
GRAPHICAL LOCATION OF THE TWO PRIME COMPONENTS OF ANY SEMI-PRIME 

 

We have shown in earlier notes on this web page that all primes and semi-primes 
satisfy 6n±1, when integer n equals one or greater. This fact is well described by 
the following  hexagonal integer spiral -  

                 

 Here all primes lie along either 6n+1 or 6n-1. Also semi-primes N=pq, such as 25 
and 35, lie along these same two radial lines. We wish in this article to locate the 
components for several specific semi-primes N=pq and present the results in 
geometrical form. 

We begin with any general semi-prime- 

                                 N=pq=6s±1 

Here s is an integer of size 1 or greater. This semi-prime lies along the plus or 
minus sixty degree radial line 6s+1 or 6s-1. The prime components p and q also lie 
along one of the two radial lines on opposite sides of a circle of radius r=sqrt(N). 



There are three separate distinct configurations possible as shown in the 
following- 

                    

 

One finds the prime component p inside the circle of radius sqrt(N) and q outside 
the circle. Once either p or q are known the other follows from the N=pq 
definition. To see along which radial line N lies one needs to only perform a 
mod(6) operation. If N  mod(6)=1, N lies along the 6n+1 line. If N mod(6)=5, N lies 
along the 6n-1 line.  

Let us next look at the geometry of some specific Ns. Begin with- 

       N=24949    where N mod(6)=5 , s=4155, and sqrt(N)=157.89 

So we know at once that N lies along the downward  6m-1 radial line with p 



<158<q. From the above graph,  p has the form 6n+1 and q of the form 6m-
1.Multiplying things together yields- 

                     (6n+1)(6m-1)=6(4155)-1 

This is equivalent to- 

                   m=[4155+n]/[6n+1] 

It solves as n=16 and m=49, yielding the factors p=97 and q=257. We have the 
(not to scale) geometric picture- 

            

 

As the second specific semi-prime consider- 

                 N=42607   where  N mod(6)=1  and sqrt(N)=206.41 



Here, according to the first generic circle graph above, there are two possible 
different locations for p and q. In one case we have p=6n+1 and q=6m+1 while in 
the other one has p=6n-1 and q=6m-1. The fastest way to see where p lies is to 
run the program- 

         N:=42697; for n from 0 to 60 do ({n,N/(6*n+1),N/6*n-1})od; 

 In a split second it yields the answers  n=23  for q=311 and  n=52 for p=137. So 
we have – 

                       p=6(23)-1=137    and   q=6(52)-1=311 

So both p and q have mod(6)=5 meaning they lie along the 6n-1 radial line. Here is 
the picture- 

     

 

 



We can also generate a picture where N, p , and q all fall on the line 6n+1.  All one 
has to do is write down- 

                                  (6n+1)(6m+1)=6s+1 

This is equivalent to- 

                                  6nm+(n+m)=s 

Now taking n=3 and m=5, we get 90+8=98=s. So we get the numbers- 

                         p=19   ,   q=31   ,   N=6(98)+1=589   

The prime location geometry for this last N looks as follows- 

   

Note that this reverse procedure for finding the p and q locations works only as 
long  as  p and q are both primes. N will always be composite. 

 



We have shown that any semi-prime and its prime components can be projected 
geometrically to lie strictly along two radial lines without accept ion. A mod(6) 
operation on N starts the process. This is followed by an evaluation and location 
of p and q along one or both of two radial lines, as originally found by us several 
years ago while constructing hexagonal integer spirals. The p and q evaluation can 
be carried out by computer and several different methods are available for doing 
so including an earlier technique, not discussed here, involving the sigma function 
of number theory. 
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