SOME LESS WELL KNOWN IDENTITIES INVOLVING N!
It is well known that the factorial is defined as-
n!=1-2-3-4-.... n=[" t"exp(—t)dt=T'(n+1)
, where I'(n) is the continuous gamma function. We also have the identities-
n!(n+1)=(n+1)! and n['(n)=I'(n+1)

Using this information, one can construct numerous other identities involving the
factorial. Doing so will be the main topic of this article.

We begin with writing (2n)! as-
(2n)!=[1-3-5-...-(2n-1)]-[(2"n)-n!]

Next we notice that I'(1/2)=sqrt(m), I'(3/2)=(1/2)sqrt(x), and I'(5/2)=(3/2)(1/2)sqrt(m).
These allow us to generalize to produce-

[1-3-5-...-(2n-1)]=2*n)['(2n+1)/sqrt(m)
Getting rid of the left hand side of this last equality, allows us to rewrite (2n)! as-
(2n)!=n!{2"(2n)-T'[(2n+1)/2]/sqrt(r)}

This result was first obtained by Legendre and is known in the literature as
Legendre’s duplication formula. At n=5, it reads-

10!=5!21"T(11/2)/sqrt(m)=3628800
We can double (2n)! by replacing n by 2n. This produces-
(4n)!=n!2”(6n){I'[(4n+1)/2]T'[(2n+1)/2]}/7)}
Doubling the ns again produces-
(8n)!=n!2"14n{I'[(8n+1)/2]T'[(4n+1)/2]T'[(2n+1)/2]}/[rsqrt(m)]
Also we have-

(16n)!=n!230n{T'[(16+1)/2]T[(8n+1)/2]T[(4n+1)/2]T[(2n+1)/2]}/a"2



So we have the generalization-

[2*K)n]!={n!2* [2n(2 k-D]/(sqrt(m) "k} [T4o3 T[22

For k=1 this result reduces back to the Legendre duplication formula. This
generalization allows one to easily express large n! in terms of products of powers of
primes.Take the case of k=2 and n=2. Here we get-

8!=(277)(372)*5*7=40320 with the exponent vector V=[721 1]
Note that this factorial and others have a similar prime product form in which the

lowest primes have the largest exponents. Here is a demonstration of this fact via the
following table-

Factorial exponent vector, V
21=2 [1000]
3!=6 [1100]
41=24 [3100]
5!=120 [3110]
6!=720 [4210]
7!=5040 [4211]
8!=40320 [7211]
9!=362880 [7411]
10!=3628800 [8421]

Numbers of this type, where the powers of their prime vector V elements drop with
increasing prime number such as 8>4>2>1>0 for 10!, are what we have termed
earlier as super-composites. Such super-composites are recognized by having their
number fraction f=[sigma(n)-n-1| /n >1. The values of the number fraction are
found to tower in value above their neighbors as shown in the following graph for
f(8!)-
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One can also use ever increasing n! to show that f(co) becomes unbounded but does
so very slowly. Even for f(100!) we find the relatively small value {=7.293771353... .
Remember that when n is a prime, the value of f will always be zero.

We can quickly determine 11! by adding up the vectors [8§ 42 1] and [0 0 0 0 1].That
is, 11! corresponds to the vector[8 4 2 1 1]. So-

11!1=(278)(374)(5"2)(7*1)(11*1)=39916800 with f(11!)=3.609814790...

Another interesting relation involving n! and not often seen in the literature is the
fact that-

1:4-9-16-....n"2=n!n!

That is, the product of the squares of integers up to n*2 equals the product of n!-n!
One can take this result further by noting that-

1:2"m-3"m*4*m= (n!)"m
Thus we have that-

1-16-81:256 = (4!)"4 = 331726



One can rewrite these equalities in the compact form-
n ™= (n)rm
So, 1-8:27-64=13824 and 1-8-27-64-125-256=(6!)"3=373248000.
Finally we can look at the sum of some series involving n! Lets begin with the sum-
G(n)=1!+2!+3!+4!+(n-1)!+n!

Here the sums go as G(1)=1, G(2)=3, G(3)=9, G(4)=33, and G(5)=158. Summing to
n! we get-

G)=3}4 J!
This is a very rapidly growing series as n increases. Thus, for example ,

G(20)=25613274941118203

Next we look at the numbers —

N =1+1+1/6+1/24+1/120+...= Y, iﬁ—e=2.71828182845235...
and-
M=1+1+1/36+1/76+1/14400+...=Y ", #=Io(2)= 2.279585302...

, where Io(2) is the modified Bessel function of order zero at x=2. We also have

) —1 =2.1297025489833064181...

n=0 yimin

and-

o0 1 _
Zn:OW 2.0632746238463152314...
Clearly as the number of n!s increase in the denominator of the sum, the series
heads toward two.
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