
                               ON DIFFERENCE EQUATIONS 
 
 
A difference equation is one where a function F[n] which is defined only for integers n is 
related to the function F[n+a] where a is also an integer. A simple form of a difference 
equation is- 
 
                F[n+1]=F[n]+1      subject to  F[1]=1 
 
By inspection one has F[2]=1+1=2, F[3]=2+1=3, F[4]=1+3=4, etc. So the solution is 
F[n]=n.  A slightly more complicated form is given by the equation- 
 
              F[n+1]=F[n]+(n+1)  starting with F[1]=1 
 
We find F[2]=3, F[3]=6, F[4]=10, etc. So it is clear that F[n]=n(n+1)/2. Hence F[5]=15 
and F[6]=21. This last solution just represents the sum of the integers n=1 through n=n. 
That is- 
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Going on, we consider the difference equation- 
 
            F[n+1]=F[n]+(n+1)2  subject to F[1]=1 
 
It yields F[2]=5, F[3]=14,  F[4]=30. So we suspect that F[n] will have the form- 
 
                    F[n]=An3+Bn2+Cn 
 
We can use the evaluated values for n=1, 2, and 3 to get the matrix equation- 
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This solves as A= 1/3 , B=1/2   , and  C= 1/6    . Hence the above difference equation has 
the general solution- 
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 This result is equivalent to summing up the squares of the integers from 1 through n.   
 
To get the sum of the integers to the integer power p of n, we have the difference 
equation- 



                        F[n+1]=F[n]+(n+1)p     subject to   F[1]=1    
 
This yields F[2]=1+2p, F[3]=1+2p+3p, F[4]= 1+2p+3p+4p , etc. Writing down enough of 
these lower  values of F[n] will allow us to write that the sum- 
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,where the constants ak are determined by solving a matrix equation with a (p+1) x (p+1) 
coefficient matrix. 
 
A topic which can be well explained by a simple linear difference equation is the return 
on money given an interest rate of i.. One has the expression- 
 
                 F[n+1]=(1+i)F[n]  subject to F[0]=Fo 

 
, where i is the interest rate. Here we find the general solution- 
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after n years. So to double one’s money will take ln(2)=nln(1+i) ni for low i . Since 
ln(2)=0.693147.., it will take approximately ten years to double ones money at an interest 
rate of 7%. 
 
When dealing with difference equations it is often easier to reverse the procedure and go 
from a solution  to the equation. This can be demonstrated  by the solution F[n]=n2. here 
we can write F[n+1]=(n+1)2=n2 +2n +1. Hence we have the difference equation- 
 
                 F[n+1]=F[n}+2n+1 subject to F[0]=0 
 
One recognizes that in this instance F[n] represents a parabola evaluated  only at its 
integer points. A pointplot of the solution looks like this- 
 



            
 
Partial sums of infinite series may also be expressed as finite difference equations. 
Consider the equation- 
            
               F[n+1]=F[n]+1/(n+1)!  subject to  F[0]=1 
 
Here we find F[1]=2, F[2]=2.5, F[3]=8/3=2.666.., and F[4]=65/24=2.708.. one recognizes 
thatb these Fs are just the partial sums leading to F[]=exp(1)=2.718281828459045..The 
last is the base for the natural logarithm of numbers. 
 
The Fibonacci Numbers are given by 1,2,3,5,8,13, etc and are generated by the difference 
equation- 
 
                     F[n+2]=F[n+1]+F[n] subject to F[0]=1 and F[1]=2 
 
One has F[2]=3,F[4]=5,F[5]=8, F[6]=13, and F[7[=21. asfirst noted by Johanes Kepler of 
astronomy fame, theb ratio F[n+1]/F[N] approaches a constant value of {sqrt(5)+1}/2 as 
n becomes infinite. This number represents the Golden Ratio = F[]=1.618033989..  . 
 
The non-linear difference equation leading to the Golden Ratio is given by the non-linear 
difference equation- 
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Has F[1]=2, F[2]=3/2, F[3]=5/3, and F[4]=8/5. The solution approaches F[]=. An 
interesting property of  that it satisfies the following continued fraction- 
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as is easily established by noting {-1)(+1)=2-1=. 
 
A difference equation close in appearance to the equation leading to the Golden Ratio is  
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Here we get F[1]=2, F[2]=4/3, F[3]=10/7, F[4]=24/17, F[5]=58/41. As n gets large the 
value of F[n] approaches the square root of two. The equation  can thus be thought of as 
an iteration formula for sqrt(2). 
 
Another highly non-linear difference equation is- 
 
    F[n+1]=F[n]+cos(F[n]){cos(F[n])-sin(F[n])} subject to F[0]=1 
 
Its solutions read F[1]=0.837…, F[2]=0.7881…, F[3]=0.78540,,, F[4]=0.785398163 
 
If we compare the F[4[ term with /4=0.785398163…, we see that here we have an 
iteration for  given by – 
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 Already at n=7 one finds a 78 digit accurate result for . For a derivation of the above 
iteration formula see the discussion in our article on iterating the Taylor series for arctan 
.The article is found on our MATHFUNC page dated Dec.2012.    
 
Many special algebraic equations y=F(x) have integer solutions  for special cases. 
Equations of that type are classified as Diophantine equations. They have been studied 
for nearly 2000 years. Included among this group is the Brahmagupta equation- 
 
              [y(x)]2=1+C x2    where C is a specified integer 
 
where one specifies the constant C beforehand and then tries to find integer solutions for 
y corresponding to an integer x=n. In difference equation form the equation  reads- 
 
                    {F[n+1]}2={F[n]}2+C(2n+1)    subject to F[0]=1     
 



One finds F[1]2=(1+C) , F[2]2=1+4C, F[3]2=1+9C. It is clear that integer solutions for 
F[n] only if the right side of F[n]2represents the square of an integer. Thus if C=3  then 
[x,y] =[n,F[n]]=[1,2],[[4,7],[15,26],[ 56,97[,[209,362],[780,1351],[2911,5042], and so on 
are the only integer solutions. Note for large integers the ratio F[n]/n goes as 
sqrt(3)=1.732 and the ratio of (n+1)/n goes as  2+sqrt(3)=3.73205. Sometimes this 
equation will have no integer solutions at all while at other times only one integer 
solution becomes possible. Certainly when C equals the square of an integer the factor 1 
in the equation solution makes any integer solution impossible. So, for example 
F[n]2=1+169n2  will never yield an integer solution other than the trivial result [1,1].  
 
The secret to being able to factor large semi=primes  is that one find the value of n which 
Makes the solution F[n]=sqrt(An2+Bn+C) an integer for specified integer values of A,B, 
and C.values. That is, one is looking for integer solutions of F[n] satisfying the non-linear 
difference equation – 
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The only integer solutions found for the special case of A=4, B=3, and C=6 are- 
 
                           [n,F[n]]=[5,11] and [-2,4]    
 
Nothing further in the range -400<n<600.  
 
Finally let us look at the complex finite difference equation- 
 
            F[n+1]= F[n]2 +0.3+i0.1   subjected to  F[0]=0.5 
 
Here we find  F[1]=0.55+0.1i and F[2]=0.5925+0.210i. The solutions  converge to a 
point near 0.324211+i0.284431 in the complex plane. A picture of the interesting inward 
moving spiral representing these solutions follows- 
 



            
I leave it for the reader to show that the exact form for the solution F[] is given by- 
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 Also the F[] result is here independent of the starting condition F[0].           
 
 
 
U.H.Kurzweg 
April 11, 2017 


