
                             INFINITE PRODUCTS 
 
 
One defines an infinite product as- 
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Taking the natural logarithm of each side one has- 
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So that the initial infinite product will converge only if the sum of the log terms 
converges. One of the earliest infinite products is the Wallis product of 1655. It 
reads– 
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and is easily established by noting that- 
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and realizing that as n goes to infinity the two integrals should be equal. This yields 
the Wallis result- 
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Looking at the log convergence test, one finds that the log series for the Wallis 
product sums to ln(π/2) and thus the Wallis product converges but, unfortunately, 
does so very slowly. 
 
 The next important historical contributions to infinite products were those of 
the Swiss mathematician Leonard Euler (1707-1783). In particular he looked at the 
function F(x)=sin(πx)/ πx and made use of the fact that this function has simple 
zeroes at  all integer values between minus and plus infinity. Accordingly he 
postulated that one should be able to expand things as follows- 
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and recognized that  An  must equal 1/n2 since the function must vanish at x=1, 2, 3, 
4, etc. As a result one has the convergent infinite product- 
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On setting z=π/2, we have the infinite product- 
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On setting z to π/6, one finds- 
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and by equating the coefficients of the x2 terms in the equality, one has his famous 
infinite series result- 
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 Following  similar arguments to those used by Euler, one can also show that 
the zeroth order Bessel function which has roots at λ1,  λ2, λ3,…yields the infinite 
product- 
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and that  cos(x), which has its zeros at (2n+1)(π/2), satisfies- 
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Another infinite product, again going back to Euler, is  that for the Riemann zeta 
function. It can be expressed  in terms of prime numbers pn as- 
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A good discussion of how this result is derived can be found in the book “Prime 
Obsession” by John Derbyshire and likely will play a role in the final proof of the 
Riemann conjecture. 
 
 Let us next demonstrate how one may convert a continued fraction into an 
infinite product. Consider the square root of two. One of its continuous fraction 
representation is- 
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whose convergents are given by- 
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We thus have 
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The sequence of numbers 2, -15 ,84,…appearing in the denominator of this infinite 
product expansion is generated by- 
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so that the next numbers will be -493, +2870, -16731, etc. 



 
 
 As another example of constructing an infinite product, we look at 
exp(1)=2.718281828459045…Starting with its computer obtained simple continued 
fraction exp(1)=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10…] we generate the convergents Cn  to 
find- 
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This time one can find no simple recurrence relation to generate the higher Cns 
because the continued fraction pattern in the square bracket above has varying 
integer values. Nevertheless, one can continue finding higher values of Cn by brute 
force calculation so that the resultant finite product can approximate exp(1) to any 
desired order of accuracy. We will stop here with C5 . The result is the 
approximation- 
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It would be nice if someone out there would  find the general form of Bn in this last 
expression so that an exact infinite product for exp(1) could be given. It will 
probably involve the use of the semi-periodic form of the coefficients in […] which 
go as   […(2n-2), 1, 1, (2n), 1, 1, (2n+2)…]. Alternatively one could search for a more 
symmetric form of a partial fraction for exp(1) which lends itself to general 
evaluation of Bn. Recall from above that the Wallis formula gives an exact value for 
π although its simple partial fraction array has the non-periodic form  
[3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2,…] . 
 
To sum certain infinite products involving quotients of functions of n it is sometimes 
convenient to first expand the numerator and denominator term in the quotient and 
then proceed to cancel various terms in the resultant expansion. A good example of 
such a procedure involves the evaluation of the infinite product- 
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Expanding this product out produces- 
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After cancelling terms we are left with- 
 



                          
3
2.....

1
1

1
1.

1
1

3
2

=



⋅









⋅=S  

 
Another example is- 
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For most cases the infinite product of a quotient of functions of n will be either zero 
or infinity. Thus- 
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