are intimately linked and exhibit a similar reciprocal 
relationship. By contrast, from the density-speed correlation function, Cσ 

v(τ), we see that σ and v are far less anti-correlated instantaneously, 
where Cσ v(0) = − 0.35 ± 0.15 (averaged across three replicate experi-
ments). We do see a moderately strong anti-correlation peak at τ = 3.95 
h equal to − 0.66 ± 0.04. In this case, it means that the σ(t) trace is about 
66 % correlated with -v(t + 3.95 h) on average, or a relative increase in 
cell density leads to a corresponding drop in relative velocity about 4 h 
later. While we find this observation intriguing, in the investigations 
described next we could find no pattern in correlation strength or timing 
between σ and v when we varied cell-cell cohesiveness, but we did find 
the strong correlation between q and σ to be almost universal.

2.2. Dependence of speed and shape index on cell density and 
cohesiveness

In the vertex models of cell monolayer mechanics, cell-cell cohe-
siveness is one of the primary physical variables that control q, the shape 
factor; cells that are strongly cohesive are expected to exhibit higher q 
values, increasing their perimeters relative to their areas. The strong 
anticorrelation we see between q and σ thus motivates us to test for how 
the trend may change when cell-cell cohesiveness is suppressed. We 
interfere with cell-cell cohesiveness by treating cells with an E-cadherin 
antibody that is known to block the formation of adherens junctions, 
DECMA-1 (Vestweber and Kemler, 1985; Nakagawa et al., 2001). We 
seed MDCK islands as described above and exchange their standard 
media with media containing DECMA-1, incubating for 2 h before time- 
lapse imaging is commenced. Our experiments were performed at 10 
different DECMA-1 concentrations between 0 and 10 μg/mL. While we 
are interested in the trends that may emerge across this range, we also 
perform three replicate experiments at DECMA-1 concentrations of 0, 5, 
and 7 μg/mL to assess variability at individual DECMA-1 concentrations. 
For each experiment we performed the same correlation analysis as 

described in section 2.1, again finding that Cqσ exhibits a strong negative 
extremum at all DECMA-1 concentrations, with only one of the replicate 
experiments demonstrating a positive extremum (Fig. S3). Averaging 
across the 15 experiments that exhibit strong anti-correlations between 
q and σ, we find the mean of the minimum correlation value of be − 0.88 
± 0.14 (mean ± standard deviation, N = 15). Thus, on average, q and σ 
are about 90 % anticorrelated and exhibit relatively little variation 
across different conditions. By contrast, examining correlations between 
σ (t) and v(t), or between q(t) and v(t), we find the extrema of Cσ v(τ) and 
Cqv(τ) to be weaker and alternate between positively-correlated and 
anti-correlated behavior without any pattern or strong trend with 
varying DECMA-1 concentration. Thus, we focus on the strong anti- 
correlation between shape index and cell density, which can be 
directly seen in plots of q versus σ (Fig. 4 A). In the middle-range of cell 
densities, these q-σ curves shift upward with increasing DECMA-1 con-
centration. We only show a few datasets for clarity; later we summarize 
all the datasets. Contrary to our assumption that increased cell cohe-
siveness drives an increase in cell perimeter, this trend indicates that 
blocking cadherins can result in increased perimeter for a given cell area 
(Fig. 4a).

To systematically study how DECMA-1 interferes with cell cohesion 
and affects cell shape at different densities, we focus on a subset of 
datapoints from different experiments that can be grouped into single 
densities, σ, and plotted versus DECMA-1 concentration, c. Some 
monolayers never reached the higher densities while others could not be 
seeded confluently at low densities; the data displayed here represents 
the widest range of σ we could achieve at each DECMA-1 concentration. 
We find that at the highest cell density where cells are approaching or 
may be in a jammed state, the shape index is the lowest and is relatively 
insensitive to DECMA-1 treatment, having an average value of 3.74 ±
0.02 (mean ± standard deviation), approaching the shape index of 
hexagonal packing, q = 3.72. At a slightly lower density we still see that 
the shape index is also relatively insensitive to DECMA-1 treatment, 
rising to an average value of 3.79 ± 0.02. We believe that cell crowding 
dominates in this high-density regime, pushing cells together toward 
hexagonal packing, regardless of their level of cohesiveness. In the 
middle range of densities, σ = 2050 mm− 2, we see that q rises with 
DECMA-1 concentration. This change in behavior occurs close to q =
3.81, where a rigidity transition is predicted by the vertex model (Bi 
et al., 2015). Finally, at the lowest densities we see that the q-c curve 
continues to shift upward and develops a peak at 7 μg/mL. The rise in q 
with both decreasing density and increasing DECMA-1 may be a 
consequence of reducing physical constraints on the cells, facilitating 
increased shape fluctuations. The emergent peak in the q-c curves, 
however, shows that excessive reduction in cell cohesion reduces shape 
fluctuations, consistent with the possibility that cell cohesion facilitates 
cell-cell mechanical stimulation in this low-density regime (Fig. 4b).

