BOUNDS ON PI USING THE ARCHIMEDIAN GEOMETRIC APPROACH

About 2200 years ago the famous Greek mathematician Archimedes of Syracuse(287-212 BC)gave the first accurate bounds for the value of π =3.1415926... By using a geometric approach involving regular polygons inside and outside of a unit circle, he was able to come up with the estimate-

 $3+10/71=3.140845< \pi < 3+1/7=3.142857$

using a regular polygon of 96 sides. We want in this article to repeat his calculations for regular polygons of $n=2^{m}$ sides.

Our starting point is the following sketch-

We have a unit radius circle of area π showing the pie shaped parts of an inscribed and circumscribed regular polygon. Geometry shows that the total area of the inner polygon will be-

$$A_{in}=(n/2)sin(2\pi/n)$$

The outer polygon has the larger area-

 $A_{out}=n \tan(\pi/n)$

Since we will be dealing with polygons with a large number of sides it pays to define $n = 2^{m}$. This produces the bound relation-

$$2^{m-1} \sin(45/2^{m-3}) < \pi < 2^{m} \tan(45/2^{m-2})$$

, where the angles are measured infractions of degrees. Starting with m=4, we get-

m=4	n= 16	3.061<π<3.182
m=6	n=64	3.136<π<3.144
m=8	n=256	3.1412<π<3.1417
m=10	n=1024	3.14157<π<3.14160
m=12	n=4096	3.141591<π<3.141593
m=14	n=16384	3.14159257<π<3.14159269

So it takes a polygon of 16384 sides to get a six place accuracy on π . The method works but will require ms much larger than 14 to get accuracies of fifty digits or so. The above m=14 case is about as accurate as the well known Otto ratio of $\pi \approx \frac{355}{113} = 3.1415927$, obtainable via continued fractions. The most accurate value of π obtained by applying the Archimedes method is due to the Dutch-German mathematician Ludolph van Ceulen(1540-1610). He used a polygon of n=2⁶² sides to find π out to 35 places. He was so proud of his achivement that he had the result engraved on his tombstone. The modern way to calculate π to high accuracy is to use arctan formulas, AGM methods, or iteration approaches.

U.H.Kurzweg April 16, 2021 Gainesville, Florida