
              PARABOLIC AND ELLIPTIC REFLECTORS 
 
 
It is well known that reflecting surfaces of either parabolic or elliptic shape have 
the interesting property that incoming light rays with specified orientation can 
reflect off of such surfaces to  produce a bundle of  reflected rays which converge 
at one point termed the focus. We wish here to review the procedure for locating 
such focal points. 
 
We start the analysis by looking briefly at the basic reflection law from a surface. 
Since paraboloids and ellipsoids can in most instances be taken as being 
axisymmetric, it is sufficient to look at just the 2D version of reflection. This is 
done by first defining a curve y=f(x) as shown in the accompanying figure- 
 

          
Next we consider an incoming light ray parallel to the y axis. Its unit length vector 
form equals Vi= -j. When it hits the reflecting surface a reflected ray will be 
established. Its unit length form is denoted by Vr. A third vector N, not of unit 
length, is formed by taking the gradient to the surface at the impingement point. It 
equals N=grad[y-f(x)]. Now from optics we know that the reflection angle  
equals the angle of incidence . This means the dot products |N/|N|Vi| and 
|N/|N|Vr| both equal to cos(). Applying vector addition we then have- 
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, where N1=N/|N| is the unit length vector along N. This equation represents 
essentially the Law of Reflection for any incoming light ray and can thus be used 
for both parabolic and elliptic reflectors. 
 



PARABOLIC REFLECTORS: 
 
Here we have a reflector whose surface contains the parabola y=x2. Assume an 
incoming light ray whose unit length vector reads Vi= -j. The Inward normal to 
this parabola is- 
 
                      N=grad(y-x2)=-2ix+j 
 
and the unit length vector parallel to N will be – 
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Applying the Reflection Law we find- 
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But we can also write the full reflection vector as- 
 
           (0-x)i+(h-x2)j=Const. Vr 

 

, where the vector also contains the axial point [x,y]=[0,h]. 
 
So we have- 
 
           Const.=(1+4x2)/4  and  h=1/4      
 
This last result implies that all reflected rays produced by all light rays coming in 
parallel to the y axis will focus  at point x=0 and y=1/4. This is the focal point as 
also shown in the following figure- 
 
 



                
 
This focusing capability has received wide application in the design of flashlights, 
auto headlights, acoustic listening devices, and solar trough concentrators. Note 
that a light ray coming in parallel to the y axis and striking the reflector at 
[x.y]=[1/2,1/4]   will produce a horizontal reflected ray which also passes through 
the same focal point at [0,1/4].  Large focal length parabolic mirrors form the 
basis for all reflector telescopes. Such telescopes, like the Hubble space telescope, 
usually do not place their observation point at the focal point but rather use a 
secondary reflecting mirror to concentrate the converging light rays at a point 
behind the primary mirror. Some thirty years ago we were involved with creating 
some eight foot diameter parabolic mirrors under contract with NASA. We 
constructed them by first manufacturing a foam composite which approximates a 
paraboloid and then rotated this form on a turn table after adding a small amount 
of liquid epoxy to the paraboloid surface. Spinning the form at constant rotational 
speed until the epoxy hardened led to a perfectly formed parabolic surface which 
was then coated with reflective mylar. We thus were able to produce near perfect 
long focal length parabolic mirrors of large diameter at minimal cost. Although 
these mirrors where not of optical quality, they were perfectly sufficient to 
concentrate parallel rays of sunlight coming from a heliostat to the order of 300 
suns. This concentration was enough to set on fire wooden 2x4s held at a focal 
point some 30 ft in front of the mirror.  We were using the concentrated sunlight 
to power a Yterium(YAG) glass laser.   
 
 
ELLIPTIC REFLECTORS: 
 
While parabolic reflectors concentrate parallel light rays to a single focal point, 
elliptic mirrors have two focal points as shown in the following graph- 
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The ellipsoid is cut by the ellipse- 
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, whose inward unit  length normal is given by – 
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There are two focal points F1 and F2 located at [x,y]=[sqrt(a2-b2),0]. The 
eccentricity of the ellipse is given by- 
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, where c represents the distance from the ellipse origin to its focal points. 
 



Consider now a light ray coming from focal point F1 at [-c,0], hitting the ellipse at 
[x,y], and then sending a reflected ray toward the x axis. The incoming ray has the 
unit vector representation – 
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Using the above stated Law of Reflection allows us to predict that the unit length 
reflected vector will then have the rather lengthy form- 
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When looking at the special case of  [x,y]=[0,b], this produces- 
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 We can also write the unit vector going from [0,b] to [x*,0] as- 
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Comparing these two forms for Vr, we can conclude that x*=c. That is, the 
reflected ray at [0,b] hits the x axis at the second focal point F2 located at [c,0]. 
This result continues to hold for other reflection points along the ellipse for rays 
coming from focal point F1. Another, simple to calculate,  path is one where the 
incident light ray comes from F1,  impinges at x=c and y=b2/a , and then has a 
reflected ray Vr=-j passing directly through F2. 
 
Not only does a light source at F1 always hits F2 after reflection but also the transit 
time is the same and equal to 2a divided by the propagation speed. This means, 



among other things, that an explosion initiated at F1 will concentrate its energy at 
the second focus F2. This is essentially the secret behind triggering a hydrogen 
bomb by ignition of an atomic bomb at F1. It is also the principle behind the very 
successful and non-invasive pulverizing of kidney stones. Several decades ago 
one of my students (Mohammad Nasr) studied the focusing capability of a semi-
elliptical reflectors immersed in water. By igniting an electric spark at F1 and 
filming the event with a high speed camera, he observed the rapid growth and 
then decay of a cavitation bubble at F2  a few hundred microseconds after the 
spark initiation at F1..  
 
Whispering galleries are found all over the world. They are essentially rooms with 
ellipsoidal ceilings and circular walls. St Paul’s Cathedral in London and the 
Statuary Hall in the US Capitol are examples of whispering galleries. Two people 
speaking near focus F1 in one of these rooms can be clearly heard by someone 
standing a long distance away near F2.   
 
There are other types of reflecting surfaces besides paraboloids and ellipsoids 
which can cause light or sound waves to both converge and diverge. For example, 
many years ago we investigated a new type of bell shaped axisymmetric mirror in 
which a cylindrical radiating light source placed along the mirror axis was capable 
of producing a high intensity parallel light beam. Such mirrors would be helpful 
for dentists and physicians examining patients.    
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