
                                    FACTORING LARGE SEMI-PRIMES 

It is well known that it is difficult to factor a large semi-prime number N into its two prime 

components. We look more into this problem here and show ways to factor such numbers 

making use of the Goldbach Conjecture. Our starting point is the formula- 

                                                                  � = � ∙ � 

where p and q are the two prime numbers whose product equals N. To aid in our analysis we 

apply the Goldbach Conjecture that the sum of two primes will always be equal to an even 

number. That is- 
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This means that n is the average integer value of p and q. Next eliminating q from these two 

equations, yields  the quadratic form- 

�
 − 2�	 + � = 0 

Solving this algebraic expression yields the solutions- 
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provided that p<sqrt(N)<q. One can also rewrite things as the Diophantine Equation– 
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with   m=(q-p)/2  and n and  m  both integers. Fermat first used these integers in his factoring 

approach to semi-primes. One can also think of  n, m and N as parts of a Pythagorean triple 

represented by the following right triangle- 

 



                                       

Comparing this triangle with the solution rectangle N=pq=(n-m)(n+m) yields the geometric   

figure- 

                                               

The ratio of the grey area to the red area is 2sqrt(N)/sqrt(n
2
-N). 

The solution we are looking for is shown by the blue dot on the following graph- 



                               

 

One can now attempt to evaluate the expression for p for a specified N by treating the average 

value n as a running variable starting with the integer nearest to the  sqrt(N). Thus , if we are 

given N=3763 where sqrt(N)=61.343.., we start our evaluation with n=62 followed by n=63 etc. 

In this case the answer will already follow from the first operation, namely,-  

� = 62 − �3844 − 3763 = 62 − 9 = 53 

The value of q follows from 2n-p=N/p=71. For most Ns, especially when they become larger, the 

analysis will typically require a much larger group of ns before the radical sqrt(n
2
-N) is found to 

have an integer value. In such cases one can use several approaches. One is to simply carry out 

an evaluation of the p expression for an n value near the sqrt(N) and just keep operating with 

ever larger ns stepped off in unit increments. Such a procedure can be nicely implemented on a 

computer. Take the case of N=5141 where sqrt(N)=71.70076... The one line program we run for 

this case using MAPLE is- 

                                   for n from 72 to 80 do {n, evalf(n-sqrt(n^2-N))}od; 

At n=75 it spits out the integer answer- 

                                                    [n,m]=[75,22] 



It thus took just four simple operations to determine the value p=n-m=53 and q=n+m=97. This 

should be compared with the 16 divisions required by the brute force approach of dividing N in 

turn by the primes 3 ,5, 7, 11,…through 16 . A picture of the hyperbola for 5141=n
2
-m

2
 and the 

integer solution [75,22] follows- 

                         

It should be pointed out that in most cases simple evaluations as those shown above will no 

longer be possible, in particular for large Ns such as encountered in cryptography. Under those 

cases the value of n is likely to be far removed from sqrt(N). This means that if a stepping 

procedure is to be used then one needs to start with some larger values of n. How can such 

values be determined? One possible way is to note that  ε=N/n
2
=4pq/(p+q)

2
 is often a small 

parameter suggesting a series expansion of the above hyperbolic function n
2
-m

2
=N in powers of 

ε .  Carrying out such an expansion we find- 
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Thus, if ε is small, we have the approximation- 
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Although in general one won’t know the value of n beforehand, one could make an assumption 

that  n=k sqrt(N),  where k is a constant with a value of  one or greater. Let us demonstrate such 

an approach by looking at the famous Fermat Number- 

                                            N= 2
32

+1=4294967297 

Fermat thought it to be prime but Euler proved that it wasn’t. Indeed, Euler showed that this 

number is composite with p=641 and q=6700417. Here n=(641+6700417)/2=3350529 so that 

N/n
2
=0.0003825895458… is indeed small .   We can thus estimate that an integer value for m  

equals  approximately m≈n[1-(N/2n
2
)].  At n=3350529 we find m=3349888.0613… which is very 

close to the exact value of m=3349888. Searching for an integer solution near n=3350529 with 

the program- 

            for n from 3350527 to 3350532 do{n , evalf(n-sqrt(n^2-4294967297),10)}od; 

produces the following- 

                         n                                p=n-sqrt(n^2-N) 

