
DISCOVERING MATHEMATICAL PRINCIPLES BY GENERALIZATION

In mathematics the sub-field of Number Theory lends itself to more than almost any
other discipline to generalizations following from specific examples. We want here to
demonstrate this fact by starting with the set of all positive integers and then see what
type of relations of a general nature one can be deduce from a limited number of specific
examples.

Our starting point is the set of integers-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 …n...

The even integers are all those numbers in this group which are divisible by 2. Thus all
even integers can be written as-

2 4 6 8 10 12 14 16 18 20 …2n…

The remaining integers are the odd numbers-

1 3 5 7 9 11 13 15 17 19…2n-1…

Some of these odd integers are divisible only by 1 and themselves. These are the prime
numbers-

2 3 5 7 11 13 17 19…p…

With the exception of 2, these prime are all odd numbers.

Lets first consider the sum of all even integers up to 2n. We have the specific cases-

2+4=6=22+2

2+4+6=32+3

2+4+6+8=42+4

2+4+6+8+10=52+5

From these we can generalize things to-
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Next dividing both sides of this equality by 2 produces the well-known result-
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If we want to add up only the odd numbers, we get-
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So adding up the first 100 odd numbers we have 10,000.

Next let us see what can be done with the sum of the squares up to N2. We have the
special cases-

12+22=5

12+22+32=14

12+22+32+42=30

12+22+32+42+52=55

In view of the form of the sum of the first N integers, one suspects that the sum of the
squares will have the form of a cubic-
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,where the numbers a, b, c, and d are to be determined using the above specific results.
Using these sums one obtains the matrix equation-
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On solving this equation, one finds a=1/3, b=1/2, c=1/6 and d=0. Thus we have-
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This means that the sum of the squares of the first ten integers equals 385. There is no
major difficulty in extending the discussion to the mth power of the first N integers using



the same argument as above but based upon the specific cases of the first m algebraic
equations. The sum of the first n third powers behave as follows-

233333

23333

2333

233

1554321

104321

6321

321









We can generalize this as-
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Thus the sum of the cubes of the first 100 integers equals 25502500.

One notices that all those integers which are not primes can always be expressed as the
products of primes taken to specified powers. Thus we have-

4=22 , 6=21x31 , 8=23 , 9=31x31,10=21x51 , 12=22x31 , and 14=21x71

That is , any number N can be written as-
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, where pk is the kth prime , ak its exponent, and m  the maximum prime required. The
first seven primes are p1=2, p2=3, p3=5, p4=7, p5=11, p6=13, and p7=17. A larger number
such as 2810236 can be expressed as 22x111x131x173. A simple way to find the prime
number product of such numbers is to use a number tree as follows-

One notices that the exponents shown in a prime number expansion of a number is
unique to that number. Hence we can introduce an exponent vector –



V=[a1,a2,a3,..]

to describe N. The vector for N=2810236 becomes V=[2 0 0 0 1 1 3]. One of the
properties that an exponent description of a number makes possible is to quickly find
what number N2 is required to make the product of N1 x N2 a perfect square. Take the
case of the number N1=572=22 x 111 x 131. What number N2 will make their product a
perfect square? The answer is N2=111 x131=143. So we have that 81796=572 x 143 has
the sqrt(81796)=286. There are of course an infinite number of other N2s which will
make the product a perfect square. All that is required that the exponent vector of the
product N1xN2 have only even elements. Another advantage of the exponential
expression for numbers is that it quickly allows one to find the greatest common
denominator gcd of two numbers. Take N1=312 =23ˑ31ˑ131 and N2=234=21ˑ32ˑ131. Here
the common factor is 2ˑ3ˑ13=78. Hence-

gcd(312, 234)=78

We next ask what is the product of the first N integers . It is simply N factorial denoted
by N! . Thus-
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k =210ˑ35ˑ52ˑ71ˑ111=479001600

Note that N!(N+1)=(N+1)! and N!(N+1)(N+2)=(N+2)!. Generalizing we have-
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On setting m=1, we have the generating formula-

(N+1)!=N!(N+1)

and on setting m=N we have-
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This last result works for even N but must be modified if N is odd. As an example, we
have –

8!=4!{(32+8-0)(32+12-2)}=24(1680)=40320



If we have two numbers a and b it is possible to take their sum to the nth power. For the
first few ns this produces-

(a+b)2=a2+2ab+b2

(a+b)3=a3 +3a2b+3ab2+b3

(a+b)4=a4+4a3b+6a2b2+3ab3+b4

We can generalize these results to obtain the well-known Binomial Formula-
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The factorial term in this expression is the Binomial Coefficient often denoted by C[n,k] .
The coefficient also defines the elements of a Pascal Triangle.

