
  
 

CONSTRUCTING TRUNCATED IRRATIONAL NUMBERS AND   
DETERMINING THEIR NEIGHBORING PRIMES 

 
It is well known that there exist an infinite set of irrational numbers including , sqrt(2), 
and e. Such quantities are of infinite length and have the property that they can never be 
represented as the ratio of two real numbers. Segments of irrational numbers of fifty digit 
length or so  are of  interest in connection with public key cryptography (RSA)  where the 
product of two segments of different irrationals adjusted to be prime can lead to nearly 
unfactorable semi-primes N=pq. It is our purpose here to extend several of our earlier 
studies on semi-primes to generate some large segments of irrational numbers plus some 
related semi-primes using finite segments of the products of some of the better known 
irrationals. 
 
Our starting point is to present a few the better known irrational numbers in terms of their 
basic definitions. We have – 
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These constitute the best known and often used irrational numbers occurring in the 
mathematical literature. They are part of an infinite set including such additional irrationals 
as- 
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Here p is a root of n and n0 lies near n. Thus the square root of five, which appears in the 
definition of the golden ratio  above, is given by the continued fraction- 
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It is important to recognize that segments of such irrationals need not necessarily have their 
digits enter in a random manner. If they did then all digits between 0 and 9 would appear 
equally. Let us demonstrate this non-randomness by looking at the first   
50 terms of exp(1) and . Here we have- 
 
      e2.7182818284590452353602874713526624977572470937000 
 
and- 
 
     =3.1415926535897932384626433832795028841971693993751 
 
so that the digit count looks as follows-  
 

digit 0 1 2 3 4 5 6 7 8 9 
e 6 3 8 4 5 5 3 8 5 3 
 1 5 5 8 5 5 4 4 5 8 

 
The count shows that the fifty digit long segments of these two irrationals are not 
completely random because the appearances of the ten possible digits are not five each. 
The randomness will increase as the segment lengths and advance toward infinity. The fact 
that finite length segments of irrationals are not completely random should not interfere 
with quickly coming up with some truncated products of irrational numbers and the prime 
numb ers located in their neighborhoods. This will make possible the use of some semi-
primes for public keys produced with a minimum of effort. In addition any of these primes 
will be identifiable by short and unique codes. 
 
We choose to define a finite segment of an irrational number by the code- 
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Here ak represents one of K common irrationals taken to the pkth power. The segment starts 
with the n+1 term and is m digits long. Thissegment will be designated by M. 
 
Let us look at a specific example. Take- 
 

              50}2)3/1()4({6 eM    

 
This code produces the fifty digit long segment- 
 
   M=20561719700183321091032163999752467815519924062956 
 
Using a bit of modular arithmetic, we have M mod(6)=4 which implies that that M lies 
along  the radial line 6n+4 in the following hexagonal integer spiral- 
 

            
 
   
We have shown in several earlier notes (look at both our MATFUNC and TECH-BLOG 
pages for the years 2012-15) that all primes greater than 3 must lie along the two radial 
lines 6n1 . In the graph these primes are designated by blue circles. To find all primes in 
the immediate vicinity of M will require we look at- 
 
                        isprime( M+3+6n)      and    isprime( M+1+6n )      
 
This is an easy search using the one line program- 
 
              for n from -20 to 20 do {n, isprime(M+21+6n)}od;              



  
 

 
In a split second one finds that the two closest primes are  M+33 and M-53. These read- 
 
         P1= 20561719700183321091032163999752467815519924062989  
 
and-  
 
        P2= 20561719700183321091032163999752467815519924062903 
 
Here  P1 mod(6)=1  and    P2 mod(6)=5. Note that 5 is equivalent to -1 in the hexagonal 
diagram . So P1 will be a blue circle along the radial line 6n+1  and P2 one of the blue 
cirles along 6n-1. 
 
As can be seen, it took very little effort to find the above primes since determining whether 
or not a number is  prime is provided by a very simple computer evaluation. In addition we 
now have a way to store and transmit large prime numbers by a code which itself can be 
encrypted. For example we can completely describe the fifty digit long prime P1 by- 
 
                      P1=M+33=6{e(4),2(1/2),(-3)}50+33 
 
Although the product of P1 and  P2 will not make a good public key N because of their 
proximity to each other, one can easily construct a couple of primes separated from each 
other by orders of magnitude. Such a semi-prime N will be almost unbreakable whenever 
the number of digits in the Ps is large enough. Let us demonstrate this for- 
 
          M3=7{7(1/3)(3)e(-2)}50  where   M3 mod(6)=3 
 
and- 
    
          M4=10{p(2)J01(1)ln2(-1/2)}45   where  M4 mod(6)=2 
 
 
In this case we find the nearest primes to be – 
 
P3=M3-4= 63552926881980889613675963543218124574814405573391 
 
and- 
 
P4=M4+107= 877417163204700272439074887933536826672618567 
 
 
One can easily verify by computer that these last two numbers of 50 and 45 digit length, 
respectively, are prime numbers. Their product yields the 95 digit long semi-prime- 
 
N=5576242881814340943208982418465733854221871308350631963612648387748928
0769816293964697067750697 



  
 

 
Without a knowledge of either P3 or P4 it is highly unlikely that anyone including our “big 
data” National Security Agency ( NSA) would be successful in factoring this N in any 
reasonable amount of time using even their latest high speed computers. 
 
Although the RSA approach to secret message transmission is at present still secure using 
fifty or so long prime numbers, this will not continue to hold with time. Longer and longer 
prime numbers will be required calling into question the efficacy of  public keys N in RSA 
cryptography. It suggests that  perhaps one should consider a new and simpler approach to 
encrypted electronic message transmission based on the present method of using encoded 
forms for certain large irrational numbers segments adjusted to be primes.  One could 
envision a way the product of M and a message S would be sent as D=Sn on the public 
airwaves. If the sender simultaneously sends a second signal containing an encrypted form 
of M which only he and a friendly receiver would understand, the message will have been 
secretly transmitted. Consider the case were the message is S=12345 and M is defined as- 
 
        M=5{7(1/2)p(-1/5)}20= 55190400454190093113. 
 
The encrypted message becomes- 
 
        D=(M)(S)= 681325493606976699479985 
 
There is no way an adversary could decipher D. However the friendly receiver (knowing 
what M is) will be able to rapidly decode things as D/M=S=12345. 
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