ORIGIN AND PROPERTIES OF LEGENDRE POLYNOMIALS

Back in 1782 the famous French mathematician A.M.Legendre came up with a new set
of finite length polynomials now known as Legendre Polynomials. Their origin is the
electric potential measured at point V at distance R from a single electric charge as
shown in the following picture-
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The potential at V from this point charge goes as const/R. Using the Law of Cosines
and setting any common const to unity, the potential at V is-

1/sqrt(1+t"2-2xt)

, with the two new variables t=a/R and x=cos(0). On carrying out a series expansion
in t, one finds-

1/sqrt(1+t42-2xt)=1+[x]t+[(3x*2-1)/2] t*2+[(5x*3-3x)/2] t*3+ O(t"4))
The terms in the square brackets are the Legendre Polynomials. The first few read-
P(0,x)=1, P(1,x)=x, P(2,x)=(3x"2-1)/2, and P(3,x)=5x"3-3x)/2

Generalizing, we come up with the basic identity for Legendre Polynomials-



1/sqrt(1+t42-2xt)=3.2_ P(n, )t n

Next we differentiate this last equality with respect to t to get —
(X-1)Y oo P(n, )t =(1+t"2-2xt)Y > nP(n, x)t"(n — 1).

On expanding, this yields-

XD P(n, )t = Yo o P(n, x)t"(n + 1)=

Yo onP(m,x)tM(n — 1) +X e nP(n,x)t"1 — 2x ¥ nP(n,x)t"n

Converting the above five sums to the same powers t"n, these produce the Bonnet recurrence
relation-

(n+1)P(n+1,x)=2n+1)x P(n,x)-nP(n-1,x)
By setting n=2, we find, for example, that —
P(3,x)=[5xP(2,x)-2P(1,x)]/3=(5x"3-3x)/2

Starting with P(0,x)=1 and P(1,x)=x this recurrence relation can be used to quickly find all
positice integer Legendre Polynomials. Here is a jpg for the first ten-
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Note that these polynomials have finite length with the highest powers of x equal to n. They are
either even or odd functions with n zeros in -1<x<+1. One also has the integral values-

[L_ P(,x)P(m,x)dx = [2/(2n + 1)] nm

, where the delta represents the Kronecker delta. This orthogonality condition reduces to —

fxl=_1 P(n,x)dx =0

on setting m=0. Both relations follow directly from the above list of Legendre Polynomials.
Another way to generate P(n,x) is via the second order ODE-
(1-x*2)y”-2xy’+n(n+1)y=0

, where y=P(n,x). The simplest way to verify that this differential equation indeed satisfies the
Legendre Polynomials is to assume it to be correct and then evaluate it starting with n=1. Here is
what one finds-

n=1 produces (1-x"2)0-2x+2x=0

n=2 produces (1-x"2)3-2x(3x)+3(3x"2-1)=0

n=3 produces (1-x"2)15x-x(15x"2-3)+6(5x"3-3x)=0

So clearly the above differential equation has y=P(n,x) as one of its solutions.

A final alternate way to generate Legendre Polynomials is by the Rodrigues Formula-
P(n,x)=[1/(n!2"n)]nth derivative of[(x"2-1)"n]

To prove its validity one again writes out the first few terms to verify that it indeed yields
P(n,x). We have for-

n=1 that (1/2)(2x)=x=P(1,x)
n=2 that (1/8)(12x"2-4)=(3x"2-1/2=P(2.x)
n=3 that (1/48)(d3/dx"3[x"2-1)3])=(5x"3-3x)/2 =P(3,x)

There are an infinite number of definite integrals involving Legendre Polynomials. Among these
are the following-

fxl P00 iy fxl=0 P(n,x)sin(ax)dx and fxl=0 P(n, x) cosh(ax) dx

=0 aq2+x2

These are used as starting points in the KTL approximation method for finding highly accurate
approximations for arctan(1/a), tan(a) and tanh(a), respectively.
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