
 
 GENERATING HIGHLY ACCURATE VALUES FOR ALL                

 TRIGONOMETRIC FUNCTIONS  
 

INTRODUCTION: 
 
Although  hand calculators and electronic computers have pretty much eliminated the need 
for trigonometric tables starting about sixty years ago, this was not the case back during 
WWII when highly accurate trigonometric tables were vital for the calculation of  projectile  
trajectories. At that time a good deal of the war effort in mathematics was devoted to 
building ever more accurate trig tables some ranging up to twenty digit numerical accuracy. 
Today such efforts can be considered to have been a waste of time, although they were not 
so at the time. 
It is our purpose in this note to demonstrate a new approach for quickly obtaining values 
for all trigonometric functions exceeding anything your hand calculator can achieve. 
 
BASIC TRIGNOMETRIC FUNCTIONS: 
 
We begin by defining all six basic trigonometric functions by looking at the following right 
triangle- 
 

             
 
The sides a,b, and c of this triangle satisfy the Pythagorean Theorem- 
 
                               a2+b2=c2 

 

we define the six trig functions in terms of this triangle as- 
 
  sin()=b/c               cos( )=a/c           tan()=b/a  
 
  csc()=c/b               sec()=c/a)         cot()=b/a 
 
From Pythagorous we also have at once that – 
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 It was the ancient Egyptian pyramid builders who first realized that the most important of 
these trigonometric functions is  tan(). Their measure of this tangent was given in terms of 
sekels,  where 1 sekhel=7. Converting each of the above trig functions into functions of 
tan() yields- 
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In using these equivalent definitions one must be careful of signs and infinities appearing in 
the approximations to tan(). 
 
For all purposes it will be sufficient to examine the values of the above functions only over 
the restricted range-          
                                             -/4<</4 
 
Since the values outside the range can readily be determined from the values existing in 
this range by use of the following extension equations- 
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So, for example, tan(/4)=1 says tan(/2)=infinite, and tan(/3)=1/tan(/6)=sqrt(3). 
Also we have tan(/8)= sqrt(2)-1. 
 
APPROXIMATING TAN() TO HIGH ACCURACY: 
 
Havin  shown that all trigonometric functions can be expressed in terms of tan(), we next 
seek an algorithm which will produce highly accurate values for tan() in  4/0   . 
There are many ways to carry out such evaluations starting with the simplest approach of 
using the infinite series- 
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, where B2n are the even Bernoulli numbers . This approach however is quite slow in 
convergence when  gets larger . Instead people have used in the past  polynomial 
approximations of tan()/   using a polynomial  in even powers of  up through the 12th 
power. This approach yields reasonable values but still lacks the accuracy of a much more 
recent method first developed by us some six years ago and based on the use of Legendre 
polynomials. 
 
Here is how this procedure works. We start with the integral- 
 

                


1

0

)cos(),2(
t

dtattnP =M(n,a)sin(a)-N(n,a)cos(a)      

 
, where M(n,a) and N(n,a) are polynomials which increase in size as n increases. We also  
note that the integral on the left approaches zero rapidly as the order of even Legendre 
Polynomial increases. This is due to the oscillatory nature of the integrand. It means for 
larger n we will have the approximation- 
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Working out the first five quotients we find- 
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Each of these yields estimates for tan(a) with the accuracy increasing with 
increasing n and decreasing a. For a=1 rad =57.2957deg, we find T(1,1)=1.5, 
T(2,1)=1.557,  T(3,1)=1.55740772, T(4,1)= 1.557407724 and T(5,1)= 
1.557407724654902230. This should be compared to the exact value tan(1)= 
1.5574077246549022305… So T(5,1) is accurate to 18 decimal places. Since we 
are only interested in finding tan(a) for | a| ..785398.04/  , we are 
guaranteed that T(5,a) will generate at least 18 digit long values for all six 
trigonometric functions defined above..  
 
A GRAPH AND SOME SPECIFIC VALUES FOR T(5,a):  
 
We begin by grsaphing  T(5,a) and tan(a) over the range -10<a<10.Here are the 
results- 
       



      
 
We see there is excellent agreement of tan(a) with our approximation T(5,a) as 
long as  |3/2|>a. The closer one gets to a=0 the more accurate the approximation 
becomes. Note by setting the denominator of T(5,a) to zero we find  poles at  
1.57079632679490 . This is very close to the exact infinity of tan(a) at 
x=1.570796326794896… We also have the approximation- 
 
               2(1.570796326794)=3.141592653588 
 
which is accurate to twelve places. A MacLaurin expansion of T(5,a) about a=0 
agrees exactly with the series for tan(a)  through the 19th power of a.  
Since tan(a) and T(5,a) are both odd functions it will be sufficient to just concern 
ourselves with approximations to the tangent function over the half range 
0<a</4. We have used the following program to quickly construct a table at five 
degree intervals between 0 and 45deg- 
 
          a:=n*Pi/36;    for n from 0 to 9 do {(n, evalf(T(5,a),20)}od; 
 
Here is the table- 
 
          
a in Deg. Tangent Approx., T(5,a) Exact Value, Tan(a) 
0 0 0 



5 0.087488663525924005222018 0.0874886635259240052220186 
10 0.17632698070846497347109 0.176326980708464973471090 
15 0.26794919243112270647255 0.267949192431122706472553 
20 0.36397023426620236135104 0.363970234266202361351047 
25 0.46630765815499859283000 0.466307658154998592830007 
30 0.57735026918962576450914 0.577350269189625764509149 
35 0.7002075382097097794585 0.700207538209709779458520 
40 0.839099631177280011763 0.839099631177280011763125 
45 0.99999999999999999999 1.0000000000000000000000000 
 
 
The T(5,a) approximation is seen to be accurate to at least twenty places over the 
entire range of ‘a’ considered. We cut-off the value of T(5,a) where a departure 
from tan(a) was first noted. As seen, the accuracy drops somewhat as ‘a’ 
increases. 
 
EVAUTION OF OTHER TRIGONOMETRIC FUNCTIONS USING THE 
ABOVE TABLE: 
 
Let us next determine the values of the remaining trigonometric functions by 
making use of the above table. We will restrict ourselves to just a=/6 rad=30eg 
knowing the values for other angles can be obtained in a like manner. 
 
We have to twenty place accuracy– 
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Although these values are not affected by the singularities of T(5,a) , when 
evaluating things outside the present range on ‘a’ will require some consideration 
of these singularities . In particular the plots of  sine and cosine over a wider 
range exceeding a=/2 will indicate discontinuities where there are none. 
 
In looking at the right triangle given at the beginning of this article one can set the 
base length to sqrt(3), the hypotenuse to 2 and the vertical side-length to 1. For 
this triangle  the sin ( )= ½ , cos()= sqrt(3)/2 , tan()=1/sqrt(3), cot()=sqrt(3), 
sec()=2/sqrt(3), and csc()=2. In each of these cases the angle  is exactly 30 



deg=/6 rad. We can use this information, among other things, to estimate the 
value of  as follows- 
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Also we have- 
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 CONCLUDING REMARKS:   
 
We have used a technique based on Legendre polynomials to evaluate the basic 
trigonometric functions to twenty place accuracy in the range 0<</4 radians. It 
is shown that all that is needed is to find accurate values of tan() in this half-
range is to obtain values for all other  trigonometric functions  at any angle using 
appropriate transformation and extension formulas. For most cases very accurate 
results (twenty decimal places or better) for tangent are obtained using an integral 
involving the tenth order Legendre polynomial- 
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