COUETTE FLOW VIA A SOLUTION OF THE BIHARMONIC EQUATION

Let us consider a low Reynolds number incompressible viscous flow created in the annular space between two concentric and co-rotating cylinders of infinite length. This problem is governed by the standard biharmonic equation expressed in cylindrical coordinates . The velocity field here is strictly in the theta direction and can depend only on the radial coordinate. Accordingly the Laplacian takes the form $\nabla^2 = (1/r)d/dr(rd/dr)$ and the expanded biharmonic equation for the flow streamline y becomes-

$$r^{3}y'''+2r^{2}y''-r^{2}y''+ry'=0$$

Noting that in cylindrical coordinates the velocity in the theta direction V=-dy/dr , this 4^{th} order ODE may be expressed as –

$$r^{3}V'''+2r^{2}V''-rV'+rV=0$$

This last equation is of the standard Euler type and is thus known to have solutions of the form $V=r^n$. Substituting this into the above 3^{rd} order ODE yields the algebraic expression (n-1)(n-1)(n+1)=0, so that the general solution becomes-

$$V = wr = r(A + B \ln r) + C/r$$

Where A, B, and C are arbitrary constants, w is the local angular velocity, and the fluid extends over the range a<r
b. Adjusting things to match the
assumed constant angular velocities w_a and w_b at the cylinder walls, one
finds that B=0, A= [b²w_b-a²w_a]/[b²-a²] and C=(ab)²(w_a-w_b)/(b²-a²). This
profile represents the classical Couette flow and has a shear stress of
 $\tau=\mu(A-C/r^2)$. Note that for a small gap where (b-a)/(b+a)<<1, the shear is
essentially equal to the constant value $\tau=\mu(bw_b-aw_a)/(b-a)$. It is this last form
for the shear stress which is often used to experimentally determine the
viscosity coefficient μ of a liquid. Note that this Couette flow solution is
strictly valid only for low Reynolds number flows and will become unstable
against Taylor vortexes and/or turbulence at higher differential rotation rates
of the cylinders.