Since we found unexpected relationships between q, σ, and c, we 
chose to investigate how v depends on the same combinations of σ and c, 
now plotting v instead of q. We expected v and q to follow similar trends, 
given the well-established connection between shape and motion in 
studies of jamming and glassy behaviors in monolayers. Indeed, we find 
that the v-c curves peak near 7 μg/mL, comparable to how q depends on c 
and σ. Thus, in this regime of reduced cohesiveness, the faster moving 
cells are more irregularly shaped in general. By contrast, in the regime of 
higher cohesiveness between c = 0 and 4 μg/mL, speed strongly de-
creases with increasing c, even though the q-c curves are relatively flat in 
this regime; cells move faster with increased cell-cell cohesion without a 
dramatic evolution in shape (Fig. 4c). The v-σ curves also exhibit mul-
tiple regimes of behavior, depending on the concentration of DECMA-1. 
At c = 0, where cell-cell cohesion is not manipulated, we see the data-
points reflecting the behavior observed in Fig. 3a, where v rises with 
density, reaches a peak, then drops as density rises further. Similarly, at 
c = 7 μg/mL where the speed peaked in the low-density v-c curves, we 
also see a peaked shape in the v-σ curve. At intermediate DECMA-1 
concentrations, we see that the v-σ curves change only weakly or 
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monotonically decrease with increased cell density (Fig. 4d). Together, 
these data indicate that the cell migration speed forms a hilly 2D land-
scape on the c-σ plane, which we explore next.

2.3. Transitions between cooperative and crowding-dominated motion

Our analysis of how cell migration speed and shape index depend on 
both cell density and the concentration of added DECMA-1 reveals that 
multiple regimes of behavior exist where v or q can rise or fall with 
increasing σ or c, depending on location in σ-c space. A scatterplot of the 

Fig. 4. (A.) While q(t) and σ(t) can vary erratically in time, a parametric plot of q versus σ shows that the two variables are generally anti-correlated. In the middle- 
density range, the q-σ curves shift upwards with increasing DECMA-1 concentration. (B.) The increase in q with DECMA-1 concentration, c, is seen in the middle 
density range of σ = 2050 cells/mm2. At higher densities we see no strong rise of q with c; at lower densities we see a peak emerge near c = 7 μg/mL. (C.) At the same 
concentrations and cell densities as those shown in panel B (B and C share a legend), we see that cell speed first decreases with increasing c, then exhibits a local 
maximum near c = 7 μg/mL. (D.) Without manipulating cell cohesiveness (c = 0 μg/mL) we see the average cell migration speed rise then fall with increasing cell 
density (datapoints are mean ± standard deviation across three replicate experiments). Interfering with cell cohesion by adding DECMA-1 has a strong effect on the 
relationship between v and σ; examining v on the σ-c landscape provides a clearer picture.

Fig. 5. (A.) A scatterplot of cell migration speed, v, versus cell density, σ, and DECMA-1 concentration forms a hilly landscape. The contours correspond to the best fit 
function made from of the sum of two 2D Gaussians. (B.) A heat map of the best fit function from panel A, re-mapped onto the cohesive index, ψ. The red contours 
follow the ridges and valleys of the landscape. (C.) A scatterplot of cell shape index, q, versus σ and DECMA-1 concentration also forms a hilly landscape, with 
reduced variation at low DECMA-1 concentrations. The contours correspond to the best fit function as used in panel A. (D.) A heat map of the best fit function from 
panel C, re-mapped onto ψ. The black contour follows the q-ridge that runs mostly along the σ direction and the red contour is the corresponding ridge from panel B, 
showing that the v border correlates to the q border in this range of ψ. The “X/X“notations in panel B denote the different regimes of cell dynamics in the monolayer, 
where the first symbol denotes an increase or decrease in v with σ and the second symbol denotes an increase or decrease in v with ψ.
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v datapoints in the σ-c plane shows that the data form two hills centered 
around the densities and DECMA-1 concentrations where peaks were 
observed, above. To gain intuition about the shapes of these hills and to 
estimate the contours that separate different regimes of behavior, we fit 
a smooth 2D function through the data points. We find that the data-
points are well fit by the sum of two 2D Gaussian functions, each having 
different widths along their two orthogonal axes; we allow the centers, 
widths, and amplitudes of each Gaussian to vary freely as the error is 
minimized, resulting in R2 = 0.86. Here, we are not interested in the 
fitting parameters themselves, but rather we seek a smooth 2D surface 
that captures the landscape the datapoints lay on (Fig. 5 A).

