
  
 

      SHORTEST ROUTE CONNECTING N POINTS IN A PLANE 
 
The shortest distance between point A[xA,0] and point B[xB,0] along the x-axis is a straight line of 
length L=xB-xA. If one adds a third point C[xC,yC] , not located on the x-axis , the minimum path 
connecting all three becomes more complicated. In that case the shortest path will be three straight 
lines intersecting at a fourth point known as the Steiner Point (named after the mathematician Jakob 
Steiner(1796-1865)). A typical minimum path where the three points A[3,3], B[2,0], and C [0,0] 
form the vertexes of an oblique looks as follows- 
 

                      
 
We see there that the minimum path  connecting all three vertexes is the three line configuration 
shown in blue. They intersect at a common point located at [1.825,0.225]. The point isreferred to as 
a Steiner point. What is interesting about such a three prong path is that the intersection produces 
three identical angles of =2/3 rad=120 degree each between neighboring lines. The Steiner Point 
is easiest to locate by performing a contour-plot of the path length L and then picking the lowest 
value contour. For the present case L=5.137. Using the Law of cosines one also has- 
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 This is within the error range of the correct value of 120 degree.   We can refer to the tree-prong 
configuration inside any triangle as a Steiner Fork which has the lines entering the Steiner Point at 
120 degrees but whose three prongs may be of unequal length. 
 



  
 

It is our purpose here to generalize the Steiner results by determining the minimum path length 
connecting the vertexes of any regular polygon with the polygon center. We will refer to the vertexes 
as source points and the central point as the sink. We will show how to calculate the optimum 
trajectory connecting the sources with the sink by a technique of breaking up the polygon into sub-
triangles and then placing a Steiner Fork inside some of the triangles. 
 
Let us begin our examination with a square having sources at its four vertexes located at A[1,1], 
B[1,-1], C[-1,-1] and D[-1,1]. By drawing in the two diagonal lines from opposite vertexes we get 
four isosceles triangles as shown- 
 

                
 
 
Placing a Steiner fork into two of the opposing triangles we get the blue line path yielding the 
minimum path length L connecting all four vertexes with the sink at the center of the square. A  little 
trigonometry to calculate the length of the path’s increment between the two Steiner Points(blue 
circles) yields  2[1-1/sqrt(3)]. Thus the total length of the optimum path becomes- 
 
                                         L=2[1+sqrt(3)]=5.4641.. 
 
If we now look at an alternate path of four radial lines running from the vertexes to the center sink 
we find the slightly larger value of L=4sqrt(2)=5.6568… This is larger than the optimum path by 
some two percent. The super-positioning  multiple Steiner Forks seems to be working. 
 
We next proceed on to the case of six source points at the vertexes of a regular hexagon connected 
with a single sink at the polygon center as shown- 



  
 

 

                 
 
We first draw in six equilateral triangles and then place Steiner Forks into three of them skipping 
every second triangle. The Steiner points for such a hexagon lie at the geometric center of the 
triangles. With the 120 degree angle between the legs being obvious. There are a total of nine equal 
length segments with each segment given by l=w/sqrt(3), where w is side-length between 
neighboring vertexes. Thus the optimum path will equal- 
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We can compare this number with that of a non-optimum path consisting of six radial lines 
emanating from each source and intersecting the sink at the polygon center. The path length will be 
L=6w and so some 15 percent longer.    
 
We continue on with twelve sources placed at the vertexes of a regular dodecagon  and one sink at 
the polygon center.   First we draw in twelve equal  isosceles triangles. These triangles appear to be 
too long suggesting we place the first six Steiner Forks just inside the polygon perimeter and  
leaving the third leg slightly adjustable from the 120 degree restriction of a standard Steiner Fork. 
We next place an equilateral triangle centered on the origin and containing a single Steiner fork with 
equal length legs. The end of these legs are then connected by straight lines to the incoming third 
legs of the outer forks. The resultant configuration looks like this- 
 
 
      
   



  
 

 

                 
 
The pattern is reminiscent of soap bubble configurations. This should not be surprising since bubbles 
are minimum energy surfaces and thus are consistent with the type of minimum trajectories we are 
discussing here. Since this time the geometry did not allow us to use exact Steiner forks for some of 
the forks and the fact that the size of the inner equilateral triangle can take on different values, we 
cannot be sure that the blue line trajectory shown in the figure is indeed a minimum path. One 
suspects however that the result must lie very close to an optimum. A ruler measurement finds the 
length of the near optimum path is L=15.8w compared to L=23.0w for a path consisting of twelve 
radial lines. Here gain w is the straight line distance between neighboring vertexes. 
 
 
Optimum paths where the number of polygon vertexes are odd are more difficult to find since the 
pattern symmetry is destroyed. For example, taking a five vertex polygon configuration a possible 
pathe looks like this- 
 



  
 

                 
Here we have two Steiner Forks plus one direct radial line. It is likely to be an optimum but we have 
cannot be sure. By Changing the radial line from V4 to the center to a line from V4 to V3 will not 
change the total path length so it is also a possible minimum. 
 
In addition to having the sources lie on the periphery of regular polygons, it is also possible to have 
2n equally spaced sources along the x axis and then determine a minimum path connecting these to a 
single point (sink) along the negative y axis. For the case of eight points along the x-axis we get the 
following picture- 
 
          



  
 

                 
 
Here the spacing between the sources along the x-axis is taken as w and the height h and slant line 
length  l . of the first set of Steiner Forks are- 
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We have cut the lower leg of the Steiner Forks   so that the paths all meet at [x,y]=[0,-7h]  . There 
are a total of 4+2+1=7 Steiner Forks whose slant lengths for  the upper two branches are l, 2l, and   
4l , respectively. This yields a total path length from the sources to the collection sink of- 
 
                       L=b-7w/2sqrt(3) +24w/sqrt(3)=b+41w/[(2sqrt(3)]    
 
 , where [0,-b] represents the coordinate of the sink and b>7h. If we change the angle between the 
upper two branches of any of the truncated Steiner Points from  2/3 radians to , the  new length is–  
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On plotting    =(L-b)/w   versus    we   find a minimum of   =11.45 at =2.55 radians=146.10 
degrees . Thus  the 120 degree angle needs to be replaced by a 146.10 degree angle to minimize the 
length L for the present eight source configuration. 
 
An interesting observation about this last configuration is that, if water lines are connected from the 
sink to the eight points along the x-axis , the water flow from each nozzle would be identical since 



  
 

the path length are equal. Such a configuration might be of interest in connection with spray painting 
or agricultural irrigation. 
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