
  
 

 
 

     RELATION BETWEEN VERTEXES, CONNECTORS, AND SUB-AREAS         
FOR 2D POLYGONS  WITH DIAGONALS  

 
 

 A Several hundred years ago the famous Swiss mathematician Leonard Euler (1707-
1783) discovered one of the simplest but most important identities in algebraic topology. 
It states that the number of vertexes(V) and the number of edges(E) of any 3D 
polyhedron is related to the number of its faces(F) by the formula- 
 
                             2 EVF  
 
So for a tetrahedron we have 4+4-6=2 and for a cube we get 6+8-12=2. 
 
The 2D version of this equality (as we have already discussed in an earlier note back in 
Dec.2017) reads- 
 
                              A+V-C=1 
  
, where we have V vertexes (referred to as nodes in graph theory), C  connecting lines 
between the vertexes, and  A the sub-areas created by the connectors. Thus for a square 
with two diagonals partitioning the square we have V=5, A=4, and C=8. So 
4+5=8=1. For a polygon with V vertexes and no diagonal  partitions we have C=V and 
A=1. So 1+V-V=1. 
 
It is our purpose here to discuss the number of sub-areas(A), vertexes(V) and connectors 
(C) created by an N sided regular polygons  when its vertexes are connected a maximum 
number of allowed diagonals. 
 
We begin with the case of a regular square partitioned by its two possible diagonals as 
shown- 



  
 

       
 
Here N=4 and D=2 and there are five vertexes, eight connectors and four sub-areas. This 
yields A+V-C=1. 
 
Next we examine the more complicated case of a regular pentagon (N=5) subdivided by 
its five possible diagonals(D=5). We get the following picture- 



  
 

     
We find A+V-C=11+10-11=1 so the formula is again verified. This time we found it 
convenient to color the pattern in order to more easily count the values of A,V and C. 
 
Next we look at a regular hexagon (N=6) partitioned by its nine diagonals (D=9). Here 
are the results -  
 
 
 



  
 

 
This time the values A=24 and V=19 were easy to read off of the graph. The third value 
of C followed from C=A+V-1=24+19-1=42. 
 
Next look at the heptagon N=7 with the maximum number of unique diagonals at D=14. 
Here we get the colorized picture- 
 



  
 

     
For this case, we count the sub-areas to be A=50 with V=42. This produces C=91. 
 
We can extend things further to still larger N sided polygons sliced into smaller sub-areas 
by all its possible diagonals. Using our MAPLE math program, we can draw any N sided 
regular polygon by the program- 
 
 with(plots): 
 listplot([seq([1,(Pi*(2*n)/N)],n=0..N)],coords=polar,color=red, 
 thickness=2,scaling=constrained,axes=none); 
 
After rotating this result by an appropriate angle and drawing in all possible non-
redundant diagonals one often ends up with interesting figures which can be colorized  
such as in the following octagon- 



  
 

         
                  
We find the relation between the number of possible unique diagonals (D) and the 
polygons number of sides (N) given by-                     
 
                                           D=(N/2)[-3+N] 
 
This follows from solving the linear equations 2=4A+16B and 5=5A+25B to get A=-2/3 
and B=1/2. Thus for the octagon we have D=4(-3+8)=20 diagonals. For the square it was 
D= (4/2)[-3+4]=2 and for a  pentagon it was D=(5/2)[-3+5]=5. 
 
The relation between A,V and C remains as is, namely,- 
 
                                           A+V-C=1 
 
A color count for the subdivided octagon shown yields A=80 and V=71. Thus C=150. 
 
We have not been able find a unique formula relating N or D to the number of sub-areas 
A created. One does note, however, that A increases rapidly in a monotonic manner with 
both increasing N and D.   For a decagon, where N=10 and D=35, we find after some 
rather careful color counting that A=220.   Here is its pattern- 
 



  
 

             
One can fill in the various sub-areas with colors of your choice to make some pleasing 
pictures resembling a flower with symmetrically placed petals. 
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