
                           FACTORING OF N=pq USING k   
 
In several earlier notes we have found that a semi-prime N=pq ,with primes p<q, can be 
factored into the forms p=6n1 and q=6m1, where n and m are integers whose values 
depend on finding integer solutions of – 
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Here A=(N-1)/6 for the first case and A=(N+1)/6 for the second case. Also H=A mod(6) 
and B=(A-H)/6. For smaller and intermediate sized Ns the above radicals are easy to 
solve to produce integer values. However, when N is large it becomes difficult to find the 
right value of variable k which allows this. The values of n and m are given as- 
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For a typical semi-prime the quantities B and H will be known, so one needs to only find 
the value of k which makes the radical an integer. Although B is typically much smaller 
than k, k can nevertheless become large so that a brute force evaluation of one or the 
other of the radicals can become extremely time consuming. 
 
We show here how to get around this difficulty by estimating a value for k designated by 
k1. The procedure works as follows. It is known that – 
 
         p= 6n1=sqrt(N)   and      q=6m1=(1/)sqrt(N)  with      o<<1 
 
Thus for large N, we can say that-  
 
                nsqrt(N)/6 ,    m(1/)sqrt(N)/6, and   p/q2 
 
The range for  is  0<<1 with =1 meaning that n=m and p=q. 
 
Now we can get an estimate for the desired value of k by eliminating n from its two 
definitions. For the case  of N mod(6)=1, we get- 
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and for N mod(6)=5, we have- 
 



                    SkH
N







 )6(

2
1

6


 

 
Solving for k in these last two expressions, we have, after noting  H<<6k and 
1<<sqrt(N),  that -   
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These values can now be used to search for the k which should lie close to k1 and which 
makes the radical an integer. The values for k1 depend not only on the root of N but also 
on . Typically large semi-primes will require large k1s and the size of |k1| will increase 
with decreasing . The following graph characterizes this behavior- 

        
 
 In the graph we have run the non-dimensional quantity L=36k1[]/sqrt(N) over the 
range 0.2<< for both types of semi-primes. The increase in L with decreasing  is at 
first small but then increases rapidly for values of  in the given range.  Typically we 
have L2 for Nmod(6)=1 and L -1 for N mod(6)=5 provided  lies between 0.5 and 1. 
We also find the  unique value of L=2 occuring  for those semi=primes N where p=q. 
 
Let us next demonstrate the above points by working out a few explicit factorizations of 
larger semi-primes. Take first – 



N=155505643 where sqrt(N)=12470.19, N mod(6)=1,A=(N-1)/6-25917607,H=A 
mod(6)=1, and B=(A-H)/6=4319601. 
We assume first that =1, so that we have the k1[1] estimate - 
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If <1, then k1[] increases to a value of sqrt(N)/36}{+1/}. 
   
Now carrying out the following computer search- 
 
for k from 693 to 723 do {k,sqrt((1+6*k)^2-4*(4319601-k))}od 
 
yields R=1017 at k=713. So we have our solution – 
 
               [n, m]=(1/2)(1+6(713)1017)=[1631, 2648] 
 
which means that- 
 
  155505643={6(1631)+1}{6(2648)+1}=9787 x 15889 
 
As a side benefit, we now know the value of . It equals =sqrt(p/q)=0.7848.  
If we had used this value of  instead of =1 then k1[0.7848]=713.22 and so essentially 
matches the solution of k= 713.   The advantage of using k1[1] in our calculations is that 
we know for the N mod(6)=1 case that it offers a lower bound on the actual k1[] 
considerably larger than k=0. 
 
Another interesting point following from the  N mod(6)=1 case is that k1[1]=sqrt(N)/18 
for all positive integer semi=primes including the one hundred digit long Ns used in 
public key cryptography. So for a semi-prime of 100 digit length the k to be used in an 
integer search for R must be some 48 digit long or longer k1[1]. 
 
Consider next an N where N mod(6)=5. Such an example is- 
 
 N=3475379339=(6n-1)(6m+1) where N mod(6)=5 and sqrt(N)=58952.348. 
 
Here A=(N+1)/6=579229890, H=0 and B=(A+h)/6=96538315. Although the k1[1] case 
is here equal to zero, one can use the neighboring value corresponding to =0.8. This 
yields the search starting point of k1[0.8]=-736.90. Carrying out a search with this last 
value leads to an integer S=20314 at k=-858. Thatvis it took 122 operations to find an 
integer answer.the rest of the problem is now easy. We have- 
 
        [n,-m]=(1/2){(-6(858)20314}=[7583,12731] 
 
From this result follows the factorization- 
 



                         3475379339=45497 x 76387 
 
In both of the above case the factoring of nine and ten digit long semi-primes was fairly 
easy to accomplish compared to other existing methods such a elliptic curve factorization 
and generalized grid methods. It is very likely that even larger semi-primes can be 
factored by the present approach. To prevent rapid factorization will require that N have 
values of  lying in a range 0<<0.1. There it becomes difficult to find a k1 close to k 
since  is not known before hand. The most consistent approach to factoring by the 
present method is to determine several different k1[] values for a given N and then 
search within a limited range for integer solutions of R or S for a given k1[]. If no 
solution appears after a 10% search range proceed on to the next k1[]. This stepping 
procedure will eventually lead to an integer solution for R or S and thus factorization. 
Here is a schematic of such a search method for the N mod(6)=1 case- 

    
One can start the search for integer R or S within any of the boxes centered on a given 
k1[].  
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