
 
        
 
 

        DERIVATION AND APPLICATION OF THE LAWS  
                      FOR SPHERICAL TRIANGLES  

 
 
One of the more important topics for astronomers, mathematicians, solar energy enthusiasts, 
architects, etc is to be familiar with the laws governing spherical triangles. It is our purpose here to 
derive these laws in as simple a manner as possible and then  apply them to several different 
specific problems. 
 
Our starting point is to look at the following schematic for a spherical triangle and all its 
components- 

                           
 The triangle is constructed by drawing three great circles on a unit radius sphere centered at 
O[0,0,0] . the spherical triangle has vertices at A, B, and C and its sides have lengths of a, b, and c 
measured in radians. We place A along the z axis such that its location in Cartesian coordinates is 
A[0,0,1]. Point B is placed to lie in the plane defined by the x and z axis such that we have 
B[xB,0,zB]. Finally, vertex C has coordinates C[xC,yC,zC]. We draw three straight lines of unit 
length each from the origin at O to the three vertices and designate these lines as vectors AO, 
BO,and CO . Note that the dot product of any two of these just equals cos(a), cos(b), or cos(c). 
From the geometry we can now read off- 
 
    xB=sin(c),   zB=cos(c),   xC=  sin(b)cos(A) ,   yC= sin(b)sin(A) ,   and   zC=cos(b) 
 
The coordinates of the vertices of the spherical triangle can thus be written down explicitly as- 
 



     A[0.0.1],     B[sin(c), 0, cos(c)],     and  C[sin(b)cos(A), sin(b)sin(A), cos(b)] 
 
Next taking the dot product between BO and CO, we get- 
 
             cos(a)=sin(b)sin(c)cos(A)+cos(b)cos(c) 
 
This represents essentially the law of cosines for a spherical triangle . The other two versions 
follow at once by interchanging the a,b,c,A,B,Cs. They are- 
 
            cos(b)=sin(a)sin(c)cos(B)+cos(a)cos(c) 
and    
            cos(c)=sin(a)sin(b)cos(C)+cos(a)cos(b) 
 
A law of sines law follows from manipulating cos(A) and cos(B) in the above formulas. We find- 
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Taking the root of the quotient produces-  
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Thus one has the Law of Sines for oblique spherical triangles. 
 
Using the above laws allows us to calculate distances along a great circle between any two points 
A[(LATA, LONGA]and B[LATB, LONG B] on Earth. We do so by defining the third vertex of a 
spherical triangle being the North Pole at C[LATC=/2, LONGC=anything]. In this case angle 
C=LONGB-LONGA. The fact that the sphere radius is R=3960 miles instead of unity makes no 
difference since all quantities are expressed in radians.  The distance c between A and B is then 
determined by using the formula- 
 
        

)cos()cos()cos()sin()sin()cos( ABABBA COLATCOLATLONGLONGCOLATCOLATc 
 



On expanding the terms in this expression, one arrives at the final distance between points A and B 
of- 
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Since c is expressed in radians, one can say that the fraction traversed along the great circle in 
going from A to B is f=c/2.  
 
Take now the case of flying from A at London(LAT=51.5072degN, LONG=0.1275degW) to B at 
New York City (LAT=40.7127N,  LONG=74.0059W  ).  In this case we have – 
 
                       C=(74.0059-0.1275)=73.8784 deg 
                        
                        b=90-51.5072=40.71227=38.4928deg 
 
                        c=90-40.7127=49.2873deg 
 
So solving the cos(c) equation , we find- 
 
                 cos(c)=0.64157  or   c=50.091deg=0.87425rad 
 
This means the distance between London and New York City on a great circle route is- 
 
                           L=[0.8742/(2)](2R)=3462 miles 
 
The usual number quoted is 3461 miles . 
 
 
With the above Law of Cosines and Law of Sines for spherical triangles it is also possible to use 
them to describe the position of the sun, moon, and other heavenly bodies on any date and time. 
For example, we can use the formulas for determining the sun’s position from any LAT and 
LONG observation point in the Northern Hemisphere. Our starting point for such an analysis is the 
following astronomical spherical triangle lying on an imaginary celestial sphere as shown- 
 



             . 
 
We have the three vertices of the triangle lying at the Zenith Z directly above the observer, the 
north celestial pole at P, and the sun position at S. The curved sides of this spherical triangle are 
equal to the co-altitude COALT=/2-ALT, the co-latitude COLAT=/2-LAT and the co-
declination CODEC=/2-DEC. The two angles of interest are the hour Angle HA and the azimuth 
AZM. Here HA refers to the number of hours away from local noon and azimuth is the angle in the 
observers plane away from a north-south line. At sunrise or sunset the altitude ALT is zero so that 
COALT=/2 there. 
 
Making the substitutions A=AZM, B=HA, a=CODEC, b=COALT, and c=COLAT into the 
spherical triangle equations derived above, we get  two of the most important equations in celestial 
mechanics, namely,- 
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These equations are sufficient to precisely locate the sun anywhere in the Northern Hemisphere 
knowing the values of ALT, LAT, and DEC on the day in question. As a demonstration, let us 
ask the question at what azimuth will the sun rise a few days from now on my birthday 
(September 16th) here in Gainesville, Florida?  The latitude here is LAT=29.56deg, the ALT at 
sunrise is zero, and the nautical almanac gives a declination of DEC=+2.88deg for that day. 
Accordingly the sun will rise at an azimuth of- 
 



                        AZM=cos-1{sin(DEC)/cos(LAT)}=86.688deg 
 
Thus the sun rises almost to the east being just 3.312deg north of an east-west line. The hour 
angle for that day will be- 
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That is, the sun will rise at 60.39886/15=4.026hrs  before local noon. Our local noon will occur 
at LONG/15=82.45deg/15=5.4956 hrs  Greenwich mean time(GMT). So sunrise that day will 
occur in Gainesville at 5.4956-4.026=1.469 pm GMT. 
 
It should be possible to construct a mechanical sun-tracker based on the above equations and the 
input of LAT, LONG, and DEC information. This way one would have a sun follower 
completely independent of weather conditions for solar energy conversion requiring continuous 
concentrated sunlight.   
 
It is interesting that the azimuth at sunrise or sunset depends only on DEC and LAT. So at the 
Spring and Fall Equinoxes , where DEC=0, we have the sun rise precisely in the east regardless 
of LAT. At the Neolithic monument of Stonehenge where LAT=51.1788deg, the sun will rise at 
the Summer Solstice ( DEC=+23.5deg) at an azimuth of 50.4976 deg. So the sun rises 90-
50.4976=39.50deg north of an east-west line that day. This happens to be the exact orientation of 
a symmetry line through that monument( see  
http:///www2.mae.ufl.edu/~uhk/STONEHENGE.pdf  ). 


