
         GENERATING LARGE PRIMES USING COMBINATIONS OF  
                               IRRATIONAL NUMBERS    
    
Modern day cryptology relies heavily on the use of public keys K which are the products 
of two large primes p and q. The primes are typically about 100 digits in length so that 
the public key constructed from them becomes almost impossible to break in finite time 
with even the fastest modern day super-computers. In addition, part of the security 
measures being taken to prevent encryption compromise is to change these public keys 
often which calls for the generation of thousands of  large prime numbers. Typically such 
numbers are constructed using random number generators. This can often make a search 
for primes rather laborious and the storage of many of such primes becomes a problem. 
We propose here an alternate method for generating large primes based on using 
combinations of irrational numbers. Not only will such an approach be shown to be quite 
fast, it also has the distinct advantage that such primes can be stored efficiently. 
 
It is known that many constants encountered in mathematics are irrational numbers in the 
sense that they cannot be represented as the quotient of two rational numbers. The best 
known of such constants are π, exp(1), sqrt(2), ln(2), and the golden ratio [1+sqrt(5)]/2. 
The sequential appearance of the  digits in each of these constants are essentially random 
as can be easily verified by noting that the ratio of even numbers(0,2,4,6,8) to odd 
numbers(1,3,5,7,.9) becomes essentially one as the digit count approaches infinity. For 
example, the first hundred digits of sqrt(2) contain 48 even and 52 odd digits. 
 
We begin our prime number construction by first writing down some well known 
irrational mathematical constants to 100 digit accuracy. This leads to- 
  
π= 
3.1415926535897932384626433832795028841971693993751058209749445923078164
06286208998628034825342117068 
 
exp(1)= 
2.7182818284590452353602874713526624977572470936999595749669676277240766
30353547594571382178525166427 
 
 [1+sqrt(5)]/2=                   
1.6180339887498948482045868343656381177203091798057628621354486227052604
6281 
8902449707207204189391138 
 
sqrt(2)= 
1.4142135623730950488016887242096980785696718753769480731766797379907324
78462107038850387534327641573  
 

            ln(2)=        
.69314718055994530941723212145817656807550013436025525412068000949339362
19696947156058633269964186875 



 
            Any combination of these constants will also produce an irrational number once the 

decimal point has been removed. We will designate such large digit numbers by N. The 
number N is next adjusted to fit the form 6n+1 or 6n-1, since we have shown in several 
earlier notes (see http://www2.mae.ufl.edu/~uhk/MATHFUNC.htm) that all primes 
above three have this form. The adjustment entails first determining N mod(6) and then 
adding a small number ‘a’ to N to bring N+a into compliance with 6n±1. Once this has 
been done all primes in the neighborhood can be determined by searching N+a+6k over a 
small range of the integer k until a prime is encountered. That is, N+a+6k becomes a 
prime.  

 
            Let us demonstrate the procedure by finding a prime p based on the 90 digit expansion- 
 
                            

A:= /2ln2 .312025858078207203648521755410552436986027465111950912853
165341074749716615733412809020659 
 
Multiplying A by 1090 produces the 90 digit random number- 

 
             

N=312025858078207203648521755410552436986027465111950912853165341074749
716615733412809020659 
 

            We find N mod(6)=1 so we can set a=0 and do a search for the prime in the form  N+6k . 
The one line MAPLE  program which allows us to do so is- 

                               
                                           for k from -50 to 50 do {k, isprime(N+a+6*k)}od; 
 
             Running the program shows that k=18 produces the prime p=N+6(18). That is- 
 
                           

p=312025858078207203648521755410552436986027465111950912853165341074749
716615733412809020767 

 
               
           Next let us find a second prime q of  90 digit length. This time we generate the number N 

from A= exp(1)^2*(1+sqrt(5)]/2. The number N=A*1090 reads- 
  

N=119557439128494976242815312498993526059074537858375287516106625293811
638810057700278312010 

 
           for which N mod(6) =2. This suggests a=+3 or -1. Choosing a=-1, means we should 

search over k until N-1+6k is prime. Doing so in the range -50<k<50 produces primes for 
k=23, k=-1 and k=22. Taking the value k=-1 we get the prime number- 

        



            
q=119557439128494976242815312498993526059074537858375287516106625293811
638810057700278312003 

   
            Multiplying p and q together will produce an  essentially unbreakable 179 digit long 

public key- 
 
       
            K := 3730501253  3701670200  4720142055  4044403683  1456101517  8103844234   
                    6073370456  2786411924  1596830903  0103955615  5759485098  1476882924 
                    5254728465  1276030655  2316821145  0627651939  5201160326  132366301 
 
            It took very little time and effort to produce this result. Considering there must be an 

infinite number of other combinations involving the above mathematical constants, it 
seems that thousands of prime numbers of 100 digit length or more can be rapidly 
produced by the present approach. What is especially noteworthy about this way of 
finding large ps and qs is that they can conveniently be stored in terms of very simple 
formulas. The above derived primes can be stored as- 
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Here the subscript refers to the number of digits used in A, 1090 is needed to remove the 
decimal point, and the last number equals a+6k. 

 
A few additional large prime numbers produced by the present technique follow- 
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From these we can generate several different public keys such as the 110 digit long key- 
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Even  NSA will have a hard time trying to factor this public key without some prior 
partial knowledge of one of the primes .   

 



Finally we point out that in defining N from A it is not necessary that one starts from the 
first digit. We could also generate the prime p from- 
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   where the digits are taken over the range ],[  . So, for example A=sqrt(π) taken from 

the 10th to the 50th digit produces a prime- 
 
                           p=9055160272981674833411451827975494561141         
 

Using this type of N will make it even harder for an adversary to factor the resultant K. 
 
 
 
 