To provide a clearer view of the migration speed landscape on the σ-c 
plane, we create a heat-map from the best fit function (Fig. 5B). As part 
of this process, we map the c-axis to an adhesive index given by ψ = (cmax 
– c)/cmax, where cmax = 10 μg/mL. As a result, the maximal cohesive 
index of ψ = 1 corresponds to c = 0 μg/mL, and the minimal cohesive 
index of ψ = 0 corresponds c = 10 μg/mL. The two hills are easily seen in 
this representation, one with a ridge that runs along σ at ψ = 1, which 
corresponds to untreated monolayers having maximal cohesiveness. 
Along this σ-oriented ridge we see the rise and fall in v, as seen in Fig. 4D. 
The other hill in this landscape occurs at around ψ = 0.27, also rising 
and falling with increasing σ, close to the c = 7 μg/mL datapoints shown 
in Fig. 4D. Examining this landscape along the ψ direction, the same 
features are seen as those shown in Fig. 4C at different densities. Thus, 
the smooth landscape created by our fitting procedure captures the 
complexity seen in the many datasets shown in Fig. 4, but in a way that is 
easier to visually grasp.

To identify the boundaries between the different regimes of behavior 
separated by the hills on the ψ-σ plane, we compute the gradient of v 
(ψ ,σ) and identify the contours along the ridges and valleys. Overlaying 
these contours on the heat map, we see that there are four different 
categories of behavior: (1) increasing v along σ and ψ, denoted as “+/+”; 
(2) increasing v along σ and decreasing v along ψ , denoted as “+/− ”; (3) 
decreasing v along σ and increasing v along ψ, denoted as “− /+”; (4) 
decreasing v along σ and ψ , denoted as “− /− ”. We find that behaviors 3 
and 4 both occur on the high-density side of the sigmoidal contour that is 
oriented along the ψ-axis; these behaviors all exhibit a decrease in cell 
motion with increasing density, as seen previously in studying glassiness 
and jamming in monolayers. By contrast, behaviors 1 and 2 both exhibit 
an increase in cell motion with increasing σ and lay on the low-density 
side of the contour; these behaviors appear to reflect a regime where 
cells increasingly stimulate one another through increased interactions.

Examining the v(ψ,σ) landscape along the ψ-axis, we again see re-
gimes that appear to either suppress or promote motion with increased 
cohesiveness. At the lowest and highest ranges of ψ , cell migration speed 
increases with cell cohesiveness; in the middle range of ψ , cell migration 
speed decreases with cell cohesiveness. To gain insight into the mech-
anism that underlies the apparent reentrant behavior seen along the 
ψ-axis, we examine q(ψ,σ), the shape index landscape in the ψ-σ plane. 
We follow the same plotting and fitting procedure we performed in 
analyzing the v(ψ,σ) landscape (Fig. 5C,D). While, empirically, we see 
only one big hill in the landscape (Fig. 4B), we fit the data to the same 
double-Gaussian function, finding a good fit having R2 = 0.95.

The fitted surface indeed exhibits a much weaker bump at high 
cohesive index, so we focus our analysis on the larger peak in the lower 
range of ψ. Computing the gradient of q(ψ,σ) in this lower range of ψ , we 
find no ridges or valleys running along the ψ-axis, but we identify a ridge 
that runs along the σ-axis that overlays almost perfectly with the cor-
responding ridge in v(ψ ,σ) space. The strong correlation between q and v 
along the ψ-axis in this range indicates that the physics of packing and 
geometry in monolayers may play a significant role in the transitions 
between different regimes of cell migration at moderate levels of cell- 
cell cohesion. By contrast, within the higher range of cohesive index, 
cell shape does not exhibit major changes with increasing ψ , yet v grows 
dramatically. Thus, within the high-cohesiveness limit, we believe cell 
migration speed is enhanced dominantly by a mechanism of cell-cell 

stimulation. Finally, we note that the q(ψ,σ) landscape seems to al-
ways slope downward with increasing cell density without any peaks 
along σ. This behavior is consistent with the strong, nearly universal, 
anti-correlation between q and σ we discussed earlier.

