
                  NUMBER OF  DIAGONALS AND SUB-AREAS ONE CAN CREATE 
                                        INSIDE  POLYGONS 
 
 
An interesting problem in geometry and topology concerns the number of unique diagonals and 
corresponding areas one can create inside polygons of N sides. We can define such diagonals 
as any line cutting any convex polygon which connects any two non-neighboring vertices. A 
simple case would be a quadrangle with four,  not necessarily equal length,  sides (N=4). Here 
one has two possible diagonals (D=2) which form four sub-areas (A=4) as indicated in the 
following sketch- 

                     
We want here to examine the general problem for convex polygons of N sides in order to 
determine the corresponding unique diagonals which may be drawn and the number of 
corresponding sub-areas created by them. 
 
We begin by looking at a pentagon where N=5. Here there are two diagonals created for vertex 
one and two diagonals created  at the neighboring vertex two. In addition a vertex three starting 
point creates one more diagonal. The remaining vertexes do not produce any new diagonal. 
Hence we get D=5 unique diagonals as shown- 
 



                
These diagonals lead to a total of eleven (A=11) sub-areas as shown. A distortion of this 
pentagon to one where the sides are not all equal does not alter the D=5  value. Note the 
smaller inner  pentagon(shown in blue) created by this procedure.  
 
Contiuing on to a hexagon (N=6), we find D=9 and A=24.This fact is clearly shown via the 
following diagram- 



                       
 
 
The determination of the number of areas becomes particularly simple when N is an even 
number such as it is for the hexagon. In such cases on simply counts the number of sub-areas 
contained in the isosceles triangle formed by connecting two neighboring vertices with the 
polygon center and then multipling this number by N. For the hexagon we have A=4 x 6=24.  
Again note the interior smaller hexagon  created by the procedure. In this case the sub-areas 
consist of six qudrangles, six larger isosceles triangles and 12 small right triangles. 
 
For a seven-sided polygon ( heptagon ) we find D=14 and A=50. Here is the corresponding 
diagram- 
 



             
Note the small heptagon found surrounding the polygon  center . For this odd N case no 
diagonal passes through the center making it more difficult to count the number of sub-areas. 
Here the sub-areas consist of triangles, quadrangles, pentagons, and a heptagon. 
 
For an octagon (N=8) we find D=20 and A=80. Here is its diagram- 
 

             



The counting of the number of sub-areas is this time quite easy since some of the diagonals 
pass through the center. This requires one to simply count the number of areas within a single 
pie shaped  piece and multiply the result by N=8. That is A=10 x 8=80. 

 
 
We have now accumulated sufficient information to generate the following table and use it to 
obtain some generalizations- 
 
           

Polygon Name N D A 
Quadrangle 4 2 2 
Pentagon 5 5 11 
Hexagon 6 9 24 
Heptagon 7 14 50 
Octagon 8 20 80 

 
 
Looking at  column D we see that the first difference goes as 3-4-5-6 and the second difference 
as 1-1-1  . This suggests that D relates as a quadratic to N. That is- 
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, with the coefficients a and b to be determined. Using the  values for the quadrangle ( N=4, 
D=2) and the hexagon(N=6, D=9) we have- 
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This solves as a=-3/2 and b=1/2. Hence we have the polygon side number N  related to the 
total number of allowed unique diagonals D  as- 
 
                             D=N(N-3)/2 
 
From this formula we can predict that any convex decagon (N=10) has D=35 diagonals. 
 
To find a relation involving the number of sub-areas is a bit more difficult. Let us begin with 
even number Ns. These all have N vertexes with having diagonals passing through the polygon 
center. As a result there are N isosceles triangles  formed. For the N=8 case the top isosceles 
triangle  and the lines that cross it look like this- 
 



                       
 
We see from the graph that there are five unique crossings (C=5) of the sub-isosceles triangle 
by the diagonals which produce 10 distinct sub-areas. The total number of subareas created by 
all the allowed diagonals (D=20) is thus A=8 x 10=80. 
 
Looking at the first few even sided polygons, the numbers of crossings C found for each sub-
isosceles triangle, and the total sub-areas created divided by N, we find the following table- 
 
        

  N 4 6 8 10 12 
  C 0 2 5 9 14 
  A/N 1 4 10 22 37 

  
 
We notice from the table that the row containing the Cs has its second differences  equal to one 
each. This suggests a quadratic relation between N and C. A bit of manipulation shows this to 
be- 
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This checks with all values in the table given for C. Unfortunately there is no easy way to 
relate C to A other than to say that each crossing C produces  more than two areas. This 
however does not lead to a closed form solution of A versus N. Accordingly, we look for a 
polynomial approximation for A/N versus N using the five values for A,N given in the last 
table. This produces the approximation – 



 
                         B=A/N:= -38+47N/2-83N2/16+N3/2-N4/64 
 
A graph of the exact values of B versus this approximation follows- 
 

          
As expected the approximation coincides with the exact values of the sub-areas for even sided 
polygons as obtained by counting. However, no unique functional relation between N and A 
seems to exist. Hence one is forced to the resort of to counting the number of areas within the 
polygon no matter if the polygon has an even or odd number of sides.  
 
We have carried out such a counting procedure and have obtained the following 
comprehensive table- 
 
        

Number of Sides, N Unique Diagonals, D Total sub-areas, A 
3 0 1=3(0)+1 
4 2 4=4(1) 
5 5 11=5(2)+1 
6 9 24=6(4) 
7 14 50=7(7)+1 
8 20 80=8(10) 
9 27 154=9(17)+1 
10 35 220=10(22) 
11 44 309=11(28)+1 
12 54 444=12(37) 



 
 
It took quite an effort to find the values of A for N=9 and N=11. In those cases we used a 
coloring method to conduct the count. The following is the procedure for the N=9 case- 
 

        
You will note that the total number of sub-areas A for odd N goes as A=N(integer)+1 while for 
even N we have A=N(integer).  The counting becomes much more difficult as N is increased 
further. This stems from the fact that when drawing in the diagonals by hand using paintbrush 
one looses accuracy as N increases. 
 
Here is the color coding solution for N=11- 
 



          
One sees that the counting becomes difficult in the grey and light blue areas. Very small 
variations in diagonal orientation can fake areas not really there. 
 
An interesting result of the present discussion on sub-area creation inside a polygon is the 
creation of multiple computer images which start to approach in character that of a modern 
abstract design or painting.  Here are two examples of colored images following from 
diagonals in a regular hexagon and a regular octagon, respectively- 
 

                  
These type of patterns are often encountered in Amish decorations on plates and barns in the 
Lancaster, Pa. area. 
 



A final point we wish to make concerns any changes one may expect to find when the 
polynomials considered become irregular. We have already shown in the first example in this 
article that the number of diagonals remain unchanged when dealing with any convex 
quadrangle. Such 2D figures always have just two diagonals no matter what the shape as long 
as every vertex has an unobstructed view of all the other vertices. Thus we can state that the 
number of unique diagonals one can create for any polygon N with un-obstructive view of all 
vertices remains the same. That is the number of unique diagonals D will always be related to 
the polygon side number N as- 
 
                                                             D=N(N-3)/2 
 
We demonstrate this point for two irregular pentagons in the following sketch- 
 

      
 
The first polygon is concave and so satisfies the D versus N equation while the second one has 
a convex vertex angle blocking an un-obstructive view of all vertices through the pentagon 
interior. Hence the D(N) relation fails. 
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