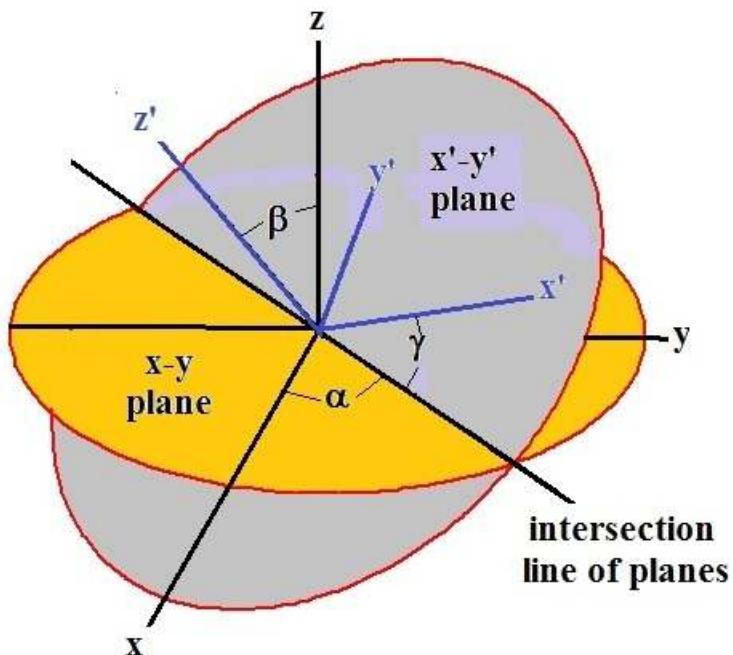


EULER ANGLES AND 3D ROTATIONS BY MATRIX METHODS

In the previous note we discussed how to rotate figures in 2D using a standard 2×2 Rotation Matrix involving just a single angle θ . In 3D the rotation problem becomes more complicated since it will now generally involve three independent angles α , β , and γ in order to uniquely specify how two orthogonal Cartesian coordinate systems $[x, y, z]$ and $[x', y', z']$ with a common origin relate to each other. One way to relate the two coordinate systems is by the use of Euler Angles which are denoted in the literature by either $[\varphi, \theta, \psi]$ or $[\alpha, \beta, \gamma]$. Their definitions are as shown in the following graph-

DEFINITION OF EULER ANGLES



The first Euler Angle α is measured by a counterclockwise rotation about the z axis of the x axis. This produces an intersection line between the old x - y plane and the new x' - y' plane. Next we define the second angle β as the angle produced by a counterclockwise rotation about the intersection line of the z axis. Finally a third Euler Angle γ is the angle between the intersection line and the new x' coordinate.

Although these Euler Angles can always be used to find the image of point of $P(x, y, z)$ in the new coordinate system, it is often easier to just simply use a bit of mental visualization and make one or two successive rotations using standard 3×3 Rotation Matrixes. This second approach (which is really a disguised form of Euler Angles) involves the three Rotation Matrixes-

$$M_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}, M_y(\theta) = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix} \text{ and } M_z(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Here the subscript indicates the axis about which one is rotating. The rotation angle θ is considered positive when measured in a counterclockwise manner when looking toward the coordinate origin. Note the sign change in the $\sin(\theta)$ term in the $M_y(\theta)$ matrix.

To demonstrate the rotation procedure consider a standard cube of side-length 2 centered on the origin and whose faces are parallel to the coordinate axes. Suppose we wish to rotate this cube in such a way that the front vertex at [1,1,1] ends up along the vertical z axis and the z axis coincides with the diagonal through this rotated cube. We should be able to accomplish this by two successive rotations as we now show. First rotate the cube about the x axis by $\pi/4$ rad. The matrix procedure is as follows-

$$M_x X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \sqrt{2} \end{bmatrix} = X'$$

