CHARACTERISTICSAND THE CONVERSION TO CANONICAL FORM

Consider the second order PDE
a(xy)z, +2b(xy)z, +c(xy)z, +F(z .z ,2.%,y)=0

and introduce the characteristic variables h(x,y) and x(x,y). In terms of these
variables the first partial derivatives become
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A further application of the chain rule then leads to the second derivative terms
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Substituting these into the above PDE yields a new equation with only asingle
second derivative term left after setting the coefficient multiplying the non-mixed
second partial derivativesto zero. The resultant, so called, canonical form of our
second order PDE is
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where
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and
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Here a b ¢, and F are the terms appearing in the original PDE. Note that the
condition for making the other two second partia derivative terms vanish is that the
characteristic curves h(x,y)=constant and x(x,y) = constant have the x and y
dependent slope
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Since the functions a, b and ¢ are assumed to be real, we can catagorize the original
equation by the sign of the radical. Thus the equation is termed Hyper bolic when
b2-ac>0. It is Elliptic when b?-ac<0 and Par abolic when b?-ac=0. Note that
hyperbolic equations have two families of real chracteristics while elliptic equations
have no real characteristics.



