
    ITERATION  PROCEDURES  TO FIND VALUES  OF CERTAIN  CONSTANTS 

 

The ancient Babylonians(1500 BC) found a way to calculate roots of numbers using the iteration 

procedure- 

                                 f[n+1]={f[n]+(N/f[n])}/2 

, where N is the number whose root is to be found and f[0] has a value near  sqrt(N). This 

iteration was re-discovered by Newton-Raphson some three thousand years later using 

calculus. Here is the procedure. Starting with the first two terms of a Taylor  expansion- 

                                 f[n+1]  ̴f[n]+(f[n+1]^2-f[n]^2)/(2f[n]) 

, we get on replacing  f[n+1]^2 by N, the identical Babylonian result. Evaluating these iterates 

for N=2 and f[0]=1 produces the six row table-             

n                            f[n] 

0                           1=1 

1                       3/2=1.5 

2                   17/12=1.416 

3              577/408=1.414215 

4 665857/470832=1.4142135623 

infinity                  sqrt(2)=1.41421356237309504 

 

Notice how the iterates approach sqrt(2) at an accelerated rate as n gets large. It is truly 

amazing  that the ancient Babylonians where able to give an accuracy of root two to eight 

digital places  as indicated on one of their cuneiform  tablets. 

Besides finding the roots of integers N, iterations allow one to quickly approximate the values 

of various other constants. We will look at some of these below. Let us begin with the constant                       

                                      exp(1)=2.71828182845904523536028747135266… 

 I memorize the first 33 digits of this irrational number  with a  mnemonic I constructed several 

years ago. It reads- 



2.7- followed by Andrew Jackson inauguration twice (1828- 1828)-right triangle(45-90-45)-

Fibonacci three(235)-full circle(360)-year before the crash(28)-Boing jet(747)-end of black death 

in Europe(1352)-route west(66) . 

To derive an iterative formula for this important constant, we start with the finite sum 

difference- 

                               f[n+1]=f[n]+1/n!    subject to   f[0]=1     

This yields f[1]=2, f[2]= 3, f[3]=8/3, f[4]= 65/24, and  f[5]=163/60. As n goes to infinity the value 

of f[n] approaches exp(1). One can speed up the calculation for  values of f[n] by using the one 

line computer program- 

                       for n from 0 to 30 do f[n+1]:=evalf(f[n]+1/(n!),30)od; 

after setting f[0]:=0. The program yields an approximation for exp(1) of-  

                            f[27] = 2.71828182845904523536028747 

 

Next let us look at the constant   

                              π = 3.14159265358979323846264338328…    

which represents the  ratio of the circumference of a circle  to its diameter.  Here we have the 

identity- 
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We can write- 

f[0]=1, f[1]=2/3, f[2]=13/15, f[3]=76/105, f[4]=789/945.  From it we find- 

f[1]-f[0]=-1/3, f[2]-f[1]=1/5 , f[3]=f[2]=-1/7, and    f[4]-f[3]=1/9. So we have the slowly 

convergent  iteration formula- 

                    f[n+1)=f[n]+(-1)^(n+1)/(2n+3)   subject to   f[0]=1 

which at  f[100] gives the value  0.78787335 good to only two decimal places when compared 

with π/4=0.785398… To improve the convergence one needs to use some modified forms of 

arctan(x) with x<<1. One such formula is our own which reads- 

     π/4=12arctan(1/38)+20arctan(1/57)+7arctan(1/239)+24arctan(1/268) 

This can be rewritten as- 
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Here we don’t have to go through an iteration procedure as π/4 is given directly by the 

indicated infinite sum. Summing up to just k=20 we get the 68 place accurate approximation-     

      π/4~0.785398163397448309615660845819875721049292349843776455 695 

 

An interesting mnemonic for π is the following- 

               

Consider next the value of the Golden Ratio  φ=(1+sqrt(5))/2. Here we start with the identity 

(sqrt(5)-2)(sqrt(5)+2)=1 to get the iteration formula- 

                            f[n+1]=3/2+1/(4f[n])    subject to f[0]=1 

This produces f[1]=7/4, f[2]=23/14, f[3]=38/23, f[4]=251/156 with- 

  φ=f[∞]=1.61803398874989484820458683436563811772…    

Next consider the Euler Constant  defined as- 

   𝛾 =  

→ஶ  
 {1+1/2+1/3+….1/n -ln(n)= 0.5772156649015328606065120900824… The  

appropriate corresponding iteration formula is- 

                  f[n+1]=f[n]+1/(n+1)+ln(n/(n+1))  subject to f[1]=1 

It yields f[2]=3/2-ln(2), f[3]=11/6-ln(3), and  f[4]=25/12-ln(4). The convergence rate is here seen 

to be very slow. At f[1000] one finds 0.577715582 so only three places of accuracy. The 

iterative term we are using is here -                            

                                   f[n] := Psi(n + 1) + gamma - ln(n) 

As a final constant consider ln(2)=0.69314718...Carrying out a two term series expansion we 

find- 

                                  ln(1+x)≈ln(1+a)+(x-a)/(1+a) 

On setting x=1 with f[n+1]=ln(1+x) and f[n]=(1+a) , we get- 



                        f[n+1]=f[n]-1+exp(f[n+1])/exp(f[n]) 

Next letting  f[1]=1 and replacing  exp(f[n+1])by 2, we get the iterative formula- 

      f[n+1]=f[n]-1+2/exp(f[n])     with the initial condition f[1]=1. 

We find f[2]=1-1+2/exp(1)=2/exp(1)=0.73675  and f[3]=2/exp(1)-1+2/exp(2/e)=0.69404.This 

second iteration f[3] is already accurate to two places. A seventh iteration f[7] produces the 

ninety digit accurate result- 

 ln(2)= 

0.693147180559945309417232121458176568075500134360255254120680009493393621969

694715605863327 

There are numerous other iteration formulas capable of generating  constants  to any desired 

order of accuracy. Among these are the trigonometric  functions  which posses rapidly 

convergent  formulas.  Thus, for example,  cos(θ) at one radian can be  quickly  generated by – 

                                  f[n+1]=f[n]+(-1)^n/(2n)! subject  to f[1]=1. 
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