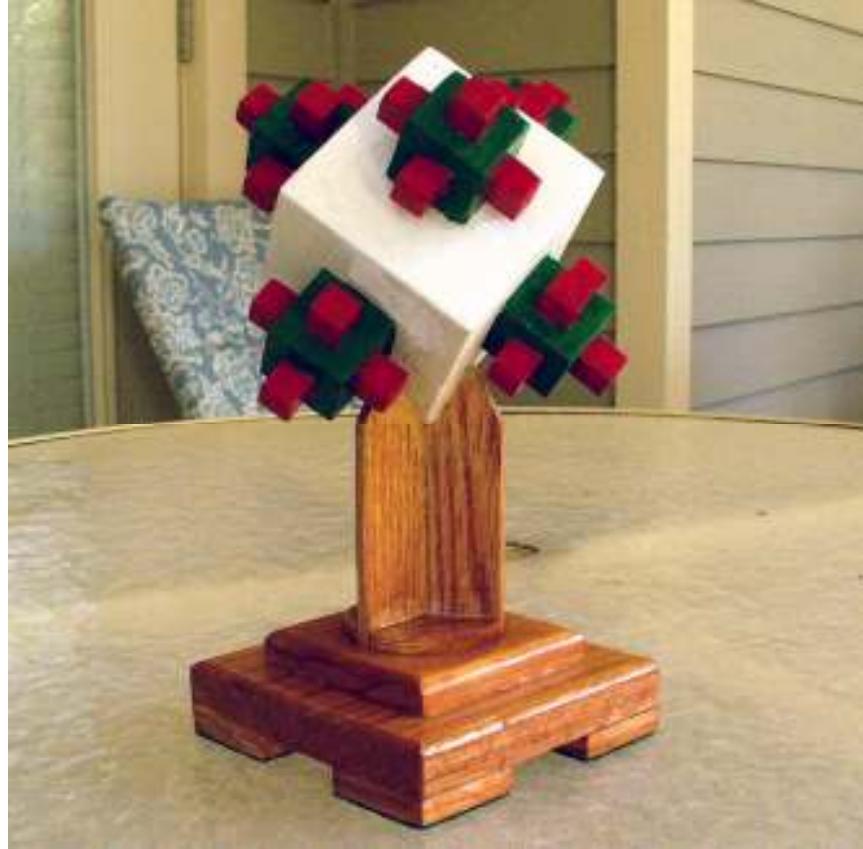
It converts point [1,1,1] to [1,0, $\sqrt{2}$]. Next we perform a second rotation of $\theta = -\arctan(1/\sqrt{2})$ about the y axis which should bring the vertex point onto the z axis. The second rotation, this time about the y axis, yields-

$$M_y X' = \begin{bmatrix} \sqrt{2/3} & 0 & -1/\sqrt{3} \\ 0 & 1 & 0 \\ 1/\sqrt{3} & 0 & \sqrt{2/3} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ \sqrt{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \sqrt{3} \end{bmatrix} = X''$$

This result means that the original vertex of the cube at [1,1,1] is now located at [0,0, $\sqrt{3}$]. By replacing the matrix [1,1,1] by [x,y,z] we can readily find the transformations for the remaining seven vertexes of the cube. We summarize things in the following table-

[x,y,z]	[x',y',z'], $\theta = \pi/4$	[x'',y'',z''], $\theta = \arctan[1/\sqrt{2}]$
[1,1,1]	[1,0, $\sqrt{2}$]	[0,0, $\sqrt{3}$]
[1,1,-1]	[1, $\sqrt{2}$,0]	[$\sqrt{2}/3$, $\sqrt{2}$, $1/\sqrt{3}$]
[-1,1,-1]	[-1,0, $\sqrt{2}$]	[- $2\sqrt{2}/3$,0, $1/\sqrt{3}$]
[-1,1,1]	[-1,0, $\sqrt{2}$]	[0,0, $\sqrt{3}$]
[-1,-1,1]	[-1,- $\sqrt{2}$,0]	[$\sqrt{2}/3$, $-\sqrt{2}$, $1/\sqrt{3}$]
[1,-1,1]	[1,- $\sqrt{2}$,0]	[$\sqrt{2}/3$, $-\sqrt{2}$, $1/\sqrt{3}$]
[1,-1,-1]	[1,0,- $\sqrt{2}$]	[$2\sqrt{2}/3$,0,- $1/\sqrt{3}$]
[-1,-1,-1]	[-1,0, $\sqrt{2}$]	[0,0,- $\sqrt{3}$]

