
 

                                                                                                                                                                                                                                                                                   
   HYPERBOLIC  FUNCTION  APPROXIMATIONS     

 

We have shown in several earlier notes on this web page how to use the KTL 
Method to obtain highly accurate approximations for certain slowly varying 
functions multiplied by rapidly oscillating Legendre polynomial and integrated over 
the range 0<x<1. Our most recent discussion of this method is given in article 104 
on this Tech-Blog. html page. We want in the present note to look at just one special 
case involving the KTL Method applied to hyperbolic functions. 

 We start with the integral- 

                              J(n,a)=∫ 𝑃(𝑛, 𝑥) cosh(𝑎𝑥) 𝑑𝑥
ଵ

௫ୀ
 

Here P(n,x) is the nth Legendre Polynomial. These polynomials are given by the 
Rodrigues’s  Formula- 

                                  P(n,x)=[1/(2nn!)]dn/dxn[(x2-1)n]  

They read- 

            P(1,x)= x  ,  P(2,x)= (3x2-1)/2   ,  P(3,x)=(  5x3-3x)/2 , 

          P(4,x)=(35x4-30x2+3)/8  ,  and  P(5,x)=(65x5-70x3+15x)/8  etc 

 Next we look at a few J(n,a)s starting with n=2  . They read- 

 J(2,a)= (1/a3){(a2+3) sinh(a)-(3a) cosh(a)}  

 J(4,a)=(1/a5){(a4+45a2+105) sinh(a)-(5 a3+105a) cosh(a)} 

J(8,a)-=(1/a9){(a8+630a6+51975a4+945945a2+2027025) sinh(a) 

            -(36a7+6930a5+270270a3+2027025a) cosh(a)} 

From these we can infer that- 

         J(n,a)=∫ 𝑃(𝑛, 𝑥) cosh(𝑎𝑥) 𝑑𝑥 = 𝑁(𝑛, 𝑎) sinh(𝑎) − 𝑀(𝑛, 𝑎)cosh (𝑎)
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If we now let a be small and n get large, the last integral approaches zero and we 
can make the KTL approximation-  



                                tanh(a)≈M(n,a)/N(n,a) 

 For n=8 and a=1, the approximation yields- 

                         tanh(1)  ≈2304261/3025576= 0.7615941559557 

This agrees with the exact value of tanh(1) to thirteen places. Even better 
approximations would follow  if n is taken to be greater than eight or ‘a’ less than 
one.  As shown on the following graph, the arctan(a) and the approximation 
M(8,a)/M(8,a) are nearly identical within the range -10<a<10 -  

              

 

This arctan curve has found extensive application in the literature for processes 

 involving the smooth transition from one state to another such as across a shock 
wave. 



Let us now apply the above approximation to any  hyperbolic function. We have 
the basic definitions- 

                     cosh(a)^2=1+sinh(a)^2 

From this follows- 

     sinh(a)=tanh(a)/sqrt(1-tanh(a)^2)   and   cosh(a)=1/sqrt(1-tanh(a)^2)        

If we now let-  

T=M(8,a)/N(8,a)=(36a^7+6930a^5+270270a^3+2027025a)/ 

                               (a^8+630a^6+51975a^4+945945a^2+2027025) 

we have a good approximation for tanh(a). 

Also we get – 

     sinh(a)≈ T/sqrt(1-T^2)          ,       cosh(a)≈1/sqrt(1-T^2)       

with- 

       sinh(2a) ≈2T/(1-T^2)            ,      cosh(2a) ≈(1+T^2)/(1-T^2) 

 

Evaluating these approximations at a=1 and a=2 produces the following 12 digit 
accurate results 

         cosh(1)=1.543080634815 

         sinh(1)=1,175291193643 

         cosh(2)=3.762195691083 

          sinh(2)=3.62686040784 

 

We can also use these results to find an accurate approximation for the base e. One 
has- 

             exp(1)=sqrt{(1+T)/(1-T)}≈ 2.7182818284590 



good to 13 places. To improve over this approximation one needs to involve 
Legendre Polynomials with more zeros in [0,1]. For the n=8 approximation we have 
used here there are only 4 zeros of P(8,a) in [0,1]. 
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