
             COUETTE FLOW  VIA A SOLUTION OF THE
                               BIHARMONIC EQUATION

Let us consider a low Reynolds number incompressible viscous flow created
in the annular space between two concentric and co-rotating cylinders of
infinite length. This problem is governed by the standard biharmonic
equation expressed in cylindrical coordinates . The velocity field here is
strictly in the theta direction and can depend only on the radial coordinate.
Accordingly the Laplacian takes the form∇2=(1/r)d/dr(rd/dr) and the
expanded biharmonic equation for the flow streamline y becomes-

Noting that in cylindrical coordinates the velocity in the theta direction
V=-dy/dr , this 4th order ODE may be expressed as –

This last equation is of the standard Euler type and is thus known to have
solutions of the form V=r n    .Substituting this into the above 3rd order ODE
yields the algebraic expression (n-1)(n-1)(n+1)=0, so that the general
solution becomes-

Where A, B, and C are arbitrary constants, w is the local angular velocity,
and the fluid extends over the range a<r<b. Adjusting things to match the
assumed  constant angular velocities wa and wb at the cylinder walls, one
finds  that B=0, A= [b2wb-a2wa]/[b2-a2] and C=(ab)2(wa-wb)/(b2-a2). This
profile  represents the classical Couette flow and has a shear stress  of
τ=µ(A-C/r2). Note that for a small gap where (b-a)/(b+a)<<1, the shear is
essentially equal to the constant value τ=µ(bwb-awa)/(b-a). It is this last form
for the shear stress  which  is often used to experimentally determine the
viscosity coefficient µ of a liquid. Note that this Couette flow solution is
strictly valid only for low Reynolds number flows and will become unstable
against Taylor vortexes and/or turbulence at higher differential rotation rates
of the cylinders.
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