ON THE SERIES EXPANSIONS OF K(k) AND E(k)

To obtain the infinite series representations for the complete elliptic integrals of the
first and second kind we begin with the basic definitions-

/2 /2
K=" a0 and E(k)="1 ~1-k*sin(9)2d6
0 0 \/ 1-k*sin(0)? 6=0

On introducing the new variable transformation sin(0)=tanh(z), one finds that-
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where A=k tanh(z). On expanding the radicals one finds the infinite series
expansions-
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These series are rapidly convergent for small k. For the intermediate value of k=1/sqrt(2)
one finds-
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These last two series can be used to calculate © to any desired degree of accuracy by
using the Legendre identity(see Abramowitz and Stegun) which , for k=1/sqrt(2), reads-
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A little manipulation shows this last result to be equivalent to-
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where S(n)=[(2n)!]*/2>"(n!)*and N->c0. For a ten place accuracy of & in this last
expression one needs to take at least the first thirty terms ( N=30) . To get around this
relatively slow convergence one can directly evaluate the integrals for K(1/sqrt(2)) and
E(1/sqrt(2)) by the AGM method of Gauss. If one does this and then substitutes into the
above Legendre identity,  can readily be found to a billion place accuracy.
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