
                         HIGH ALTITUDE PARACHUTE JUMPS  
 
We want here to examine the speed as a function of height a parachutist will experience 
during a jump from heights above 100,000ft. The model describing this process is one 
where the individual will accelerate downward due to gravity while being slowed down 
by an altitude varying drag force. In mathematical terms one has- 
 
                  v(dv/dy)=-g+[(cD/2)ρv2A/m]  subject to  v(H)=0 
 
where v=speed, y=height, g=9.8m/s2 the acceleration of gravity, m= parachutist’s mass, 
A= his cross-sectional area, ρ=gas density, and cD the drag coefficient. In this equation 
both the drag coefficient and the density vary with height making the equation highly 
non-linear.  For our calculations we will need the pressure, temperature, density and 
sound speed for the standard earth atmosphere. These are given in the following table- 
 
Height y   
  (km) 

Presure(kPa) Temp.(K) Density(kg/m3) Sound Speed(m/s) 

 0 101.3 288 1.225 341 
10  26.50 223 0.4135 299 
20  5.529 217 0.0889 295 
30  1.197 226 0.01841 302 
40  0.2871 250 0.003996 317 

 
 
We note that the sound speed goes as the square root of the temperature and is thus 
relatively little changed over the range of ground level to 100,000ft . c=300m/s is a 
reasonable approximation in this range. We can use the data from this table to obtain the  
approximate continuous pressure and density variations in exponential form. They read- 
 
                     p=101.3exp(-0.143y)   and  ρ=1.225exp(-0.131y) 
 
with y expressed in kilometers, p in kilopascals, and ρ in kilograms per cubic meter. The 
drag coefficient cD is dependent on Reynolds number and hence speed. Its typical range is 
0.2 for a well streamlined body to about 1.5 for flat surface normal to the flow direction. 
In our calculation we will assume the jumper will try to streamline things and so have an  
average drag coefficient of cD=0.5. We assume the jumper and his pressure suit will have 
a mass of 130kg and an exposed cross-sectional area of A=1m2 . With these 
approximations the governing equation becomes- 
 
            v(dv/dy)=-g+{[1.225v2 exp(-0.131y/1000)/[2(130)]} with v(H)=0 
 
 
In this equation all terms are expressed in MKS units so that y is in meters and v in 
meters per second. Next letting U=v2 , the equation reduces to- 
 
                 dU/dy=-2g+{a exp(- b y)}U  with U(H)=0 



 
Here a=0.005772 and b=0.000131. We can solve this equation in closed form getting- 
 
      v=sqrt{(g/b) e –(a/b)exp(-by)[Ei(1,-(a/b)exp(-by))-Ei(1,-(a/b)exp(-bH))]} 
 
where Ei(n,x) is the exponential integral int(exp(-xt)/tn, t=0..infinity). A plot of this 
function follows directly below- 
 

 
The result is very close to the true downward speed a free-fall parachutist will encounter. 
First there is an almost constant downward acceleration of 1g reaching a speed in 
excess of  Mach one at about 27,000 meters. After that the atmospheric drag takes 
over and the jumpers speed will decrease continually due to atmospheric braking 
until reaching a speed of about 80 meters per second at y=5000m. At this point the 
parachute will deploy and a rapid deceleration will follow reducing the speed to 
about 5m/s for a safe ground landing. The largest g forces will be felt during the 
parachute opening where one decelerates from 80m/s to 5 m/s in as little as 20m yielding 
a deceleration as high as 16g . To lower such high decelerations, multiple smaller chutes 
should be used and released sequentially.  
 
Overall the pending free-fall jump should be safe with the largest dangers occurring 
during parachute deployment and during the supersonic portion of the descent. The 
supersonic speed experienced by the parachutist should not cause problems provided the 
spacesuit worn by the jumper is sufficiently sturdy to avoid ripping from the high shear 
forces encountered and the parachutist can maintain a steady orientation. The parachute 
deployment should be automated in case the parachutist blacks out. 