                  3350527                         641.00038269 

                  3350528                         641.00019135 

                  3350529                         641         ←integer solution  

                  3350530                         640.99980865                  

                  3350531                         640.99961730 

From this result we also have that q=2n-p=6701058-641=6700417. The value of k=n/sqrtN to 

use in this case is about 51 meaning we are a long way from n≈sqrt(N)  for this semi-prime. If 

we had not known the factors p and q beforehand , a long search would have been required 

trying ns for many different values of the constant k. That is, the procedure is a little like playing 

the boardgame battleship where one aims for a point in the range sqrt(N)<n<(N+1)/2 . 

When N has hundreds to several thousand digit length, the search using a large number of 

different ns becomes essentially  impractical  even with the use of the fastest existing electronic 

computers  and application of improved factorization methods  such as general number field 

sieving(GNFS) or elliptic curve factorization . I am still waiting for someone to break the 

following 1084 digit public key- 

N=160731047637009729259688920385507056726966793490579598495689711866432421212774967

02989534032719790175609601429913262345458317707205045275551070134067328238564789969

40838813161946424174515704834663277821357305755648561855464870530344045600634336147



23836456790266457438831626375556854133866958349817172727462462516466898479574402841

07170390913806245656762456578425410156837840724227320766089203686970819068803335160

15394016215765079648415972059527224877506709045229323287315306407064573821626447385

38813247139315456213401586618820517823576427094125197001270350087878270889717445401

14579223167409894841688886825014359202697385397378512021707795176654693957752089724

53921865472795724941776802915065785089627079348791249148808855007264396250330219367

28949277390185399024276547035995915648938170415663757378637207011391538009596833354

10773715627303749472785830202866336629694392500864734876927203553226504804970982727

51793812528986759655285106192583767791710305564828845357288129162166254301870395336

68677528079544176897647303445153643525354817413650848544778690688201005274443717680

593899 

which I constructed about a year ago using a new prime number generating formula. It took me about 

an hour to generate the primes p and q and then to construct N. It’s time for NSA (or anyone else 

capable of factoring large semi-primes) to get busy on trying to crack this number. My bet is that they 

won’t be able to, at least not anytime soon. 

Finally I leave you with three semi-primes N=100160065 , N=3289192017, and N=455839 all of which 

are very easy to factor. For the first one the analysis starts with n=10008>sqrt(100160065)= 

10007.99995. One finds at once via a single evaluation that p=10007 and from this follows  q=10009. It is 

an example of having the values of p and q too close to each other for key security. In the second 

example a single division of 3289192017 by the lowest odd prime p=3 yields a q=1096397339. It is an 

example of having the value of p too  small. The third number is a number often used to show how 

Lenstra Elliptic Curve Factorization works (see Wikepedia). For this example it is much faster and easier 

to simply use the present running n approach. Indeed we have here that sqrt(N)=675.158.. so that we 

start the evaluation of    n-sqrt(n^2-N) using n=676. Already at n=680 we find the integer factor p=599 so 

that q=761. Good secure public keys require N in the several hundred digit range while at the same time 

having the ratio q/p neither near one  or approaching very large values . Already an eleven digit semi-

prime such as N=74197213369 requires 2203 operations using the n variation (also known in the 

literature as Fermat factorization) approach starting with n=272392 ≈ sqrt(N). The first integer solution 

pair found is [n,m]=[274595,34716] to yield the factor [p,q]=[239879,309311]. See if you can factor the 

19 digit number- 

                                           N=1127451830576035879      

into its prime factors   -  

                     p=486100619                      and                                 q=2319379541                              

using the n variation approach for a good choice for k.  

You can go to- 

                              http://www.alpertron.com.ar/QUAD.HTM 



to find a calculator which solves n
2
-m

2
=N for smaller semi-primes N out to about ten digit length. It is 

just necessary to set n=x, m=y, a=1, b=0, c=-1, d=0, e=0 and f=-N in the generalized Diophantine 

equation ax
2
+bxy+cy

2
+dx+ey+f=0. The program is based on the elliptic curve factorization method. 
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