
 
          FINDING THE GREATEST COMMON DIVISOR (GCD)    
                    USING THE EUCLIDIAN ALGORITHM 
 
All positive integers are either composite or prime with the latter characterized by having 
no divisors other than one and the number. An elementary method for seeing what the 
largest common divisor of two real numbers N and M<N is can be found by use of an 
algorithm dating back to Euclid. We demonstrate the method by using two composite 
numbers  N=4869 and M=2136. The procedure goes as follows- 
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The remainder term of 3 in the next to last equation is the largest common divisor (gcd). 
Things can be summarized as - 
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One can also work things backwards. Thus- 
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This result may be generalized to read- 
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for any real numbers N and M for a specified set of constants α and β. Some other 
specific examples are- 
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An alternative way to find the greatest common denominator of two numbers is to break 
each number into its product components of prime numbers and then pick out the product 
of the identical components in each breakdown. This will be the gcd. Take 
M=2·3·3·7·23=2898 and N=3·7·13·31=8463. Here the common product is 3·7=21 and 
hence gcd(8463, 2898)=21. This second route for finding the gcd at first glance seems a 
lot faster. However its drawback is that one has to first factor the numbers N and M into 
their prime number components. This can be quite time consuming when the numbers are 
large. Typically one breaks up large composite numbers by use of a number tree. Let me 
demonstrate for the above number N=8463- 
 

               
 
 
Notice that the final result will always involve the product of prime numbers unless N is 
already prime by itself. 
 



We point out that the two composite numbers N and M can also have a gcd of 1 as, for 
example, N=28 and N=9 yielding gcd(28,9)=1. What is certain is that if one has a prime 
number P then gcd(P, N) will always be one regardless of N.  
 
Next let us use a little modular arithmetic to discuss the special case of the above identity 
when gcd(N,M)=1. One has- 
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which is equivalent to saying the inverse of N is- 
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with   α found by inverting the gcd result. Let me demonstrate. Take N=9 and M=11. 
Here the Euclid Algorithm yields- 
 

0122
1249
29111

+⋅=
+⋅=
+⋅=

 

 
So that gcd(11,9)=1 and – 
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This produces – 
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To demonstrate the use of the modular inverse of a number consider finding a second 
point Q(x2,y2) on the curve y=x 1.5 which represents the intersection of a tangent line 
through point P(1,1). The tangent line reads y=0.5(3x-1) and must match y=x1.5at the 
second intersection point Q(x2,y2). That is- 
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So the second point becomes Q(1/4,1/8). But this point is actually closer to the origin 
than is P(1,1). To move further out one makes use of the property of a cubic which states 
that a second point with P(x3,y3) can be found at- 
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For the present example this means x3=(3/2)2-2 and y3=(3/2)(x3-1)+1. Note the 2-1 term 
in both expressions. So let us take a positive odd number N and the number 2 and find the 
gcd. We have- 
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Inverting, one has- 
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which produces the derivative- 
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Substituting, this in turn produces the multiple point results- 
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for points along the curve y2=x3. Thus if N=5 we get x3=79 and y3=703. Notice that these 
points are very close to the curve but will not be directly on it unless x3=n2 and y3=n3 
where n=1,2,3,…  We show the accuracy of this mod inversion process by plotting the 
coordinates for x and y for N=2n+1 when  0<n<50 versus the curve y2=x3. 
 



            
 
The agreement is quite good. We also notice that y3 is always an odd number for the odd 
N case under consideration. Replacing N by 2n+1, one finds that- 
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An interesting sidelight is the observation that F(n) is a function rich in prime numbers. 
Just looking at the first hundred values of n yields a total of 34 primes. These are found 
for – 
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Even for very large values of n one still finds numerous primes from this formula. One 
such example occurs for n=649179783461987435895781233986755 and yields the 
hundred digit prime number – 
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One can also obtain the gdc of more than just two numbers. Take the integers N, M, and 
K. First evaluate gcd(N,M) and  then calculate gcd(K, gcd(M,N)) to get gcd(N,M,K). As 
a special case take (N,M,K)=(723,263,1271). Here gcd(723,263)=1 and 
gcd(1271,1)=gcd(723,263,1271)=1. 
 



 The gcd is also useful in solving the linear Diophantine equation- 
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Where a, b, and c are integers and we are looking for integer solutions for x and y. Let   
α=x/c and β=y/c to get the equivalent form- 
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We need only find the values of α and β by inverting the Euclidian Algorithm involving a 
and b. Let us demonstrate. Consider the specific Diophantine equation- 
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 From the gcd calculation we have- 
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This is of course not the only integer solution. Looking at 1=4-1·3 as a mod(4) operation, 
we get- 
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A table of the integer solutions for -2≤k≤2 follows- 
 

 k  x  y 
-2 -9  7 
-1 -4  4 
 0 -1  1 
 1  3 -2 
 2  7 -5 

 
Lets next try a more complicated linear Diophantine equation- 
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This time the Euclidian Algorithm yields- 
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So that gcd(312,49)=1. Inverting, one finds after several steps that- 
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Thus – 
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For k=0 the integer solution becomes (x,y)=(-247,1573). 
 
For linear Diophantine equations the integer solutions always lie exactly on the curve 
defining x and y in a continuous manner. This will no longer  be the case when dealing 
with non-linear Diophantine  equations such as the elliptic equation x3+ax+b=y2.(see the 
graph above and the discussion on elliptic equations in the following section) 
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