
          ORIGIN AND PROPERTIES OF LEGENDRE POLYNOMIALS               

 

Back in 1782 the famous French mathematician A.M.Legendre came up with  a new set 
of finite length polynomials now known as Legendre Polynomials. Their origin is the 
electric potential measured at point V at distance R from a single electric charge as 
shown in the following picture- 

      

The potential at V from this point charge goes as const/R. Using the Law of Cosines 
and setting any common const to unity, the potential at V is- 

                           1/sqrt(1+t^2-2xt) 

, with the two new variables t=a/R    and   x=cos(On carrying out a series expansion 
in t, one finds- 

         1/sqrt(1+t^2-2xt)=1+[x]t+[(3x^2-1)/2] t^2+[(5x^3-3x)/2] t^3+ O(t^4)) 

The terms in the square brackets are the Legendre Polynomials. The first few read- 

      P(0,x)=1,  P(1,x)=x,  P(2,x)=(3x^2-1)/2, and P(3,x)=5x^3-3x)/2 

Generalizing, we come up with the basic identity for Legendre Polynomials- 



                  1/sqrt(1+t^2-2xt)=∑ 𝑃(𝑛, 𝑥)𝑡^𝑛ஶ
௡ୀ଴  

 

Next we differentiate this last equality with respect to t to get – 

(x-t)∑ 𝑃(𝑛, 𝑥)𝑡௡ஶ
௡ୀ଴ =(1+t^2-2xt)∑ 𝑛𝑃(𝑛, 𝑥)𝑡^(𝑛 − 1)ஶ

௡ୀ଴ . 

On expanding, this yields- 

x∑ 𝑃(𝑛, 𝑥)𝑡௡ − ∑ 𝑃(𝑛, 𝑥)𝑡^(𝑛 + 1)ஶ
௡ୀ଴

ஶ
௡ୀ଴ = 

∑ 𝑛𝑃(𝑛, 𝑥)𝑡^(𝑛 − 1ஶ
௡ୀ଴ ) +∑ 𝑛𝑃(𝑛, 𝑥)𝑡௡ାଵ − 2𝑥 ∑ 𝑛𝑃(𝑛, 𝑥)𝑡^𝑛ஶ

௡ୀ଴
ஶ
௡ୀ଴  

Converting the above five sums to the same powers t^n, these produce the Bonnet recurrence 
relation- 

                (n+1)P(n+1,x)=(2n+1)x P(n,x)-nP(n-1,x) 

By setting n=2, we find, for example, that – 

               P(3,x)=[5xP(2,x)-2P(1,x)]/3=(5x^3-3x)/2 

Starting with P(0,x)=1 and P(1,x)=x  this recurrence relation can be used to quickly find all 
positice integer Legendre Polynomials. Here is a jpg for the first ten- 

       



Note that these polynomials have finite length with the highest powers of x equal to n. They are 
either even or odd functions with n zeros in -1<x<+1. One also has the integral values- 

           ∫ 𝑃(𝑛, 𝑥)𝑃(𝑚, 𝑥)𝑑𝑥 = [2/(2𝑛 + 1)]
ଵ

௫ୀିଵ
𝛿𝑛𝑚 

, where the delta represents the Kronecker delta. This orthogonality condition reduces to – 

                             ∫ 𝑃(𝑛, 𝑥)𝑑
ଵ

௫ୀିଵ  
𝑥 = 0 

on setting m=0. Both relations follow directly from the above list of Legendre Polynomials. 

Another way to generate P(n,x) is via the second  order ODE- 

                              (1-x^2)y”-2xy’+n(n+1)y=0 

, where  y=P(n,x). The simplest way to verify that this differential equation indeed satisfies the 
Legendre Polynomials is to assume it to be correct and then evaluate it starting with n=1. Here is 
what one finds- 

 n=1 produces  (1-x^2)0-2x+2x=0 

 n=2 produces  (1-x^2)3-2x(3x)+3(3x^2-1)=0 

 n=3 produces (1-x^2)15x-x(15x^2-3)+6(5x^3-3x)=0 

So clearly the above differential equation has y=P(n,x) as one of its solutions. 

A final alternate way to generate Legendre Polynomials is by the Rodrigues Formula- 

            P(n,x)=[1/(n!2^n)]nth derivative of[(x^2-1)^n] 

 To prove its validity one again writes out the first few terms to verify that it indeed yields 
P(n,x). We have for- 

       n=1  that (1/2)(2x)=x=P(1,x) 

       n=2  that  (1/8)(12x^2-4)=(3x^2-1/2=P(2,x) 

       n=3  that   (1/48)(d3/dx^3[x^2-1)^3])=(5x^3-3x)/2  =P(3,x)     

There are  an infinite number of definite integrals involving Legendre Polynomials. Among these 
are the following- 

         ∫
௉(௡,௫)

௔మା௫మ
 𝑑𝑥

ଵ

௫ୀ଴
         ∫ 𝑃(𝑛, 𝑥) sin(𝑎𝑥) 𝑑𝑥

ଵ

௫ୀ଴
      and    ∫ 𝑃(𝑛, 𝑥) cosh(𝑎𝑥) 𝑑𝑥

ଵ

௫ୀ଴
 

These are used as starting points in the KTL approximation method for finding highly accurate 
approximations for  arctan(1/a) , tan(a) and  tanh(a), respectively. 
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