3. Conclusion

Here we have investigated how cell density and cell-cell cohesiveness 
influence cell motion in monolayers, seeking to identify regimes where 
these parameters serve to either promote or suppress cell motion. We 
were motivated by two major historical threads of thought in the broad 
field of cell mechanics. First, the foundational ideas about how cells 
sense and respond to the material properties of their surroundings 
(Discher and Janmey, 2005) while actively and slowly responding to 
externally applied forces (Fernández et al., 2006) led us to hypothesize 
that cells can stimulate one another in monolayers, potentially driving 
cooperative collective motion. Second, the extensively explored study of 
arrested motion in monolayers controlled by the physics of jamming, 
glassiness, packing, and geometry led us to ask how the trend toward 
arrested motion and jamming with increased packing density of cells 
could act antagonistically against motion promoted by cell-cell stimu-
lation. By studying how the average cell migration speed and the 
average cell shape factor depend on both cell packing density and cell 
cohesiveness in monolayers, we have constructed a landscape that 
shows how cooperative interactions and crowding-dominated in-
teractions create multiple regimes of cell monolayer dynamics, where 
different interactions appear to dominate.

Here we used the concentration of DECMA-1 as a metric of cell-cell 
cohesiveness. We recognize that blocking E-cadherin may produce in-
direct responses in the monolayer, and that it is preferable to connect 
DECMA-1 concentration to a quantitative level of cell-cell cohesion 
through direct measurement. As a possible alternative indirect metric, 
we measured the velocity-velocity correlation length for each experi-
mental condition reported here, but found the average migration speed 
to exhibit highly erratic variation and no clear patterns when plotted 
against this correlation length. Thus, using DECMA-1 concentration as 
our cohesion metric, we find that confluent monolayer islands exhibit 
two regimes of motion in different ranges of cell density across all levels 
of cohesiveness. At low cell densities the migration speed, v, increases 
with increasing cell density, σ, while at high densities v decreases with 
increasing σ. The crossover between these two classes of behavior de-
pends on ψ , the level of cell-cell cohesiveness. Reducing ψ shifts the 
boundary between these behaviors in the direction of lower σ. While this 
boundary is not the same as the boundary separating fluid from solid 
jammed phases found in previous work, we were curious whether this 
boundary occurs within a range of meaningful q values. Focusing on the 
regime of ψ where q seems to play the biggest role, we identified the 
values of v and q that lay on this boundary up to ψ = 0.65. A plot of v 
versus q along this contour revealed a linear relationship that terminates 
exactly at the point v = 0 and q = 3.81 (Fig. S4). This is where a rigidity 
transition occurs in the vertex model (Bi et al., 2015), where unjamming 
occurred in experiments on lung epithelia (Park et al., 2015), and where 
the glass transition boundary terminates in the self-propelled Voronoi 
(SPV) model (Bi et al., 2016) at v = 0. However, in contrast to the 
previous investigations, the boundary we have identified separates two 
classes of behavior that both occur in a fluid-like regime; arrested mo-
tion and jamming occurs at much higher cell packing densities where q 
is much lower. For example, our boundary mapped into v-q space lays in 
a q range higher than 3.81 and slopes in the opposite direction from the 
glass transition boundary predicted by the SPV model. Our findings 
show that even in the fluid-like state in monolayers, there are multiple 
regimes of motion where migration speed can increase or decrease with 
cell density and cell cohesiveness.

