
        DERIVATION OF THE BASIC LAWS OF GEOMETRIC OPTICS 
 
It is well known that a light ray reflecting off of a surface has its angle of reflection equal 
to its angle of incidence and that if this ray passes from one medium to another that the 
interface condition is that the product of the index of refraction times the sine to the 
interface normal remains constant in both media. One finds numerous discussions on 
UTube concerning the derivation of these laws. Unfortunately these are mostly presented 
in a difficult to understand heavily accented manner and often much too long for what is 
being conveyed. We remedy this situation here by re-deriving the basic laws of 
geometrical optics starting with the Fermat Principle that a light rays will always choose 
a path which minimizes(actually extremizes) the transit time in going between two 
points. 
 
We begin our derivations and discussions with the following simple diagram- 
 

       
It indicates an incoming light ray emanating at point P[xi,1], hitting a flat surface at 
R[x,0], and then being partially reflected toward point Q[xr,1] and partially refracted  
going toward point S[xr,-1] in the second medium. The three angles associated with these 
rays relative to the surface normal N are given as indicated. 
 
LAW OF REFLECTION: 
 
Here we start at point P[xi,y], hit the interface at point R[x,0], and then send its reflected 
portion to Q[xr1]. The time it takes to go from point P to Q along this two part path is 
just- 
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Here c=3x1010cm/sec is the speed of light in vacuum and n1 the index of refraction in the 
first medium. Typical values for n are 1 for vacuum, 1.00029  for air, 1.33 for water, 1.52 
for crownt glass, and 2.4 for diamond. 
 
Taking the derivative of T with respect to x and setting the result to zero produces the 
Fermat  condition - 
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This is equivalent to saying sin(i) =sin (r), where the angles are measured relative to the 
surface normal N=j at the reflection point R[x,0]. Thus we have the Law of Reflection- 
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When this result is used for ray-tracing through complicated optical systems such as in 
certain solar mirror arrays, one usually prefers the vector form of this result. This vector 
form can be derived as follows. Start with the vector representations of the incoming and 
reflected ray-                    
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Next take  the difference to get- 
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But N=j and b/sqrt(a2+b2)=cos()=-(NVi). Hence the resultant vector form of the 
reflection law becomes- 
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A rather involved application of this formula can be found in one of the technical  articles 
I published back in 1980 in Solar Energy 25, pp221-223. 
 
CORNER REFLECTORS: 
 
Another  important application of the refection law applies to corner reflectors. In its 
simplest form a corner reflector consists of two perfectly reflecting mirrors mounted at 
right angles to each other as shown- 



          
An incoming ray hits the reflecting surface 1 with an incident angle i relative to thye 
normal N1. On reflection i=r.  A second reflection at normal N2 has incident and 
reflected angles equal to (/2-i). Hence adding up all four angles we get  
2i+(-2i)=. Thus vectors Vin and Vout are 180 deg out of phase with each other 
meaning what goes in is reflected back in the same direction regardless of the corner 
reflector orientation. Billard players will be very familiar with this effect. Adding a third 
reflector at right angles to the first two does not change the results. It is this property of 
corner reflectors which makes them useful in measuring distances using laser pulses. 
Indeed , during one of the earliest trips to the moon , astronauts left a 3D corner reflector 
lying on the moon surface allowing observers from earth to  make very accurate 
determinations of the earth-moon distance. 
 
    
LAW OF REFRACTION: 
 
To generate the Law of Refraction also known as Snell’s Law, we consider points P[xi,1] 
,R[x,1] and S[xt,1]in the above diagram. This time the time for the light ray to go from P 
to S is given by- 
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On differentiating once with respect to x and setting the result to zero, produces the time 
minimum condition- 
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From the diagram we recognize the quotients in this expression to be just the sine of i 
and t . Hence we have the Law of Refraction, also known as Snell’s law, - 
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This important law forms the basis for most lens calculations employing ray tracing. 
Notice that when n1<n2 a condition may exist where a light ray coming from S will be 
entirely internally reflected at the interface. This condition is known a total internal 
reflection and plays a major role in lossless light pulse transmission through optical 
fibers. If you are lying at the bottom of a swimming pool and looking up you will only be 
able to see the air side within a circle forming a  cone with your eyes at the vertex. This 
cone has the half-angle - 
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SIMPLE EXAMPLE OF RAY TRACING: 
 
To demonstrate how the Refraction Law is used in ray tracing, we consider the following 
optical set-up- 
 

        



                 
and try to find the deflection angle t2 between the exiting ray Vt2 and the second normal 
N2. We have here a glass wedge of vertex angle w=arctan(1/2) and index of refraction 
n2=1.5. A light ray Vi=-j comes in parallel to the y axis and hits the top of the wedge at 
point [1,0.5].The surface normal at the top of the wedge is determined by a gradient 
operation and just equals- 
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, when adjusted to have unit length. The angle of incidence with respect to this normal is 
just- 
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By Snell’s Law this yields the refraction angle t1 of- 
 

              deg34606.17)
53

2
arcsin(1 t  

The refracted ray now moves in a straight line along the t1 direction until it hits the 
bottom surface. There it is again refracted exiting the bottom of the wedge at angle t2 
relative to the bottom normal N2=-j. A little geometry involving the oblique triangles 
existing within the wedge produces an incident angle at the lower surface of                                                     
- 
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From this last result it follows that the deflection angle is- 
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 Note that this ray will eventually cross the y axis. It gives an indication of how lenses 
work to produce a focal point.                       
 
            
REFLECTION COEFFICIENT AT AN INTERFACE: 
 
A remaining formula needed in geometrical optics calculations is one relating the  
reflected ray intensity compared to the incident intensity. For this calculation it becomes 
necessary to consider light as a transverse wave with tine dependent electric and 
magnetic fields at right angles to the propagation direction. The first calculation using 
such a model was carried out by the French physicist and engineer Augustin-Jean Fresnel 
(1788-1827). Although better known to the public for his discovery of Fresnel lenses for 



light houses, his four equations governing  light transmission and reflection  an interface 
,motivated by earlier work of Young and predating Maxwell by some forty years, was 
truly a remarkable achievement. Let us show how to derive one of these equations based 
upon a polarized light wave where its electric field E lies perpendicular to the page in the 
above diagram. Under these conditions the magnetic field B lies in the plane of the paper. 
The boundary conditions at the interface are that- 
 
                Ei+Er=Et         and       Bicos(i)-Brcos(r)=Btcos(t) 
 
Also we have the electromagnet waves relation- 
 
                      B=nE/c 
 
applicable for incident, reflected and transmitted waves. Eliminating the Bs and Et from 
these equations yields- 
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Solving for the ratio Er/Ei we get- 
 

       












)cos()cos(

)cos(cos(

21

21

tr

ti

i

r

nn

nn

E

E




   

 
One can simplify this result further by using the reflection law i=r and the Snell’s 
Refraction Law that – 
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Now we know that the ratio of reflected light intensity to the incident intensity can be 
considered as the Reflection Coefficient R and is represented by the square of  Er/Ei . A 
case of special interest occurs when the incident light hits the interface along the normal 
direction. In that case i=r=t and the reflection coefficient reduces to the simple form- 
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For an air-glass interface we find approximately R=(0.5/2.5)2=0.04. That is only about 
4% of the incoming incident orthogonal ray is reflected. The rest is transmitted. That is 
the reason that one looses very little intensity of the incoming light when looking through 
a pane of glass. 
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