
                   INTRODUCTION TO COMPLEX NUMBERS  
 
 
The numbers  … -4, -3, -2, -1, 0, 1, 2, 3, 4… represent the negative and positive real 
numbers termed integers. As one first learns in middle school they can be thought of 
as unit distance spaced points along a straight line as shown- 
 

               
 
The basic mathematical operations with these numbers are: 
 
 addition : A + B    subtraction: A-B    multiplication:   AxB     and  division: A/B 
 
There are numbers which lie between these whole numbers. They are the rationals 
such as 52/73=0.7123287671232876712328767…whose digital expansion repeats 
itself after n units and the irrationals such as sqrt(2)= 1.414213562373024…where 
the digits never repeat themselves. 
 
Although the product of two integers will always be an integer, the same is not true 
for the roots of integers. Take, for example, the square root of 2 which is a non-
terminating  irrational number. If one takes things one step further asks what is 
sqrt(-2), one finds- 
 
               abovegivenasissqrtwhere )2()1)(2(2 −=−  
 
but what is the meaning of  sqrt(-1)? One calls this quantity the imaginary number  
i . With this definition it is possible to extend the set of all numbers into an even 
larger set of  complex numbers  - 
 
                                                  z=a+ib 
 
with ‘a’ representing the real part and ‘b’ the imaginary part of the number z. The 
standard designation is a=Re(z) and b=Im(z).  We also have that the absolute value 
of z equals Ab(z)=|z|=sqrt(a2+b2). On taking the square of z we have- 
 
                          z2=a2+2iab+(ib)(ib)=(a2-b2)+2iab 
 
since i2=-1. Taking more powers of i we find the following properties- 
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So that we can write any integer power p of i as- 
 
                 ip=i(4n+r)=ir  with n integer and  the remainder r=0, 1, 2 or 3 
 
That is i359=i(356 +3)=i3=-i 
 
The basic addition, subtraction, multiplication and division laws for complex 
numbers remain as they were for real numbers. Therefore- 
 
                       (1+i)3=1+3i+3i2+i3=2(-1+i)  and (3-i)+(-2+2i)=1+i 
 
A convenient way to plot a complex number z is by means of an Argand Diagram in 
which the real part of a complex number is measured along the x axis and the 
imaginary portion measured along the y axis. We can represent z in either its 
Cartesian form or its polar form. They read respectively- 
 
                        z=a+ib=sqrt(a2+b2)exp[i arctan(b/a)]=R exp(iθ) 
 
Here  |z|=R=sqrt(a2+b2) is the amplitude(or modulus) and θ=arg(z)=arctan(b/a) the 
argument of z. By replacing i by –i in a complex number one produces its complex 
conjugate designated by ͞z . One always has that  z ͞z =|z|2 is a real number. 
Here is a graph of the complex number z=a+ib and its conjugate in the Argand 
diagram-  
 

        



 
Let us next look at the number exp(z)=exp(a+ib) in more detail. Expanding this 
function as a Taylor series we have- 
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But the two infinite series in the curly bracket are recognized as  cos(b) and sin(b). 
Hence one has the famous formula first derived by Leonard Euler, namely,- 
 

                       )]sin()[cos()exp( bibeiba a +=+  
 
On setting a=0 and b=π/2 and π we have exp(iπ/2)=i and exp(iπ)=-1, respectively.  
Thus one can conclude that- 
 

                        )2/sin()2/cos()2/exp( πππ nininin +==  
   
If n=i we have that- 
 

                           ...20787957.0)2/exp( =−= πii  
 
which is a real but irrational number. Also we have that z3 +1=0 has the  solution- 
 
          2/)31()3/sin()3/cos()1( 3/23/1 iiiz +=+==−= ππ  
 
This, however, is not the only solution since there are two more which can be gotten 
by rotating away from the first solution by ∆θ=±2π/3 radians. The other two 
solutions are- 
 
                  cos(π)+isin(π)=-1     and    cos(-π/3)+isin(-π/3))=(1-i√3)/2 
 
The root of a complex number can be written as- 
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This equality is known in the literature as the deMoivre Formula. It follows from 
the form of the polar representation of the complex number z and clearly shows the 
presence of N multiple roots. A question I used to ask my undergraduate analysis 
class at the University of Florida was “Are there any real solutions to the pth root of 
i when p is an integer”? The answer is no and here is the proof- 
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To have a real solution requires that sin[π(1+4k)/(2p)]=0 which implies that  
p=(1+4k)/2n with n=0,±1,±2 etc . We see that the numerator in this expression is an 
odd number and the denominator is always an even number. Hence p can never be 
an integer and so no pure real solutions can exist! Note that pure real roots are 
possible if p equals certain rational numbers such as 2/3. 
 
One can derive numerous trigonometric identities using the Euler Formula as a 
starting point. First setting a =0 we have the results- 
 
            exp(ib)=cos(b)+isin(b)      and      exp(-ib)=cos(b)-isin(b) 
 
Adding and subtracting these together, we arrive at the identities- 
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which upon replacing b by ic produces the hyperbolic functions- 
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Also, on letting b=A+B, we obtain the well known trigonometric identities- 
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The double angle formulas- 
 

)cos()sin(2)2sin(sin21sincos)2cos( 222 AAAandAAAA =−=−=  
 
follow on setting A=B. We can also use the complex number representations for 
sin(A) and cos(A) to develop the quadruple angle formulas- 
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Certain definite integrals can also be nicely solved using complex numbers. 
Consider the integral- 
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Here Im stands for the imaginary part of the function just like Re would stand for 
the real part. After a simple integration of the exponential function we have- 
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I remember how we derived this result many tears ago in my first college calculus 
class by a much longer route involving several integration by parts. A benefit of the 
complex number approach is not only its ease compared to other methods but also 
the fact that it will sometimes yield additional information such as, in this case, that- 
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Finally let us show how one can plot a function such as F=zn =Rnexp(inθ) in the 
complex plane.  Specifically let n be any positive power greater than one including 
non integer values. Also set z=a+ib .   On substituting these value into F we find – 
 
         r= Modulus F=(a2+b2)n/2      and    Θ= Argument F=n arctan(b/a)  
 
On eliminating the n, one finds- 
 
            r=exp(αΘ)     with        α=[ln(a2+b2]/[2 arctan(b/a)]=constant 
 
This figure represents the logarithmic Spiral of Bernoulli and it looks as follows for 
a=b=1    
 



                 
 
 
It was this figure which I used as a demonstration in our undergraduate complex 
analysis class which led to the discovery of the integer spiral- 
 
                                  r=n    and    θ=nπ/4 
 
for all  positive integers n. It produces the interesting picture- 
 

                        



in which all even integers lie along the x or y axis while all odd integers fall along the 
diagonals y=±x. 
 