A practical application of the results in this table is finding the angle a support column should be cut to fit a cube snugly under conditions where the cube's diagonal points straight upward. I ran into this problem several years ago while constructing a fractal cube in my workshop. Here is a photo of the finished wooden configuration-



The angle along an edge can be determined by taking the dot product between vectors $V_1=i[\sqrt{2}/3]-j[\sqrt{2}]+k[1/\sqrt{3}-\sqrt{3}]$ and $V_2=-k$. It yields-

$$\theta_{edge} = \cos^{-1} \left\{ \frac{(\sqrt{3} - \frac{1}{\sqrt{3}})}{\sqrt{\frac{2}{3} + 2 + (\frac{1}{\sqrt{3}} - \sqrt{3})^2}} \right\} = \cos^{-1} \left(\frac{1}{\sqrt{3}} \right) = 54.7356 \text{ deg}$$

with respect to the vertical. When determining the column cut for a snug fit to a face, as we have done in the model shown, the angle becomes smaller with a value of-

$$\theta_{face} = \cos^{-1} \left\{ \frac{(\sqrt{3} - \frac{1}{\sqrt{3}})}{\sqrt{\frac{2}{3} + (\sqrt{3} - \frac{1}{\sqrt{3}})^2}} \right\} = \cos^{-1} \left(\frac{\sqrt{2}}{\sqrt{3}} \right) = 35.2643 \text{ deg}$$

I remember at the time getting this angle by trial and error using a piece of cardboard and scissors.

In the above rotation calculations one can combine the separate matrix operations into a single evaluation which, for three successive rotations about each of the three axes, would read-

$$M_z M_x M_y X = X'''$$

As an example, consider what happens to the point P[2,0,0] upon three successive rotations about the x, y and then z axis. We take the rotation angle to be $\theta = \pi/4$ for each rotation. This produces-

$$\begin{bmatrix} a & -a & 0 \\ a & a & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & 0 & a \\ 0 & 1 & 0 \\ -a & 0 & a \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & a & -a \\ 0 & a & a \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -\sqrt{2} \end{bmatrix} \text{ where } a = 1/\sqrt{2}$$

That is, the three rotations move point [2,0,0] to [1,1,-sqrt(2)]. Note that these operations do not commute. If one were to take the different operation order $M_y M_z M_x X$ the final point would be located at [1,sqrt(2),-1].

As a final example, we consider the plane $x+y+z=1$ and try to cast into a form where the plane becomes oriented parallel to the x-y plane. To accomplish this we first rotate things about the x axis with an angle for which $\tan(\theta) = dz/dy = -1$. This rotation produces-

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ (y-z)/\sqrt{2} \\ (y+z)/\sqrt{2} \end{bmatrix} = \begin{bmatrix} x \\ (1-x-2z)/\sqrt{2} \\ (1-x)/\sqrt{2} \end{bmatrix}$$

for any point on the plane. The result tells us that the next rotation should be about the y axis with the angle $\theta = -\arctan(1/\sqrt{2})$. Doing so yields the two rotation result-

$$\begin{bmatrix} \sqrt{2/3} & 0 & 1/\sqrt{3} \\ 0 & 1 & 0 \\ 1/\sqrt{3} & 0 & \sqrt{2/3} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} (2x-y-z)/\sqrt{6} \\ (y-z)/\sqrt{2} \\ 1/\sqrt{3} \end{bmatrix}$$

for any point on the plane. The result clearly shows that we have a new plane $z=1/\sqrt{3}$ which is indeed parallel to the x-y plane.

May 2013