Finally, across the cell densities explored here, we find that cell 
cohesiveness influences migration velocity in unexpected ways. We 
originally hypothesized that weakening cell-cell cohesion with the 
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addition of DECMA-1 would inhibit the ability for cells to stimulate one 
another, possibly through out-of-phase cycles of contraction; we ex-
pected a monotonic decrease in v with decreasing ψ . We find this trend 
to be the case in the high end of the ψ-axis, where decreasing cell 
cohesiveness from the untreated level reduces migration speed to a local 
minimum. This behavior does not correspond to a strong change in cell 
shape, which leads us to believe it is related to a reduction in cell-cell 
stimulation, comparable to the cooperative regime we see at low cell 
densities. While these behaviors are consistent with our hypothesis that 
cells in monolayers stimulate one another through mechanical forces, 
they deviate from current understanding and could arise from additional 
underlying mechanisms that we have not yet considered. Fortunately, 
current theoretical understanding and recent experimental results pro-
vide guidance for interpreting some parts of the v(ψ,σ) landscape. For 
example, we did not anticipate a rise in migration speed followed by a 
second reduction as cell cohesiveness is further reduced. Since this trend 
is also seen in the shape index landscape within the same range of ψ, we 
expect that motion in this regime could be captured by existing theories 
in which q is one of the dominating parameters that determines the 
collective dynamic state of a monolayer. We note that within this range 
of ψ , we see q vary widely between approximately 3.7 and 4.1, and at the 
highest densities within this regime, v becomes small, so the monolayer 
may exhibit signs of crossing into a jammed or otherwise arrested state. 
Indeed, our findings in this region of the σ-ψ plane appear to align with 
previous work on airway epithelia where it was found that increased 
cell-cell “tugging” promoted unjamming, which correlates to an 
increased migration speed and shape index (Park et al., 2015). Outside 
this region of the σ-ψ plane, our findings show that even within the fluid- 
like state of monolayer dynamics, there are multiple regimes of motion 
where migration speed can increase or decrease with cell density and 
cell cohesiveness. We believe these findings could help provide physical 
insight into transitions that occur in tissues associated with density 
change, such as the epithelial to mesenchymal transition (EMT) or the 
mesenchymal to epithelial transition (MET) (Thiery, 2002). While the 
EMT and MET have recently been thought of as transitions between fluid 
and solid states (Nnetu et al., 2012; Haeger et al., 2014; Sadati et al., 
2013), our results show that a second transition could occur even within 
the fluid-like state and provide guidance on how to drive cells toward or 
away from a jammed state. The hilly landscapes of migration speed and 
shape index on the cohesiveness-density plane show that, counter to our 
intuition, sometimes increasing density or cohesiveness causes cells to 
move more rapidly rather than slowing them down.

4. Materials and methods

4.1. Cell culture and cell island seeding

Madin Darby canine kidney (MDCK) epithelial cells are cultured in 
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10 % 
fetal bovine serum (FBS) and 1 % penicillin streptomycin, maintained at 
37 ◦C in a 5 % CO2 atmosphere. To prepare cell islands for experiments, 
the cells are grown to approximately 70 % confluence, washed in 
phosphate buffered saline (PBS), and trypsinized. Once detached and 
dissociated, the trypsin is inactivated by 10-fold dilution with full 
media. The cells suspension is concentrated by gentle centrifugation and 
supernatant media exchange to achieve a chosen seeding density. A 50 
μL drop of the solution is deposited near the center of a glass bottomed 
petri dish coated with molecular collagen-1 and incubated for 30 min to 
allow cell attachment. 2 mL of fresh media is added to the dish, which is 
then incubated for an additional 12–24 h before commencing time-lapse 
imaging.

To prepare dishes coated with molecular collagen, 35 mm culture 
dishes having microscope coverslips as their base (Cellvis, product #: 
D35–20-1.5H) are exposed to 4.9 W UV light for 45 min. An acidic so-
lution of molecular collagen at a concentration of 6 mg/mL ((Nutragen 
Type I Collagen Solution, Advanced Biomatrix 5010) is diluted with 

milli-Q water to a concentration of 0.38 mg/mL. 175 μL of the diluted 
collagen solution is pipetted onto the coverglass region of the dish and 
left at room temperature for 30 min. After incubation, the solution is 
removed and the dish is washed 2× with PBS buffer. The PBS buffer is 
removed and the dish is air dried before cell islands are deposited.

4.2. Microscopy

To perform time-lapse imaging on monolayer islands, the samples 
are placed in a stage-top incubator on an inverted Nikon Ti Eclipse 
microscope. The sample is maintained at 37 ◦C in a 5 % CO2 atmosphere. 
Phase-contrast images are collected using a 10× objective at a magni-
fication factor of 0.92 μm per pixel. Images are collected every minute 
for 24 to 48 h. The samples are kept in focus using automated hardware.

