
  
 

 
                      PROPERTIES OF THE POSITIVE INTEGERS    
 
The first introduction to mathematics occurs at the pre-school level and consists of 
essentially counting out the first ten integers with one’s fingers. This allows the 
individuals to slowly recognize the abstract character of whole numbers given by 
the sequence- 
 
         R={1,2,3,4,5,6,7,8,9,10,11,….2n,2n+1}    with n=1,2,3,etc 
  
The kinder-gardeners soon recognize that two apples plus three apples makes five apples 
and that apples can be replaced by anything else and the answer will still be five of the 
anything else. As the years pass the elementary school children learn about the concepts of  
addition, subtraction, division, and multiplication of integers and non-integers. Certainly by 
the time they reach middle school they will be able to manipulate collection of integers to 
obtain equivalent expressions. They will also recognize the difference between even (2n) 
and odd (2n+1) integers and the concept of zero.  By the time high school rolls around 
students will have mastered the concepts of algebra and introductory calculus all arising 
from their early experience of number counting by fingers. In addition many of the high 
school students will have noted that the integers can  be broken into prime numbers and 
composite number. A prime number refers to any integer which can be divided only by 
itself and one while a composite number consists of the product of several primes taken to 
specified powers. The above grouping of integers N breaks into the prime sequence- 
 
    P={2,3,5,7,11,13,19,23,29,31,37,41,43,47,…}   
 
and the composite sequence- 
 
    C={0,4,6,8,9,12,14,15,16,18,20,21,22,24,25,26,…} 
 
If we neglect the first two integers in the P sequence, we note that all the remaining 
integers are odd and have the generic form 6n+1 or 6n-1,  so that for instance 41=6(7)-1  
and 19=6(3)+1. Thus one can state that – 
 
  A necessary but not sufficient condition that a number N>3 be a prime is that 6n1 
 
The  reason this law is not sufficient is that certain composite numbers such as 25 also 
satisfies 6(4)+1. An improved way to identify primes is by means of the number fraction- 
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We first found this point function about a decade ago. It is easy to evaluate since the sigma 
function (n) of number theory is a well known quantity in most mathematics computer 



  
 

programs. The interesting property of f(N) is that it vanishes only when N is a prime , but 
remains positive when N is a compound number. Because of the presence of N in the 
denominator of its definition its value remains on average below f(N)=1. The few f(N)s 
which exceed f(N) of about 1.4 I have termed super-composites . They typically contain 
products of 2 and 3 taken to specified powers. A graph of the number-fraction in the range 
10<N<80 follows- 
 

               
 
We see that only the prime numbers have vanishing f(N). The remaining points are either 
super-composites such as N=48, 60, and 72, or they are composites composed of two(semi-
primes), three, etc prime products making up N. The value of f(35)=12/35 indicates that 
35=5 x7 is a composite(semi-prime) consisting of the product of two primes 5 and 7 taken 
to the first power each. The number N=2n is always a composite since f(2n)=[1-1/2n-1]. It 
will never become a super-composite since it approaches one as N goes to infinity. A slight 
variation on this number produces the Mersenne Numbers- 
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On setting n=17 we get N=131071  and f(N)=0 . So 217-1 is a prime. Going to the much 
larger number – 
 
               2127-1=170141183460469231731687303715884105727 
 



  
 

we again find f(N)=0 so it is also a prime number. 
 
Pierre Fermat proposed in the sixteen hundreds that the number – 
 
                                  F=2(2^n)+1  
 
is a prime number for all positive n. Leonard Euler however proved him wrong for the 
value of n=5,  although the n=1 through 4 clearly are primes. Euler struggled with this 
problem for months finally being able to actually factor F=232+1 into its components. 
Using the number fraction we can find the composite nature of F at n=5 simply by noting 
that- 
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Since f(N) does not vanish it must be a composite. Note to prove this we actually never 
needed to find the semi-primes components- 
 
                          4294967297=(641)(6700417) 
 
As already mentioned, super-composites have the form- 
 
                N=2a3b5c…  where    a>b>c 
 
and an f(N)>1.4. Such numbers become particularly conspicuous when N gets large. We 
show you here an example for the super-composite N=17280- 
 

        



  
 

Note here that this super-composite  stands head and shoulders above its immediate 
neighbors. There are no primes in the range shown, however, there are multiple semi-
primes such as 17273=23x751,17279=37x467,17281=11x1571 and 17287=59x293. Also 
we have composites such as 17286=2x3x43x67 consisting of  more than two products of 
primes. 
 
