
                  A BRIEF REVIEW OF HYPERBOLIC FUNCTIONS 
 
In our discussion of Laplace Transforms and Complex Variables, we came across many 
instances involving hyperbolic functions. Since some of you were a bit rusty on the 
properties of these functions, let me quickly summarize their most important properties. 
We start with the basic definitions- 
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with z=x+iy. On squaring cosh(z) and subtracting the square of sinh(z), one has the 
identity- 
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which on dividing yields- 
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Furtheremore, on using the Euler identity exp(z)=exp(x) [cos(y)+isin(y)], we have that- 
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Thus if z=π/2, one finds that sinh(iπ/2)=i, sinh(0)=0, cosh(iπ/2)=0, and cosh(0)=1. 
Differentiating sinh(z) and cosh(z)with respect to z one finds- 
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and integrating, that- 
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Carrying out a standard Taylor series expansion  about z=0 one finds – 
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Thus we have, for example, that the sum of the reciprocal of all factorials yields- 
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On dividing sinh(z) by cosh(z) one finds the series- 
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provided that |z|<π/2. 
 
Many integrals can be solved in terms of hyperbolic functions. Consider the integral – 
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Here we  let p=2t and then manipulate things to obtain- 
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We thus have that- 
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Differential equations very often have solutions in terms of hyperbolic functions. Thus 
F””-F=0 is solved by F=A sinh(x)+B sin(x)+C cosh(x)+D cos(x) and G”-4G’+3G=0 has 
the even solution G=A cosh(3x)+B cosh(x) and the odd solution G=C sinh(3x)+Dsinh(x). 
 
Inverses of hyperbolic functions follow from inverting z=sinh(u) , z=cosh(v), and 
z=tanh(w) to get arcsinh(z)=u, arccosh(z)=v, and arctanh(z)=w. Next look at the three 
integrals- 
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Substituting t=sinh(u), t=cosh(v), and t=tanh(w) into these integrals yields- 
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These identities allow one  to use the binomial expansion to rapidly calculate their Taylor 
series. As an example look at the following expansion for arctanh(z). We have- 
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provided that |z|<1. From this last result we can conclude that the sum of the reciprocals 
of all odd integers will equal arctanh(1) and thus be infinite as expected. However when 
z=1/2 we find- 
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Again one has numerous integrals involving the inverse hyperbolic functions. See if you 
can verify the following- 
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Also you might want to show via a canned mathematics program(such as MAPLE)  or 
your hand calculator that- 
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