4.3. Velocity field determination

We perform particle image velocimetry (PIV) to measure the cell 
migration velocity fields. Using PIVLab software, three levels of recur-
sive fast Fourier transforms are computed on every sequential pair of 
images, yielding approximately 90,000 velocity vectors per frame with a 
spatial resolution of 4 pixels between vectors. We find that short time-
scale, sub-cellular motions add erratic fluctuations to the velocity vec-
tors. Since we are interested in longer-timescale migratory motion, a 30- 
frame running boxcar average is performed on each vector to eliminate 
these short-time-scale fluctuations, as was done in previous work 
(Angelini et al., 2011; Zehnder et al., 2015b).

4.4. Image segmentation

We measure the shape and projected area of each identified cell by 
segmenting images of the monolayers islands using the Cellpose 2.0 
software. Cellpose 2.0 uses a deep learning algorithm to perform image 
segmentation based on pre-trained or manually trained models (Stringer 
et al., 2021). We iteratively trained our own model to effectively 
segment phase contrast images of MDCK monolayers exhibiting a wide 
range of shapes and densities. Starting with the pretrained “cyto2_cp3” 
model, we segmented a small region of interest approximately 150 μm 
× 150 μm in size. After performing manual corrections to the segmen-
tation, we use the original image and the segmented image to create a 
new model, trained over 100 epochs, that we then apply to a new image. 
We then use the two original images and the two segmented images to 
create and train another model. By repeating this process 32 times on an 
increasing diversity of images, iteratively building up a collection of 
validated segmented images and sequentially updated models, we arrive 
at a final model that is able to accurately segment all the images we 
collect in our experiments. We use custom written MATLAB code to 
determine the shape and area of each cell.
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Figure S1. We examine how individual measurements of migration speed, vj, shape index, qj, and cell 

density, j, are distributed by creating discrete probability density functions (PDFs) of the three variables. 

Each PDF is created by generating a histogram of constant bin-width and normalizing by both the bin-width 

and the total number of counts in the histogram. We find that all three PDFs are somewhat asymmetric, 

exhibiting tails at higher values of the independent variables. However, the asymmetry does not shift the 

mean value far from the median. (Panel A: p(vj) is generated from 89,873 speed measurements. Panels B,C: 

p(qj) and p(j) are generated from 1238 measurements of shape index and local density. 



Figure S2. (A.) We check the segmentation accuracy of our custom-trained Cellpose 2.0 model by fixing 

and fluorescently staining monolayers and comparing results from fluorescence images to results from 

phase-contrast images. Segmentation maps using fluorescence images of nuclei (magenta) and E-cadherin 

(green) are made by employing pre-trained models. Segmentation maps using phase-contrast images are 

made using our custom-trained model. The details of our algorithm can be found in the Methods section of 

the main manuscript. (B.) Direct visual comparison shows that our custom-trained model for analyzing 

phase-contrast images produces cell-edges that overlay well with those produced from the fluorescence 

data and the pre-trained model (B). Yellow pixels correspond to the two segmentation maps overlaying; 

green pixels lay on the edges produced by phase-contrast analysis; red pixels lay on the edges produced by 

fluorescence image analysis. We find a 3% in the average shape determined from phase-contrast images, 

relative to that determined from fluorescence images. We find a 5% error in the average cell density 

determined from phase-contrast images, relative to that determined from fluorescence images. 

 

Figure S3. We examined the cross-correlation functions of all combinations of the three dynamic variables 

studied here: shape index, q(t); cell density, (t), and migration speed, v(t). To summarize our findings, here 

we plot the values of the extrema found in the correlation functions, denoted by C. We find that in 15 out 

of 16 experiments, Cq exhibits a strong negative peak, many of which lay close to a value of -1 (lower 

dashed line). We are not confident that that any pattern is found in the other cross-correlation functions. 



Figure S4. The landscape defined by v(,) exhibits a sigmoid-shaped boundary along the -axis that 

separates a regime where v increases with  from a regime where v decreases with . To test whether this 

boundary occurs within a range of meaningful q values, we extracted the corresponding points from the 

q(,) landscape and plotted the resulting q-v contour. We truncated the contour above  = 0.65 since this 

is where a different regime of behavior emerges. Following the transition boundary from  = 0 to  = 0.65, 

we see v and q rise and fall with one another. A best fit line to this q-v curve terminates at the point v = 0 

and q = 3.81. While the monolayer in part of the - plane is in the fluid state, the termination of 

the extrapolating line at this point in q-v space indicates to us that the system may be approaching 

the rigidity transition predicted by the vertex model at both ends of the contour. 
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