If we look at the sum of all divisors of a number N we obtain what is known as the sigma
or divisor function σ(N). For N=24 this yields σ(24)=1+2+3+4+6+8+12+24=60. A better
summation introduced by us several years ago is the number fraction function f(N)
defined as –
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We designed this function so that f(N)≡0 for all primes N=p. That is, for any prime the
only divisors are 1 and p so that the numerator of f(p) will always vanish. Furthermore
the function has the important property that-
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This means that f(p2)=1/p and f(p3)=(1+p)/p2. Solving for p we get-
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This can be thought of as a criterion for N being a prime p. If we take the number N=7
we get f(72)=1/7 and f(73)=8/49 and the quotient reads (1/7+1)/(8/49)=7. So 7 is a prime.
On the other hand if we look at N=9 we get f(92)=13/27 and f(93)=121/243. This means
the quotient equals 360/121 which differs from 9. Hence N=9 is a composite number. Of
course the same conclusion can be reached by noting f(9)=1/3 and so does not vanish. An
interesting function follows from the above. We term it the Prime Number Function
and define it as-
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Whenever N is a prime, F(N) =N while for all other integers the quotient will be less
than N. This fact is nicely shown in the following graph-

Note that the function has local maxima only when N is a prime number.

That a generalization in number theory is valid for all N may not always be so. For
example, the French cleric Mersenne back in the 16 hundreds observed that-

22-1=3  ,  23-1=7  ,  25-1=31, 27-1=127

So he concluded that the function 2p-1 always produces primes. Unfortunately this
conjecture was proven to be wrong as already shown by the next number 211-1=2047
which factors as 23 x 89. Indeed only some 48 cases of primes of the Mersenne type
have been found to date. Likewise , Fermat observed that-
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yields primes for n=1, 2, 3, and 4

He thought this observation should hold for 5 and higher. It was Euler who first showed
that 232+1 is not prime but rather a composite 641 x 6700417. To date no one has been
able to find a Fermat prime for n=5 or higher yet no proof exists that this is true for all n.
Such negative results of generalization in number theory might call into question the
utility of generalization. This however is not the case provided one confirms the results



for a large number of cases. Under those conditions the probability that the generalization
is valid produces a very high level of confidence.

Let us complete the present discussion by seeing if we can come up with some original
observations in number theory based on generalization. On writing down the primes in
ascending order starting with p=5 we note the following-

5=6(1)-1  ,  7=6(1)+1 , 11=6(2)-1 , 13=6(2)+1 , 17=6(3)-1 , 19=6(3)+1 , 23=6(4)-1
29=6(5)-1 , 31=6(5)+1  , 37=6(6)+1 , 41=6(7)-1 , 43=6(7)+1, and 47=6(8)-1

From these results we can generalize and state that-

All primes above N=3 have the form 6n±1

We find no exceptions to this conjecture although there are also composites which have
the form 6n±1. To check whether we are missing any primes  not of the form 6n±1, we
have gone to our computer and observe that the p3=5 and p15 =47. So that the number of
primes in the range  5 to 47 equals 15-3+1=13. This checks exactly with the number of
primes in the above list, meaning there are no primes other than of the type 6n±1. Thus
an odd number such as N=6(33156)+3=198939 can never be a prime but N=6(64333)-
1=385997 might be.

Furthermore the fact that if one thinks of the numbers 6n +k , for k=0, 1, 2, 3, 4, and 5, as
lying along radial lines at π/3 radian intervals from each other when measured in polar
coordinates, one gets the following pattern-

A hexagonal spiral with corners at all positive integer values has been superimposed.
Note that all the primes fall along the straight lines 6n+1 or 6n-1 and thus don’t show the
randomness for primes found with a Ulam spiral (see our 2008 article at–



http://www2.mae.ufl.edu/~uhk/MORPHING-ULAM.pdf. ). Note that 6n+5 is equivalent
to 6n-1 and that 6n+1 numbers always have N mod(6)=1 and  6n-1 numbers have N
mod(6)=5. Double primes are here characterized by lying along the same turn of the
spiral and symmetric about the 6n axis. Thus 5-7, 11-13, 17-19, 29-31, and 41-43 are all
examples of double primes.

Since all primes above p=3 have been shown to be of the form 6n±1, it stands to reason
that one should be able to quickly find very large primes by simply defining a random
large number x=6n±1 and  finding those values for which N=x+6m fields f(N)=0.This
search can be done by computer using the one line command-

N:=x+6*m;  for m from 1 to 50 do {m, evalf(f(N)}od;

Let us demonstrate by looking at a random number which may or not be a prime-

x:=6*(6784301217312139085463245728)-1= 40705807303872834512779474367

Here one finds f(N)=0 for m=11, 34,… . Thus one has the primes-

40705807303872834512779474433
and

40705807303872834512779474571
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