We next turn to the summation of the first N integers. Starting with N=1 we get the partial 
sums- 
 
 
    Partial sum:             1          3         6       10       15         21          28          46 
 
    First difference:            2          3        4         5          6            7             8 
  
    Second difference:              1        1        1         1             1              1 
 
This implies that the sum will be a quadratic in N of the form S(N)=A+BN+CN2. Matching 
the first three partial sums then yields A=0, B=1/2, and C=1/2. Hence we have- 
 
                S(N)=0+N/2+N2/2=N(N+1)/2 
 
             
For just the odd numbers we get the partial sums- 
 
    Partial sum:         1        4          9         16          25         36         49 
 
  But these are recognized at once to be the square of the integers. Hence we find- 
 
                   S(99)=[(99-1)/2]2=492=2401 
 
So the sum of all odd integers through 99 is 2401 and thus approximately half of the sum of 
all integers through 99 which have the higher value of 4950. It leaves us with the sum of 
the even integers through 99 to be 4950-2401=2549. 
 
An interesting observation is that the sum of the reciprocals of the integers reads- 
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For finite N this sum has finite positive values and one would at first glance predict that a 
finite positive value should remain as N goes to infinity. This turns out however to not be 
the case for one has- 
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 This seies is known as the harmonic series. That it diverges follows from the fact that 
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So since ln(N) is infinite as N goes to infinity so must R() be. 
 
There is another type of infinite series known as the geometric series. It reads- 
 

                    S(r)=1+r+r2+r3+….=

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where r is a fraction lying in  o<r<1. This series can be summed in closed form by 
subtracting rS(r) from S(r) to yield- 
 
                                 S(r)=1/(1-r) 
 
If the upper limit of the sum is kept at the finite value of n=N, we find that- 
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So for the special case of r=1/2 and N=5 we get (26-1)/25=63/32. 
 
Next let us look at the product of the integers- 
 
 1x1=1 
    
 1x2=2 
 
1x2x3=6 
 
1x2x3x4=24 
 
1x2x3x4x5-120 
 
The terms on the right of this equality are known as the factorials so that 6=3!, 24-4! , and 
120=5!. Furthermore we have the identity that – 
 
                         ( N+1)N! =(N+1)!   
 
so 6!=6x120=720  . Another interesting identity involving factorials is that- 
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This fact allows us to evaluate integrals of the form- 
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There are certain algebraic expressions  such as- 
 
                       y2=1+k2x2   
 
which have solutions for integer values of x and y provided  k2 is an integer. These are 
known as Diophantine Equations. Take the special case of k=sqrt(2);This produces the 
positive integer pair- 
 
   [x,y]=[2,3],[12,17],[70,99],[408,577] and so on. 
 
Solving the Diophantine equation we get- 
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when expanded as a series. We can take any of the Diophantine solutions given above to 
have a converging series for sqrt(2). Taking [x,y]=[408,577] we get the very rapidly 
convergent series- 
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Already the first three terms of the series  multiplied by 577/408 yield the approximation- 
 
                       sqrt(2) 1.4142135623730950512 
 
  compared to the exact value of-    
 
                      sqrt(2)= 1.4142135623730950488 
 
This approximation is good to 16 places after the decimal. 
 
Another property of the positive integers is that there are certain N which match the sum of 
all its divisors minus N. These are called the perfect numbers. In terms of (N) and f(N) we 
can express them as- 



  
 

 
                    2N=(N)      or    f(N)=1-(1/N) 
 
The ancient Greek mathematician Euclid showed that a necessary condition for a number to 
be perfect is that it satisfy- 
 

              )12(2 1   nnN   for certain primes n 
 
It indeed generates such numbers for  n=2,3,5,7,13,17,19,31,61,89,… but fails for  
for n=11,23,29,37,41, 43,47, etc. . Looking at the values of N where (N)-2N=0, we find 
the first eight perfect numbers to be- 
 
   6, 28, 496, 8128, 33550336, 8589869056, 137438691328, 2305843008139952128 
 
Note that each of these perfect numbers are even. 
 
Finally we look at the concept of logarithms for integers. In a decimal integer system we 
can define any integer N as- 
 
          N=10a   with ‘a’ the exponent of 10 also referred as the logarithm of N to base 10              
 
Each integer will have associated with it a unique logarithm which most of the time will be 
a non-integer. Here is a brief table of N versus a=log(N)- 
 
N 1 2 3 4 5 6 7 8 9 10 
a=log(N) 0 0.3010 0.4771 0.6020 0.6989 0.7781 0.8450 0.9030 0.9542 1 
  
  
 The advantage of logarithms in the past was that they could speed up the multiplication 
and division of large numbers. Today they are no longer necessary since direct calculations 
with electronic calculators can do the job faster. This is also the reason slide rules have 
been replaced by hand calculators. A typical multiplication using logarithms is- 
 

                  997752.1110101043 0791.16020.04771.0  xx  

 
More extemsive tables will bring the result 12. There are two bases commonly used for 
logarithms. The first of these is the Briggs logarithm which uses the base 10 and is 
designated by log(N) in the literature. The other is the natural logarithm based on the base 
e=2.71828… and designated as ln(N). The two logarithms relate to each other by the 
multiplication factor ln(10)=2.302585093… .Thus- 
 
                      ln(5)=ln(10) log(5)=2.302585x0.6989=1.6094… . 
 
For any other base b we have- 
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 So for b=2 we get log2(8)=3 or the equivalent 23=8. 
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