
 

                           CONSTRUCTION OF HEXAGONAL INTEGER SPIRALS  

 

About a decade ago I found a new way to locate  all positive integers as points at the vertexes of a 
hexagonal integer spiral. Not only did this lead to an excellent new way to separate primes from  
composites( unlike what is not possible with a standard Ulam Spiral) it also led to new insights on twin-
primes and the location of super-composites characterized by large number fractions. We want in this 
note to show how one can construct such a hexagonal integer spiral and discuss more of its important 
attributes. 

Here is the procedure. We start with a standard Archimedes spiral- 

                                             r= (3/π)θ 

which, when taken out four turns  and intersected by six equally spaced radial lines, looks as follows- 

                          

 The crossing points between the Archimedes Spiral and the radial lines will be the location of the 
positive integers. Also since we are only interested in  integers , the spiral can be modfied by a new 
hexagonal integer spiral  obtained by connecting neighboring integers by straight lines. This  roduces the 
hexagonal integer spiral shown- 



                   

This is a HEXAGONAL INTEGER SPIRAL showing the integers sitting at following vertexes of the spiral. We 
could also have called it the spidernet spiral as it mimics what spiders do in building a spider web. They 
begin by placing a few radial web fibers and then walk around in a spiral manner laying the rest of the 
sticky fiber to form the spider web.  The following shows such a net-           

                       

There are several new mathematical observations following from the hexagonal integer pattern. In brief 
they are- 

(1)-Each turn of the spiral increases the integer count by a factor of six. Thus the number N=35679 has N 
mod(6)=3 so it lies on the 6n+3 line at the 5946th turn of the spiral. 



(2)-Primes greater than three are found only along the lines 6n+1 and 6n-1. However since some of the 
numbers along these two radial lines may be composites we have the restricted statement- 

        A necessary but not sufficient condition for N>3 to be prime is that it equals 6n+1 or 6n-1 

(3)-Twin primes differ from each other by two units.  Hence their mean value must always be a multiple 
of six.   An example is [p,q]=[347 ,349]. These are twin primes with the mean equal to 348=6(58). We 
also have for the mean value that 348 mod(6)=0. 

(4)-To test for primeness of integers along 6n±1, we can use the test- 

                                     σ(N)=1+N   or   f(N)=0 

, where f(N)=[σ(N) –N-1]/N is the number fraction  and σ(N) is the sigma function of number theory . 
Most advanced    computer programs give the value of σ(N) for Ns of up to about twenty digit length.    
Lets do a prime test on the number- 

                        N=3695509=6(6157918)+1  which has N mod(6)=1 

Here σ(N)=3695510. Hence 3695510=1+3695509. This confirms that  N is a prime. 

(5)-We define super-composites as those numbers where the number fraction f >2. These are typically 
found next to prime numbers where f=0. An example of such a super-composite is-  

        N=2^15*3^8*5^3=26873856000   with a number fraction of  f=σ[(N)-N-1]/N=2.7437526 

The number next to it yields f(N-1)=0 and hence is a prime lying along the radial line 6n-1. 

(6)-A semi-prime is  defined as  as N=pq with- 

                       [p,q]=S∓sqrt[S^2-N]    with S=(p+q)/2=[σ(N)-N-1]/2=Nf(N)/2 

Typically any semi-prime will lie along either 6n+1  or  6n-1 with a value for f(N) only slightly above zero. 

 The semi-prime N=77  has σ(77)=96 and S=9. So the factors [p,q] become [7,11]. We have N mod(6)=-1 
and f(77)=18/77. 

Hopefully the above six points concerning Integer Spirals will help clarify the importance of the use  of 
these new spirals in discussing additional upcoming unsolved problems in number theory. 
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