
              ON THE SERIES EXPANSIONS OF K(k) AND E(k) 
 
 
 
To obtain the infinite series representations for the complete elliptic integrals of the 
first and second kind we begin with the basic definitions- 
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On introducing the new variable transformation sin(θ)=tanh(z), one finds that- 
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where  ∆=k tanh(z). On expanding the radicals one finds the infinite series 
expansions- 
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and- 
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These series are rapidly convergent for small k. For the intermediate value of k=1/sqrt(2) 
one finds- 



 

...]
)!2(2

)!4(
)!1(2

)!2(1[
2)!(2

])!2[(
2

)
2

1( 410

2

45

2

0 45

2
+++== ∑

∞

=

ππ
n n n

nK  

 
and- 
 

...]
)!3)(2(5

)!6(
)!2)(2(3

)!4(
)!1)(2(1

)!2(1[
2

]
)!(2)12(

])!2[(1[
2

)
2

1(

415

2

410

2

45

2

1 45

2

−−−−=

−
−= ∑

∞

=

π

π
n n nn

nE
 

 
These last two series can be used to calculate π to any desired degree of accuracy by 
using the Legendre identity(see Abramowitz and Stegun) which , for k=1/sqrt(2), reads- 
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A little manipulation shows this last result to be equivalent to- 
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where S(n)=[(2n)!]2/25n(n!)4and N->∞. For a ten place accuracy of π  in this last 
expression one needs to take at least the first thirty terms ( N=30) . To get around this 
relatively slow convergence one can directly evaluate the integrals for K(1/sqrt(2)) and 
E(1/sqrt(2)) by the AGM method of Gauss. If one does this and then substitutes into the 
above Legendre identity, π can readily be found to a billion place accuracy. 


